
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8590  | https://doi.org/10.1038/s41598-022-12198-1

www.nature.com/scientificreports

Cross‑sectional metabolic 
subgroups and 10‑year follow‑up 
of cardiometabolic multimorbidity 
in the UK Biobank
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We assigned 329,908 UK Biobank participants into six subgroups based on a self‑organizing map 
of 51 biochemical measures (blinded for clinical outcomes). The subgroup with the most favorable 
metabolic traits was chosen as the reference. Hazard ratios (HR) for incident disease were modeled 
by Cox regression. Enrichment ratios (ER) of incident multi‑morbidity versus randomly expected 
co‑occurrence were evaluated by permutation tests; ER is like HR but captures co‑occurrence rather 
than event frequency. The subgroup with high urinary excretion without kidney stress (HR = 1.24) and 
the subgroup with the highest apolipoprotein B and blood pressure (HR = 1.52) were associated with 
ischemic heart disease (IHD). The subgroup with kidney stress, high adiposity and inflammation was 
associated with IHD (HR = 2.11), cancer (HR = 1.29), dementia (HR = 1.70) and mortality (HR = 2.12). The 
subgroup with high liver enzymes and triglycerides was at risk of diabetes (HR = 15.6). Multimorbidity 
was enriched in metabolically favorable subgroups (3.4 ≤ ER ≤ 4.0) despite lower disease burden 
overall; the relative risk of co‑occurring disease was higher in the absence of obvious metabolic 
dysfunction. These results provide synergistic insight into metabolic health and its associations with 
cardiovascular disease in a large population sample.

Abbreviations
IHD  Ischemic heart disease
SOM  Self-organizing map
HR  Hazard ratio
WHO  World Health Organization
HES  Hospital episode statistics
ICD  International classification of diseases
BMI  Body mass index
SD  Standard deviation
HDL  High-density lipoprotein
OR  Odds ratio
MetS  Metabolic syndrome
NCEP ATP  National cholesterol education program adult treatment panel
VLDL  Very-low-density lipoprotein

The top 10 global causes for death included ischemic heart disease (IHD, 1st), stroke (2nd), dementias (5th), 
respiratory cancers (6th) and diabetes (7th) according to the Global Health Estimates 2016 report by the WHO. 
Much of this disease burden is attributed to obesity-associated metabolic dysfunction that increases the risk of 
cardiometabolic  diseases1, multiple  cancers2 and  dementia3 in ageing individuals. These associations are sup-
ported by experimental studies of  ageing4. There is thus a causal rationale why population subgroups with poor 
metabolic health bear a higher aggregate burden of multiple chronic diseases later in life.
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The predictive power of metabolic profiling has been demonstrated in human  populations5,6, yet the practi-
cal value may be limited for an individual  patient7. In fact, risk factors for common diseases tend to have small 
individual impact and vice versa8, and prediction models for cardiovascular disease have modest performance 
at individual  level9 despite clear statistical association at population level. We propose that creating subgroups of 
metabolically similar individuals may represent a goldilocks solution that combines the robustness of population-
wide statistics while retaining easy-to-interpret analogy to observable personal metabolic profiles for more 
individualised insight compared to traditional epidemiological  modelling10,11.

In a typical scenario, people with similar profiles are grouped together and the aggregate rates of disease 
outcomes are compared between the subgroups. For example, we developed subgroups of diabetic complica-
tion burden in  200812 and validated them in 2018 with new previously unseen data on clinical  outcomes13. A 
recent investigation of body mass and the burden of 400 common diseases in the UK Biobank found clusters 
with distinct diagnostic profiles, and the authors also provided a comprehensive review of the literature related 
to biomedical  subgrouping14. These studies are highly valuable since they produce quantitative descriptors of 
population health (biomarker profiles) that contain clues on how to reduce adverse long-term outcomes (biologi-
cal interpretation of the biomarker profiles).

