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Thermal neutron beam 
optimization for PGNAA 
applications using Q‑learning 
algorithm and neural network
Mona Zolfaghari, S. Farhad Masoudi*, Faezeh Rahmani & Atefeh Fathi

As a powerful, non‑destructive analysis tool based on thermal neutron capture reaction, prompt 
gamma neutron activation analysis (PGNAA) indeed requires the appropriate neutron source. 
Neutrons produced by electron Linac‑based neutron sources should be thermalized to be appropriate 
for PGNAA. As a result, thermalization devices (TDs) are used for the usual fast neutron beam to 
simultaneously maximize the thermal neutron flux and minimize the non‑ thermal neutron flux at 
the beam port of TD. To achieve the desired thermal neutron flux, the optimized geometry of TD 
including the proper materials for moderators and collimator, as well as the optimized dimensions 
are required. In this context, TD optimization using only Monte Carlo approaches such as MCNP is a 
multi‑parameter problem and time‑consuming task. In this work, multilayer perceptron (MLP) neural 
network has been applied in combination with Q‑learning algorithm to optimize the geometry of TD 
containing collimator and two moderators. Using MLP, both thickness and diameter of the collimator 
at the beam port of TD have first been optimized for different input electron energies of Linac as well 
as for moderators’ thickness values and the collimator. Then, the MLP has been learned by the thermal 
and non‑thermal neutron flux simultaneously at the beam port of TD calculated by MCNPX2.6 code. 
After selecting the optimized geometry of the collimator, a combination of Q‑learning algorithm and 
MLP artificial neural network have been used to find the optimal moderators’ thickness for different 
input electron energies of Linac. Results verify that the final optimum setup can be obtained based 
on the prepared dataset in a considerably smaller number of simulations compared to conventional 
calculation methods as implemented in MCNP.

Prompt gamma-ray neutron activation analysis (PGNAA) based on thermal neutron capture reaction is a fast, 
non-destructive, and accurate technique in multi-elemental neutron activation analysis, in which the gamma 
rays from activated nuclei of materials enable us to identify elements and determine their concentrations based 
on their energies and intensities,  respectively1–5. The PGNAA technique, based on prompt gamma rays, is also 
an appropriate method for online measurement and exploration in manufacturing industries, petroleum and 
coal well-logging, landmines detection, and concealed  explosives6,7.

Nuclear reactors, accelerators, ( α, n ) sources (e.g., 241Am/Be), spontaneous sources (e.g., 252Cf), and neutron 
generators (2.5 and 14.1 MeV neutrons from deuterium–deuterium (D–D) and deuterium–tritium (D–T) reac-
tions, respectively) are general neutron sources which can be utilized in  PGNAA8–13. In recent years, Linac-based 
photo-neutron sources are being used as an interesting alternative for providing neutron  beams14–16.

However, neutron beams generated by such sources should be thermalized for PGNAA facility based on 
the thermal neutron capture  reaction17–21. Thermalization devices (TDs) provide thermal neutron beams with 
minimum non-thermal neutron flux. A TD contains suitable materials for moderators and the collimator with 
optimized dimensions to achieve the desired thermal neutron beam. Since the properties of the obtained neu-
tron beam depend on both materials and dimensions, TD optimization can accordingly be taken into account 
as a multi-parameter problem. Also, conventional computational codes such as  MCNP17–23 are considerably 
time-consuming nevertheless; therefore, sequential optimization of dimensions in different parts of the TD is 
preferred, i.e., the characteristics of each layer (including appropriate materials and optimal dimensions) of TD 
against the neutron source should be selected through a large number of simulations. The next layers should be 
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also optimized according to the properties of the previous layers. For example, the optimal TDs based on D-T 
neutron generator have been designed as a multi-parameter problem after the simulation of multiple programs 
using MCNP code for  PGNAA17,18. Researchers also selected the appropriate materials and optimized the dimen-
sions of two moderators and the collimator of the TD based on a 20 MeV electron Linac and spherical tungsten 
as electron photo-neutron converter using MCNPX code to achieve the maximum thermal neutron flux at the 
aperture of TD for  PGNAA21.

In recent years, artificial intelligence (AI)-based methods such as artificial neural networks (ANN) and 
machine learning have been widely applied in many different areas, including nuclear physics for optimization 
 purposes24–30.