The first aim of this study was to define biologically meaningful metabolic subgroups in a large representative 
sample of a human population. The second aim was to identify those subgroups that carry the greatest aggregate 
risk of cardiometabolic and other diseases. To achieve the aims, we used data from the UK Biobank that includes 
half a million participants, 51 anthropometric and biochemical variables and ten years of follow-up  data15. We 
also introduced the self-organizing map (SOM) as a powerful technique to determine metabolic  subtypes11. Our 
framework is unique since it combines multi-variate data with expert consensus to infer metabolic subgroups 
from biochemical profiles while being blinded to clinical diagnoses during model fitting (robust statistics). We 
interpret these subgroups as prototypical “individuals” that can be used as the basis for targeted public health 
initiatives, recruitment of representative samples for clinical trials and for identifying synergistic patterns of 
cardiometabolic risk factors.

Materials and methods
The UK Biobank is a prospective cohort study of over 500,000 participants aged 37–73 years recruited between 
2006 and  201015. UK Biobank has approval from the North West Multi-centre Research Ethics Committee (URL: 
https:// www. ukbio bank. ac. uk/ learn- more- about- uk- bioba nk/ about- us/ ethics). The participants are volunteers 
who have provided written informed consent. No personal details were used in this study. Data storage and 
analyses were conducted according to the material transfer agreement between South Australian Health and 
Medical Institute and the UK Biobank. This study was designed and implemented according to UK Biobank 
project plan #29890.

Participants provided baseline information, physical measures and blood and urine samples and information 
on disease outcomes was obtained through register linkage, including Hospital Episode Statistics (HES), cancer 
and national death registries. Biochemical measures are described online (URL: https:// bioba nk. ndph. ox. ac. uk/ 
cryst al/ cryst al/ docs/ serum_ bioch emist ry. pdf). The dataset included in this study comprised 153,731 men and 
176,177 women of white British ancestry (Supplementary Figure S1).

The self-organizing map (SOM) is an artificial neural network approach that is designed to facilitate the detec-
tion of multi-variable patterns in complex  datasets16. The result of the analysis is a two-dimensional layout where 
individuals with similar profiles are close together on the map and thus can be assigned to the same subgroup by 
visually observable proximity. In this respect, the SOM is a type of clustering analysis, however, in our framework 
the final step of assigning subgroup labels to individuals is done by human consensus (study authors) rather than 
by mathematical  rules11. This is particularly important for population-based datasets such as the UK Biobank 
that do not have a strong clustered structure due to the broad spectrum of volunteers.

The SOM was trained according to anthropometric and biochemical data; the health outcomes were excluded 
from the training set to prevent overfitting. The authors were blinded to disease outcomes until after the SOM 
subgroups were defined. A module-based approach was adopted to avoid collinearity artefacts. First, Spearman 
correlations were calculated for all pairs of variables. Next, the pairs of variables that were considered collinear 
 (R2 > 50%) were collected into a network topology. Lastly, we used an agglomerative network algorithm to define 
modules of collinear  variables17 and principal component analysis to collapse each module into a single data 
column.

The training set was adjusted for age and sex, centered by mean and scaled by standard deviation. The SOM 
was created with default settings except for smoothness = 2.0 for a more conservative fit. The quality control tests 
for the SOM are shown in Supplementary Figure S2 (Plots A–L). We verified that every district of the map was 
populated (sample density ≥ 1293 across the map, Plot A), the model fit was sufficient (residuals below 3 SDs, 
Plot B) and that the coverage of available data was high (≥ 92% across the map, Plot C). We tested if centering 
by mean for those under medication affected the map colorings, but we observed no substantial changes in the 
regional patterns. The map patterns were not confounded by statins (original vs. adjusted LDL, Plots D–F), by 
anti-hypertensives (systolic BP, Plots G–I) or by diabetic medications (glucose, Plots J–L). To assess the influence 
of geographical location, we grouped the assessment centers according to latitude into ≤ 51°, 52° and 53°, 54° 
and ≥ 55°. We did not observe substantial stratification by assessment center location (Supplement Figure S2).