In the present work, a hybrid method based on a combination of multilayer perceptron (MLP) artificial neural 
network and Q-learning algorithm has been proposed for optimizing four variables related to the dimensions 
of two moderators and the collimator of TD, as well as different electron energies of Linac. First, the optimal 
dimensions (thickness and diameter) of the collimator have been calculated using the MLP neural network, which 
was learned by 100 data of the thermal and non-thermal neutron flux simultaneously at the beam port of TD. To 
optimize the moderators’ thicknesses for different electron energies of Linac, the MLP neural network was then 
leaned by 300 data related to the properties of the thermal neutron at the beam port. Finally, the hybrid method 
has been applied which leads to a remarkable speed-up for optimizing TD dimensions in a more accurate way 
and with a smaller number of simulations compared to previous conventional methods.

Materials and methods
For thermal neutron activation analysis purposes, it is required to consider the TDs surrounding a fast neutron 
source. In the design of the TD, an arrangement of materials including moderators, collimators, and reflectors 
with different dimensions has then been investigated using MCNPX2.6  code17–23. Following our recent  work21, 
the best materials can be selected based on a smaller thermal neutron capture cross section (<  10−2 barn) among 
BeO,  BeD2, Plexiglas, borated paraffin, carbon, polyethylene (PE), Teflon  (CF2), and heavy water  (D2O). To avoid 
design complexity (based on the fact that TD optimization is a multi-parameter problem), TD materials have 
been considered to be  fixed21. We have previously shown that the maximum thermal neutron flux and the mini-
mum non-thermal neutron flux in the neutron beam can be obtained simultaneously using two moderators (i.e., 
 BeD2 and PE as the first and second moderators, respectively) with the optimized thickness of 4 cm in front of the 
spherical tungsten (electron converter and photo-neutron target)21. As shown in Fig. 1, the primarily-proposed 
TD is based on the photo-neutron target and an electron Linac including BeO (as the neutron reflector),  BeD2 
and PE (as the first and the second moderators, respectively) and PE (as the collimator). In addition, it should 
also be noted that the spherical tungsten as an optimized photo-neutron target with a radius of 1.5 cm produces 
higher fast neutron flux in comparison with other possible  geometries14.

Definition of thermalization efficiency. We aim at obtaining the optimal geometry of TD via simulta-
neous maximization of the thermal neutron flux (�th) , and minimization of the ratio of total to thermal neutron 
flux (�tot/�th) in the neutron beam at TD’s beam port defined as thermalization efficiency (K)17,18,21,23. In the 
present work, K is a four-variable function for each Linac input electron energy as Eq. (1) indicates:

Figure 1.  The primarily-proposed  TD21.
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where, E is the Linac input electron energy, ml1 and ml2 are the thicknesses of the first  (BeD2) and second (PE) 
moderators, and t and d are the thickness and diameter of the collimator (PE), respectively. Clearly, the larger K 
value at the beam port of the TD, the higher thermal neutron flux, which in turn leads to the smaller epithermal 
and fast neutron fluxes, and more efficient neutron beam for PGNAA applications as well.

To generate K as an MLP neural network dataset, the MCNPX2.6 code has been applied to transport electrons, 
photons, and neutrons using ENDF/B-VI Release 8 Photo-atomic Data (mcplib), as well as Photo-nuclear Data 
from ENDF7u libraries. In order for the results to be meaningful, all the simulations have been accordingly per-
formed with relative errors less than 0.5%. The thermal, epithermal, and fast neutron energy bins for the F2 tally 
have also been considered for neutron flux calculation at the ranges <  10–6 MeV,  10–6–10–2 MeV, and >  10–2 MeV, 
respectively.

Artificial neural network. ANN is a mathematical model inspired by human brain functionality. Neu-
rons are the processing units in ANN with three main layers including input layer, hidden layer, and output 
layer. Each layer has several neurons connected to each other with synaptic weights. The sum of the weighted 
inputs is calculated in neurons to generate outputs affected by activation functions, which are usually nonlin-
ear mathematical functions such as Tan-Sigmoid, Log-Sigmoid, and Rectifier as the commonly used activation 
 functions31,32.