Clinical diagnoses were based on three-character ICD-10 codes (International Classification of Diseases, 
version 10) from registers of primary care, hospital inpatients, deaths and self-reported medical conditions. Com-
binations of ICD-10 codes for cardiometabolic diseases are described in Supplementary Table S1. Rheumatoid 
arthritis, dementia and cancer were included as examples of non-cardiometabolic diseases. Cancer cases were 
identified using ICD-9 and ICD-10 codes from the cancer registry. The first occurrence of a disease at or before 

https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://biobank.ndph.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf
https://biobank.ndph.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf
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baseline was considered prevalent, new cases after baseline considered incident. Vitality status was obtained 
from mortality registers censored to 26th April 2020.

Associations with prevalent outcomes were modelled by logistic regression and incident outcomes by Cox 
regression. Both model types were adjusted for age, sex and assessment center. One subgroup was chosen as the 
reference and the other subgroups were compared against the reference one-by-one. Cardiometabolic multi-
morbidity was defined as having at least two out of the four conditions (IHD, stroke, diabetes or hypertension).

Observed multimorbidity was evaluated against simulated null distributions of random co-occurrence of 
diseases. Firstly, a binary table was created where participants were organized as rows and diseases as columns. To 
obtain a random sample, the binary columns were randomly shuffled, the aggregate disease tallies were counted 
for each row and the proportion of rows with a disease tally greater than one was recorded. The process was 
repeated 10,000 times to create the null distribution. The P-value was estimated by comparing the non-shuffled 
proportion of multimorbidity against the null distribution. Confidence intervals were estimated similarly, except 
with bootstrapping instead of permutations applied to the binary table. Statistical analyses were conducted with 
Stata (version 16.0, College Station, TX, StataCorp LP) and R v3.5.0 (URL: https:// www.R- proje ct. org/) with 
the Numero library v1.411.

Ethics statement. UK Biobank has approval from the North West Multi-centre Research Ethics Commit-
tee (URL: https:// www. ukbio bank. ac. uk/ learn- more- about- uk- bioba nk/ about- us/ ethics).

Consent for publication. UK Biobank participants are volunteers who have provided written informed 
consent. No personal details were used in this study.

Results
Correlation structure between metabolic variables. The characteristics of the study population are 
listed in Supplementary Table S2. The mean age was 57 years (SD 8 years), most individuals were overweight 
(BMI mean 27.4 kg/m2, SD 4.8 kg/m2) and 20,094 (6.1%) individuals died during a mean follow-up of 10.8 years. 
We investigated 51 metabolic variables (34 biochemical, 15 anthropometric and two blood pressures) that were 
reduced to 33 SOM inputs based on collinearity (details in Methods, see also Supplementary Figure S3). The 
final correlation structure is shown in Fig. 1.

Primer on the self‑organizing map. The concept of the SOM is illustrated in Fig. 2. Each participant is 
represented by their individual preprocessed metabolic profile (Fig. 2A, 33 input dimensions). The Kohonen 
 algorithm16 is applied to project the high-dimensional input data onto the vertical and horizontal coordinates 
(two-dimensional layout in Fig. 2B). On the scatter plot, proximity between two participants means that their 
full multivariable input data are similar as well (Fig. 2C). However, scatter plots are cumbersome for large data-
sets and difficult to interpret in the absence of distinct clusters. The SOM circumvents these challenges by divid-
ing the plot area into districts. To show statistical patterns, each district is colored according to the average value 
of a single biomarker or, in the case of morbidity, the local prevalence or incidence of a disease (Fig. 2D, E). The 
connection between proximity on the canvas and similarity of full profile works the same way on the SOM as it 
does on a scatter plot. Therefore, selecting a region on the SOM is the same as selecting a subgroup of individuals 
with mutually similar profiles of input data (Fig. 2F).