Mathematically, a neuron’s network function is governed by:

where, Y is the output neuron, xi is the input with the relative weight of wi, and b and f are the bias and activation 
functions, respectively.

According to the related information in each problem, the number of neurons in the input and output layers 
can be determined. The number of hidden layers depends on the nature of the problem. The number of neurons 
in the hidden layer can be estimated after many examinations. An MLP, as the most commonly-applied network, 
is a feedforward ANN that generally utilizes the back-propagation algorithm as the supervised learning method 
to train the  network31. In the present study, the MLP neural network has been learned by 100 data of the K values 
at the first step of optimizing the dimension of the collimator for different electron energies and moderators’ 
thicknesses. After examinations (using python), the suitable configuration for the learned MLP neural network 
has been obtained with five input layers related to the associated five variables of the K function, seven hidden 
layers with a total of 1400 neurons, and one output layer.

At the second step of TD geometry optimization to find the optimal moderators’ thicknesses for different 
electron energies of Linac, the MLP neural network has been learned by 300 data of K values. The specifications 
of the trained MLP neural network model are three input layers due to the thicknesses of the two moderators 
for different input electron energies of Linac, three hidden layers with a total of 90 neurons, and one output 
layer. It should be mentioned that the Relu function has been utilized as the activation function of hidden and 
output layers at two steps.

To minimize the error between the network output or between predicted and the true K values during the 
training process, the weights connected to the neurons have been accordingly updated. The performance and 
quality of the produced MLP neural network model can also be estimated using mean squared error (MSE), 
mean absolute error (MAE), and  R2-score as defined by Eqs. (3), (4), and (5)32. It should be noted that MSE is 
the average squared difference between the estimated and the true K values, MAE is the average of the absolute 
errors between the pair predicted and the true K values, and  R2-score evaluates the performance of a linear 
regression model, defined between 0 to 1, as follows:

where, Yi , Y ′
i  , and Y ′′

i   are the true value, the predicted value, and the mean of the true data, respectively, and n 
is also the number of data points.

Reinforcement learning (RL) and Q‑learning algorithm. RL is a part of machine learning that is not 
quite supervised or unsupervised. In principle, RL is related to human behavior, like a child learning to walk; 
therefore, RL is a trial-and-error learning approach. The RL includes agent, states, actions, environment, and 
receiving reward. The intelligent agent takes the best actions in an environment to maximize the cumulative 
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reward. The agent’s performance in the environment is also shown in Fig. 2. In the present work, the agent is 
faced with four actions due to the increase and decrease of the thicknesses of the two moderators  (BeD2 and PE 
as the first and the second moderator, respectively; forming also the states as well) within 1–10 cm with a 0.5-cm 
step to achieve maximum reward as K increases. The environment is also considered as a combination of these 
two values.

On the other hand, Q-learning is a value-based model of RL being applied to find the optimal cases in the 
problem using a Q-function. In the Q-learning algorithm, the Q-table is defined based on the rows of states and 
the columns of actions helping to calculate the maximum expected future rewards, as well as to select the best 
action at each state.

At the first step, the Q-table with m states (explained in the next section) in the rows and n (= 4) actions in 
the columns is initialized with the zero values.

At the second step, the agent randomly chooses and performs an action based on the epsilon greedy strategy.
Finally, the agent takes reward from the environment based on increasing K and updates the Q-function 

related to the new state. This three-step activity will be continued to complete the training of the agent and to 
exploit the environment entirely after the considered number (2000) of episodes in the Q-learning algorithm. 
The epsilon rate is a unit number defined for the random selection of actions in each episode. It should be noted 
that the epsilon rate is high in the beginning for the agent with no information about the environment. When 
the agent starts to explore the environment, however, the epsilon rate decreases, and then the agent can be able 
to exploit the combination of the two thickness values.