The technical details of the SOM have been published previously. In particular, we highlight extensive sup-
plementary documents in four earlier papers that introduce the basic mathematical concepts and discuss the 
differences between textbook examples of clustered data and the nature of clinical cohort data as the motivation 
behind the SOM  framework11,17–19. We also recommend the vignette in the Numero R package (URL: https:// 
cran.r- proje ct. org/ web/ packa ges/ Numero/ vigne ttes/ intro. html) as a practical guide on how to construct a SOM.

Metabolic subgroups. IHD is the most common global cause for  death20 and causally connected to 
 lipoproteins21. For this reason, we used the patterns of the apolipoprotein B module, triglycerides and the HDL 
module as the starting point for subgrouping (Fig.  3A, G, M). We identified map regions that captured the 
characteristic combinations of features for individuals that had the highest apolipoprotein B score (Subgroup I, 
top-left part of Fig. 3A–F), elevated triglycerides (Subgroups II and III, bottom-left quadrant of Fig. 3G–L), and 
the highest HDL score (Subgroup IV, top part of Fig. 3M–P).

Subgroup I was characterized by the combination of high apolipoprotein B score (Fig. 3A), high systolic 
blood pressure (Fig. 3B), high rheumatoid factor (Fig. 3C) and adequate glycemic control (Fig. 3D). Biomarkers 
of kidney disease were not elevated (Fig. 3E, F). The second and third subgroups featured elevated triglycerides 
(Fig. 3G) and high body fat score (Fig. 3H), however, Subgroup II was characterized by high liver enzymes 
(Fig. 3I–K) whereas Subgroup III had higher C-reactive protein (Fig. 3L). The highest HDL module scores 
(Subgroup IV) were observed together with the highest vitamin D (Fig. 3N) and bilirubin (Fig. 3O) and low 
estradiol (Fig. 3P, V). These individuals were the leanest (Fig. 3H).

The highest estradiol values were observed on the left side (Subgroup V, Fig. 3P, V) and Subgroup V also 
showed the highest testosterone in men (Fig. 3W) and sex-hormone binding globulin for both sexes (Fig. 3R). 
Sex dimorphism was pronounced; estradiol was fivefold higher in women, and testosterone was tenfold higher in 
men and we verified that the relative SOM patterns for women under and over the age of  5122 were not disrupted 
by menopause (Supplementary Figure S4). The map area at the bottom (Subgroup VI) was characterized by high 
urinary excretion biomarkers without albuminuria (Fig. 3E, S, T) and these individuals had higher insulin-like 
growth factor Z-scores compared to the neighboring Subgroups III and V (Fig. 3U).

https://www.R-project.org/
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://cran.r-project.org/web/packages/Numero/vignettes/intro.html
https://cran.r-project.org/web/packages/Numero/vignettes/intro.html
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Succinct descriptive labels based on selected biomarkers were assigned to the subgroups for easier reading 
(Fig. 4). Unadjusted map colorings in physical units are included in Supplementary Figures S5 and S6. Numerical 
descriptions of the subgroups are available in Supplementary Table S3.

Disease prevalence and incidence by subgroup. The highest prevalence of IHD was observed in Sub-
group III (Fig. 5A). Diabetes prevalence varied the most across the map with small percentages for Subgroups 
IV and V, but substantially higher in Subgroups II and III (Fig. 5B). The pattern for hypertension was close to 
that of diabetes (Fig. 5C), but there were also individuals in Subgroup I who had hypertension (see also blood 
pressure in Fig. 4G). The prevalence of rheumatoid arthritis, dementia and cancer was higher in Subgroup III 
(Fig. 5D–F). Subgroup IV was associated with the lowest overall burden of disease and was chosen as the control 
subgroup. The subgroups were similar with respect to age, sex and follow-up time (Fig. 5U–X).

Odds and hazard ratios of diseases between the subgroups are shown in Fig. 5G–T and confidence intervals 
and P-values are available in Supplementary Tables S4 and S5. Subgroup III was associated with the highest 
prevalence of ischemic heart disease (7.5%, OR = 2.9), hypertension (19.3%, OR = 3.7), rheumatoid arthritis 
(2.3%, OR = 2.9) and cancer (9.1%, OR = 1.4). High incidence was observed for IHD (9.6 per 1000 person years, 

Figure 1.  Spearman correlations between anthropometric and biochemical features that comprised the training 
set for the self-organizing map (adjusted for age and sex). Highly collinear variables were collapsed into the 
principal component score (PC) prior to correlation analysis.
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HR = 2.1) and the highest incidence for rheumatoid arthritis (1.6, HR = 2.53), cancer (12.8, HR = 1.3), stroke (2.6, 
HR = 1.9) and mortality (13.4, HR = 2.1).

The prevalence of diabetes was the highest in Subgroup II at 16.7% (OR = 12.6) and the incidence was 14.3 
per 1000 person years (HR = 15.8). The incidence of ischemic heart disease in Subgroup II was the same as in 
Subgroup III (9.6 vs. 9.7, P > 0.05). There were no differences in the prevalence of dementia (0.13% vs. 0.14%, 
P > 0.05) or the incidence of dementia (1.4 vs. 1.5, P > 0.05) between Subgroups II and III.

Metabolic syndrome and multimorbidity. The metabolic syndrome (MetS) was developed to cap-
ture synergistic features associated with high cardiovascular  risk23,24. The SOM patterns for MetS classification 
(NCEP ATP III) are shown in Fig. 6A–F and numerical results are available in Supplementary Table S6. High 
MetS prevalence was observed in Subgroup II (64.2%) and Subgroup III (57.8%) and the lowest in Subgroup IV 
(5.7%).

The MetS combines risk factors, but we also investigated the combination of established morbidities. The 
burden of multimorbidity depends on the frequencies of the diseases in the population: if two diseases become 
more frequent, the random chance of having both increases. For example, younger individuals have fewer diseases 
compared to older individuals (Fig. 6G, split by the median age of 58 years). This difference in disease frequen-
cies leads to a difference in multimorbidity by mathematics alone (the null model, see Methods). However, the 
observed excess beyond the null model (i.e. enrichment) was greater in younger individuals (Fig. 6H), which 
means that having one cardiometabolic disease as a young person increases the probability of having another 
disease more than it would for an older person.

The highest frequency of multimorbidity was observed in Subgroups II (prevalence 9.8%, incidence 7.7%) 
and III (prevalence 9.4%, incidence 6.1%) and the lowest in Subgroups IV (2.0%, 1.9%) and V (2.5%, 1.8%). We 
defined the enrichment ratio (ER) as the ratio between the observed number of individuals with ≥ 2 diseases 
versus the number predicted by the null model. Multimorbidity was enriched in all subgroups (Fig. 6D, E and 
Supplementary Tables S7 and S8), with the highest ratios observed in Subgroups IV (prevalent ER = 4.22, incident 
ER = 4.00), and the lowest in Subgroup II (prevalent ER = 1.74, incident ER = 2.01).

Discussion
Metabolic dysfunction is inextricably linked with ageing demographics and the global obesity pandemic and 
comes with potentially grave health implications for populations and individuals  alike1–3. To understand the phe-
nomenon better, we introduced data-driven metabolic subgrouping of the UK Biobank as a model of metabolic 
diversity (the first aim of the study) and investigated subgroup-specific prevalence and incidence of multiple 
clinical outcomes (the second aim of the study).