During the exploration process, the agent obtains more confidence to evaluate the Q values in the Q-table. The 
Bellman equation is utilized as the Q-function that takes two components of state (s), and action (a) which reads:

where, Q(s, a) and newQ(s, a) are the Q values of the current state and new states, respectively. R(s, a) is the 
reward given by the environment at the current state considered which is 1.5 in this work, and maxQ

′(

s′, a′
)

 is the 
maximum future reward from the new state by selecting the best action in the current state. The α and γ values 
(both between 0 and 1) also indicate the learning rate and the discount factor, respectively. The learning rate is 
the step size of moving forward in each iteration by the agent. If it is closer to 1, the agent then considers only 
the new Q values; Consequently, it is preferred that the learning rate is 0.1 until the agent is learned in small-step 
sizes. The discount factor also indicates that the agent considers short-term and/or long-term rewards, so it has 
been considered to be 0.95 for long-term  rewards32,33.

Result and discussion
Optimal dimensions of the collimator. At the first step in TD optimization, the thickness and diam-
eter of the collimator have been investigated. For this purpose, 100 data of K values have been simulated using 
MCNPX2.6 code. Five variables of the K value have also been taken into account including: a 20 MeV input 
electron energy of Linac, two 4-cm thickness values for the first and second moderators, and different thick-
ness and diameter values of the collimator within the ranges 1–10 cm and 6–15 cm (with a 1-cm step), respec-
tively. Since the K values depend on the electron energies, normalized K values have been accordingly used for 
learning. 100 K values have been normalized to those related to the 5-cm thickness and 10-cm diameter of the 
collimator as the mean values of the two ranges aforementioned. According to our previous  study21, the 4-cm 
thickness of  BeD2 as the first moderator and that of PE as the second have been chosen as the optimized values 
based on a 20-MeV Linac and a 2-cm thickness-step using MCNP. Therefore, the range of thicknesses and diam-
eter of the two moderators and collimator in current study that mentioned as a dataset for the MLP artificial 
neural network is based on our previous research results. The prepared dataset includes training data (56% of 
a dataset), validation data (14% of a dataset), and test data (30% of a dataset). The trained MLP model uses the 
training data; validation data has been applied to investigate the MLP neural network progress and to optimize 
the model; the test data has been also utilized to estimate the efficiency and performance of the MLP model. An 
epoch in the ANN further indicates one circuit in all training  datasets34.

To achieve the proper configuration of the MLP neural network, and to extract the suitable training model, 
different hidden layers with different numbers of neurons, activation function types, optimizer types, and losses 
have been accordingly examined using python. As a result, the proper structure of the MLP neural network with 

(6)newQ(s, a) = Q(s, a)+ α
[

R(s, a)+ γ maxQ′
(

s′, a′
)

− Q(s, a)
]

Figure 2.  Agent’s performance in the environment.
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seven hidden layers for this problem has been obtained. The specifications of the suggested MLP neural network 
are tabulated in Table 1.

To achieve the optimized weights of the MLP neural network, the difference between the real and predicted 
K values (namely, loss) should be minimized or become close to  zero35. Accordingly, the loss for validation and 
training has been obtained for 100 data in 2500 epochs, as shown in Fig. 3.

Also, the trained model extracted from the MLP neural network has been applied for testing and predicting 
the K values in the four sample datasets (Fig. 4). The variables associated to the K values in four datasets are: 
(a) E = 18 MeV, ml1 = 4 cm, ml2 = 4 cm; (b) E = 20 MeV, ml1 = 4 cm, ml2 = 3 cm; (c) E = 20 MeV, ml1 = 4 cm, 
ml2 = 5 cm; (d) E = 25 MeV, ml1 = 4 cm, ml2 = 4 cm, within the ranges 1–10 cm (for thickness value of the collima-
tor) and 6–15 cm (for diameter value of the collimator) (100 data of K value in each dataset). The performance 
values of the trained MLP neural network represented by  R2-score, MAE, and MSE are also tabulated in Table 2.

As seen in Fig. 3, the loss value for validation and training data approaches zero as epoch increases to 2500, 
meaning that the trained MLP neural network model has been optimized for predicting accurate K values for 
2500 epochs.

From Fig. 4, in testing the trained MLP neural network with four datasets, both true and predicted K values 
are close to each other in the y = x line. As well, according to Table 2, the trained MLP neural network model has 
a high quality and performance for  R2-score is close to 1, and for MAE and MSE to be nearly vanished.