We defined six metabolic subgroups based on the SOM of the UK Biobank. The first three subgroups cap-
tured the patterns of classical IHD risk factors and the obesity pandemic (Subgroups I-III). The liver-associated 
Subgroup II was predictive of diabetes and IHD, which fits with the concept of fatty and insulin resistant liver 

Figure 2.  Schematic illustration of the subgrouping procedure. We used the self-organizing map (SOM) 
algorithm to project high-dimensional data onto a two-dimensional canvas that is divided into districts (A–C). 
The data points can be colored based on the observed values of any variable (D). In this study, the statistical 
weight of regional patterns was encoded in smoothed pseudo-colour representations of the observed values (E). 
The map colorings were used as visual guides to assign map districts and the participants therein into mutually 
exclusive subgroups (F).
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as a key player in VLDL-HDL dyslipidemia, insulin resistance and type 2  diabetes25,26. The inflammatory and 
kidney stressed Subgroup III was associated with the highest mortality and overall chronic morbidity (includ-
ing IHD). This pattern is also compatible with the  literature27,28. The distinction between the liver and kidney 
is a notable biological insight from the SOM analysis—for example, the popular definitions of the MetS do not 
capture the liver-kidney  spectrum24.

We identified a subgroup with elevated sex hormones (Subgroup V). These individuals had a low burden of 
diabetes and morbidity, which fits the Rotterdam  Study29 and other evidence on insulin  resistance30. Yet the Rot-
terdam study also reported that high estradiol in women may indicate increased diabetes risk. Furthermore, we 
observed multi-fold variation in absolute levels between men, women, young and old that may confound disease 
associations, as also noted by other  studies31,32. Longitudinal studies with multiple time points of hormones may 
be necessary to understand how hormonal levels indicate and predict metabolic dysfunction.

Subgroup VI was characterized by elevated serum urea, elevated serum and urine creatinine and high urinary 
electrolytes. There was no clear indication of kidney stress nor high morbidity. The biochemical pattern is com-
patible with the expected effects of habitual high-protein  diet33. Subgroup VI may also capture a haemodynamic 
or a fluid balance aspect of metabolic  health34. Incidental circumstances during sample collection is another 
possibility: as there is only one biochemical time point, acute illness or other stressors before the baseline visit 
may have confounded systemic metabolism and resulted in atypical findings for multiple affected and correlated 
biomarkers.

Obesity and unfavourable lifestyle are risk factors for  multimorbidity1,35. However, the previous studies did 
not consider the confounding increase in co-occurrence when the frequency of diseases increases. We observed 
a synergistic enrichment for cardiometabolic multimorbidity in all subgroups. The most likely explanation is 
intertwined etiology, partly due to pleiotropic genetic variants and environmental exposures and partly due 
to secondary effects between the diseases themselves such as the mechanical stress on the vasculature from 
 hypertension36 or toxicity from excessive glycation in  diabetes37. Another explanation could be diagnostic pro-
cedures: if one disease is detected, it is easier to look for and establish the presence of another.

Figure 3.  The SOM subgrouping procedure applied to the UK Biobank. In each plot, the same participants 
reside in the same district. The colors of the districts indicate the regional deviation from the global mean, 
with color intensity adjusted according to how much the variable contributed to the structure of the map. The 
numbers on the districts indicate the smoothed mean Z-score of the participants.
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Multimorbidity enrichment was pronounced in the metabolically favorable Subgroups IV and V despite 
them having lower disease burden overall. The paradoxical finding means that the relative risk of co-occurring 
cardiometabolic disease was higher in the absence of obvious metabolic abnormality. The pattern may reflect 
genetic and environmental susceptibility that is independent of the typical cardiovascular risk factors but nev-
ertheless pleiotropic to cardiometabolic  diseases38. The same pattern may also arise from survival bias as people 
who are simultaneously affected by metabolic dysfunction and multiple morbidities tend to perish  younger39.