Therefore, the MLP neural network model, trained with 100 data and tested with four sample datasets, can 
predict the normalized value of the thermalization efficiency. As a result, the maximum K value predicted by 
the trained MLP neural network model for different variables of the thermalization efficiency is achieved for 
5 cm in thickness and 6 cm in diameter of the collimator. In other words, the optimized dimensions of the col-
limator are independent from both the electron energy and the thicknesses of the moderators. Hence, the 5-cm 
thickness and 6-cm diameter have been considered as the constant parameters throughout this work. Although 
the thermalization efficiency increases with the decrease in the diameter of the collimator (due to the smaller 

Table 1.  The specifications of the suggested MLP.

Network parameters MLP

Number of inputs  (xi) 5

Number of neurons in the first hidden layer 300

Number of neurons in the second hidden layer 200

Number of neurons in the third hidden layer 200

Number of neurons in the fourth hidden layer 200

Number of neurons in the fifth hidden layer 200

Number of neurons in the sixth hidden layer 200

Number of neurons in the seventh hidden layer 100

Number of outputs 1

Activation function of hidden and output layers Relu function

Optimizer Rmsprop = 0.001

Epoch 2500

Loss 0.001

Figure 3.  The loss for validation and training for 100 data in 2500 epochs.
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surface through which the neutron flux passes), according to the limitations of the sample size in NAA, a 6-cm 
diameter has been then considered as the minimum value for the collimator.

Optimization of the moderators’ thickness values. At the second step in TD optimization, the mod-
erators’ thickness values for different input electron energies of Linac have been accordingly investigated. To 
determine the optimal thicknesses of  BeD2 and PE respectively as the first and the second moderators, a com-
bination of the Q-learning algorithm and MLP ANN has been then applied. The MLP neural network has been 
learned with the 300 data of K values with three variables; different input electron energies including 15, 20, and 
25 MeV, and different thickness values for two moderators within 1–10 cm with a 1-cm step. Also, 56%, 14%, and 

Figure 4.  Testing the trained MLP neural network using the four sample datasets, each 100 data of K value with 
variables including (a) E = 18 MeV, ml1 = ml2 = 4 cm (b) E = 20 MeV, ml1 = 4 cm and ml2 = 3 cm, (c) E = 20 MeV 
ml1 = 4 cm and ml2 = 5 cm, (d) E = 25 MeV, ml1 = ml2 = 4 cm. Thickness and diameter values of the collimator 
are within the ranges 1–10 cm and 6–15 cm, respectively.

Table 2.  Properties of the four sample datasets as well as the performance of the trained MLP model tested 
with them. (1) Input electron energy of Linac. (2) Thickness of the first moderator  (BeD2). (3) Thickness of the 
second moderator (PE).

E(1) (MeV) ml1(2) (cm) ml2(3) (cm) R2-Score MAE MSE

18 4 4 0.97251 0.01858 0.00062

20 4 3 0.94709 0.03112 0.00148

20 4 5 0.97024 0.02012 0.00053

25 4 4 0.98041 0.01704 0.00042
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Figure 5.  The appropriate configuration of the trained model of the MLP neural network for the 300 data of K 
value with three variables.

Table 3.  Specifications of the trained MLP neural network model.

Network parameters MLP

Number of inputs  (xi) 3

Number of neurons in the first hidden layer 40

Number of neurons in the second hidden layer 30

Number of neurons in the third hidden layer 20

Number of outputs 1

Activation function of hidden and output layers Relu function

Optimizer Rmsprop = 0.8

Epoch 4000

Loss 0.0008

Figure 6.  The loss for validation and training data for the 300 data of K value in 4000 epochs.
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30% of the data have been considered for training, validation, and test data, respectively. After trial-and-error, 
the appropriate trained MLP neural network model has been obtained, with the configuration shown in Fig. 5, 
and with the specifications listed in Table 3. The loss for validation and training data has been also evaluated for 
the 300 data in 4000 epochs, as illustrated in Fig. 6. The trained model of the MLP neural network has been tested 
with 30% of the 300 data of K value, shown in Fig. 7. Also, the performance values of the learned MLP neural 
network have been tabulated in Table 4.

According to Fig. 6, validation and training data of the loss value for the 300 data are close to each other 
and drop to zero by increasing epochs up to 4000. Figure 7 shows the true and the predicted K values being 
approximately on the y = x line for the test data. Form Table 4,  R2-score is also close to 1, while MAE and MSE 
are nearly vanishing. All of these values show that the trained MLP neural network model with the 300 data of 
K value based on different variables is optimized and also has a high performance in predicting K values for 
different variables of the K-function for 4000 epochs. Therefore, such a trained MLP neural network model can 
be utilized with the Q-learning algorithm to determine the optimal geometry of TD for different input electron 
energies of Linac. The purpose of using the Q-learning algorithm in this section is to find the optimal thick-
ness values of  BeD2 and PE as the first and second TD moderators simultaneously, within the range 1–10 cm 
(with a 0.5-cm step) in a short time and without running multiple simulations in comparison with MCNP. The 
combination of the Q-learning algorithm and the MLP neural network indeed enabled us to find the optimal 
thickness values of two moderators due to the optimal K value for different input electron energies of Linac. As 
a result, the training method indeed takes less effort due to the estimation of K values more accurately based on 
using both the trained model for different input electron energies, and more thickness values in few seconds. 
Preparing the database may be time-consuming, but every change in the next setups can be performed within 
few seconds; therefore, one needs to prepare the database only for one time and then every optimized setup can 
be designed in few seconds.

The Q-learning algorithm is based on the RL algorithm. Therefore, the RL parameters in this part are defined 
as follows: the combination of the thickness values of the two moderators as the environment, and those of the 
first and second moderators as the states, four actions related to the increase and decrease of the thickness values 
of these two moderators with a 0.5-cm step, and the received rewards based on increasing the K values. The states 
are related to the different thickness values of  BeD2 and PE selected within 1–10 cm. The states table has been 
also defined in two dimensions with 18 rows and 18 columns (leading to 324 states) due to ml2 (moderator’s 
second thickness) and ml1 (moderator’s first thickness), respectively, as shown in Fig. 8. Thus, two actins (out of 
four) mention ml2 − 0.5 and ml2 + 0.5 cm due to change in PE thickness, and the other two mention ml1 + 0.5 
and ml1 − 0.5 cm for change in  BeD2  thickness. The ‘state-action’ pair during the Q-learning algorithm has also 
been defined in the Q-table.

In this study, the Q-table includes 324 state rows and 4 action columns as shown in Fig. 9. Letting i be state 
number (or  Si in Q-table), number 1 (or  S1) is associated to the 1.5-cm thickness values of both  BeD2 (ml1) and 

Figure 7.  Testing the trained MLP neural network model with 30% of the 300 data of K value.

Table 4.  The performance values of the learned MLP model tested with 30% of the 300 data of K value.

Epoch R2-score MAE MSE

4000 0.98501 0.01604 0.00035
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PE (ml2), number 2 (or  S2) is associated to the 2-cm thickness of  BeD2 (ml1) and the 1.5-cm thickness of PE 
(ml2), and number 324 (or  S324) is associated to the 10-cm thickness values of both  BeD2 (ml1) and PE (ml2).

During the Q-learning algorithm, each ‘state-action’ pair of the Q-table initialized to zero is allocated to the 
value determined and updated by the Bellman equation (Eq. 6) with α = 0.1, γ = 0.95, and R (s, a) = 1.5 to obtain 
the maximum future rewards. As stated before, the action at a certain state has been selected randomly based on 
the epsilon greedy strategy to balance between exploration (the agent gets more accurate determining actions) 
and exploitation (the agent gets more rewards) to find the optimal thickness values of the two moderators. The 
probability of the epsilon greedy strategy has been chosen between 0 (exploitation) to 1 (exploration). In the 
beginning action selection and exploiting the environment, the epsilon greedy value has been set 1, meaning 
that the action will be selected completely in random. As the agent explores the environment, the epsilon then 
decreases by the decay rate of 0.01, while the probability of exploitation increases at each episode. The total 
number of episodes is also 2000. After exploiting the environment and extracting the Q-table, the actions will 
be affected by the Q values of the Q-table. Using the extracted Q-table and the MLP neural network, the agent 
takes both the initial thickness values of the two moderators and the input electron energy of Linac at the first 
step; and then moves in states table with a 0.5-cm thickness-step to reach the optimal thickness values and to 
obtain the maximum K value as well. Therefore, the combination of the Q-learning algorithm with the MLP 
neural network has been applied to find the optimal thickness values of the two moderators for different input 
electron energies of Linac and the related performances are schematically illustrated in Figs. 10 and 11. Also, as 
shown in Tables 5, 6, 7, the states and their paths to reach the optimal thickness values at the states table have been 
obtained by this hybrid method for some input electron energies of Linac (15, 20, and 25 MeV) in few seconds.