The statistical link between metabolic dysfunction and cardiovascular disease is strong on the population level 
but this does not necessarily translate to accurate prediction of individual  events8, indeed, most cardiovascular 
risk models show modest predictive  ability9. For this reason, we envisage the SOM to occupy the inter-mediate 
space where we can leverage the aggregated statistics over subgroups while interpreting the results as stereotypical 
individuals that represent meaningful biological phenotypes. Specifically, human observers have visual access 
to every single variable and its patterns when making the decisions on subgroup boundaries. It is also easy for 
human observers to verify which subgroup profile matches their own since the profiles are expressible in physical 
measurement units. Therefore, the SOM model is directly applicable to real-world people and only one SOM is 
necessary to describe the burden of multiple common disease, as seen in Figs. 5 and 6. Yet a subgroup contains 
multiple individuals, which enables the calculation of prevalence and incidence rates as subpopulation risk esti-
mates. Indeed, propensity scoring is already used in this manner to identify pools of representative cases within 
health informatics  systems40. However, these methods are often presented as black boxes and thus lack the bio-
logical context that the SOM colorings can provide. The SOM lets a group of scientists to “see” the data through 

Figure 4.  Mean metabolic profiles for SOM subgroups normalized by population SD. The bars are colored 
according to the direction and magnitude of the deviation from the population mean. The black stars indicate 
characteristic features that were selected for simplified naming of the subgroups.
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Figure 5.  Comparison of morbidity between the SOM subgroups. Percentage of individuals with a disease at 
baseline across the map districts (A–F). Odds ratios for disease prevalence across subgrups based on logistic 
regression adjusted for age, sex and assessment center (G–L). Hazard ratios for incident disease or mortality 
based on Cox regression adjusted for age, sex and assessment center (M–T). Maximum follow-up time available 
across any clinical end-point (X).

Figure 6.  The metabolic syndrome (MetS) and multimorbidity. MetS was defined according to the NCEP ATP 
III criteria that include five components (A–E, the percentages in the plots indicate the proportion of individuals 
that satisfy a criterion) and subsequent binary classification for those with ≥ 3 points (F). The participants 
were divided into those with age ≤ 58 (N = 167,337 or 50.7%) and those with age > 58 (N = 162,571 or 49.3%) 
to create two equally sized age strata (G). The null model represents the number of multimorbid cases if the 
co-occurrence of diseases was random. Bars for subgroups include 95% confidence intervals (H–J).
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the statistically standardized colorings in a way no other tool can, and use that information to create a consensus 
on how to split the population into subgroups that make biological, medical, economic and societal sense.

Limitations. Due to the large sample size, the statistical robustness is high in this study but we urge caution 
when generalizing the findings of this study to other cohorts, to other ethnicities or to populations of different 
circumstances. Furthermore, the results are dependent on the selection of available biomarkers and different 
laboratory panels may produce different subgroups (note also a previously published comprehensive risk fac-
tor  screening41). We also note that the statistical accuracy of population-based data is insufficient to develop 
a machine learning model for a clinically robust predictive  test8,9. The UK Biobank recruited volunteers only, 
thus people with less opportunity to participate due to low socio-economic status or poor health may be under-
represented, however, the disease associations are compatible with other  cohorts42. Ageing affects metabolism, 
but the SOM was constructed from cross-sectional data and adjusted for age, thus we are unable to provide 
information on longitudinal metabolic trajectories and the metabolic subgroups should not be interpreted as 
part of a temporal sequence.

Conclusions
The SOM subtypes provided a descriptive framework of how combinations of multiple risk factors are associ-
ated with diverging cardiometabolic disease outcomes within a population. The new information is useful for 
the development of targeted interventions for specific subgroups; potential applications include phenotypically 
guided trials of new treatments where participants are selected based on their full phenotypic profile (e.g. car-
diovascular drug trials designed for persons with inflammatory kidney stress vs. persons with diabetogenic liver 
stress). Such designs will provide more targeted information on the exact type of patient who will benefit the most 
from the treatment. We also see potential to adopt metabolic profiles as a new approach to assess the health and 
aggregate disease burden in a population. For example, subtype prevalences can provide phenotypically specific 
information on how changes in environmental risk factors influence the aggregate disease burden in different 
segments of the population over time.

Data availability
The UK Biobank data are publicly available (https:// www. ukbio bank. ac. uk/). This study was designed and imple-
mented according to project plan #29890.
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