According to Tables 5, 6, 7, the optimal thickness values of the first moderator and the second one indicat-
ing the optimal thermalization efficiency, are 4 and 3.5 cm for 25-MeV; 5.5 and 2.5 cm for 20-MeV; and 3.5 and 
5.5 cm for 15-MeV input electron energies with K values of 2.77 ×  1010, 1.57 ×  1010 and 4.23 ×  109 (n/cm2 mA), 
respectively. Also, the highlighted values (in yellow) show the shortest paths and directions in which the agent 
moves in the states table with a 0.5-cm thickness-step to obtain the optimal thickness values of the two mod-
erators for 15, 20, and 25 MeV input electron energies based on increasing the K values. The proposed hybrid 

Figure 8.  The 2D states table with 18 rows and 18 columns due to the second thickness of the moderator (PE) 
and the first thickness of the moderator  (BeD2), respectively.

Figure 9.  The Q-table with 324 states and 4 actions.
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method also enables us to recognize the least number of steps at the states table, which are 29, 11, and 10 for 15, 
20, and 25 MeV, respectively, and show the faster speed of this innovative method compared to its conventional 
methods (e.g., MCNP). This method also enables us to estimate the optimal values of ml1 and ml2 simultane-
ously; therefore, in traditional method based on MCNP simulation, it is necessary to run separate codes for 
obtaining the optimal K value which is also time-consuming. In our hybrid method, the database is however 
prepared only for one time. For the next desired setups, the optimal K value is then determined within just few 
seconds. Investigating more thickness values within the range of 1–10 cm using fewer MCNPX codes is also 
another advantage of the proposed hybrid method. As a quantitative view, using only MCNPX to achieve the 
maximum K value at the states table requires the run of 324 codes (for one energy) for different thickness values 
of the two moderators within the range of 1–10 cm with a 0.5-cm thickness-step; therefore, 972 codes for 15, 20, 
and 25 MeV input electron energies, being considerably larger than 300 codes (in case of applying our hybrid 
method). Such a huge computational cost indeed requires very powerful computing hardware that considered 
as a drawback as well.

Conclusion
The present study has been devoted to calculate TD’s optimal geometry for PGNAA applications using an 
accurate and rapid procedure. The optimal value of the thermalization efficiency related to the thickness and 
diameter of the collimator, as well as to the thickness values of the two moderators at the TD setup have been 
also estimated in two steps for different input electron energies including 15, 20, and 25 MeV. In the first step, 
the optimal dimensions of the collimator have been obtained using the trained MLP neural network with 100 
data of K value. Then the moderators’ thickness values for different input electron energies of Linac have been 
optimized using the proposed hybrid method as a combination of MLP artificial neural network (trained with 
300 data of K value) and the Q-learning algorithm. It has been found that the hybrid method is indeed capable 
of predicting K at different thickness values of the moderators ranging from 1 to 10 cm with a step of 0.5 cm for 
different input electron energies. The proposed method can also find the shortest path or the least number of 
steps to reach the optimal K-function for each input electron energy at the states table, enabling multi-parameter 
geometry optimization in a shorter period of time, and higher efficiency. It should be also noted that the applied 
trained model cannot be used for other TDs with different materials and geometries; however, the newly-prepared 
dataset and our proposed hybrid method can be used for similar problems.

Figure 10.  The flowchart of the performance of our hybrid Q-learning algorithm + the MLP neural network.
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Figure 11.  The flowchart of the performance of our hybrid Q-learning algorithm + the MLP neural network to 
obtain the optimal thickness values of the two moderators.

Table 5.  The shortest path of the moving agent to obtain the optimal thickness values of the two moderators for 
the 15 MeV input electron energy at the states table.
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The datasets used and analyzed during the current study are available from the corresponding author on a 
reasonable request.
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