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Delayed processing of blood 
samples impairs the accuracy 
of mRNA‑based biomarkers
Chace Wilson, Nicholas W. Dias, Stefania Pancini, Vitor Mercadante & Fernando H. Biase*

The transcriptome of peripheral white blood cells (PWBCs) are indicators of an organism’s 
physiological state, thus making them a prime biological sample for mRNA‑based biomarker 
discovery. Here, we designed an experiment to evaluate the impact of delayed processing of whole 
blood samples on gene transcript abundance in PWBCs. We hypothesized that storing blood samples 
for 24 h at 4 °C would cause RNA degradation resulting in altered transcriptome profiles. There were 
no statistical differences in RNA quality parameters among samples processed after one, three, six, 
or eight hours post collection. Additionally, no significant differences were noted in RNA quality 
parameters or gene transcript abundance between samples collected from the jugular and coccygeal 
veins. However, samples processed after 24 h of storage had a lower RNA integrity number value 
(P = 0.03) in comparison to those processed after one hour of storage. Using RNA‑sequencing, we 
identified four and 515 genes with differential transcript abundance in samples processed after storage 
for eight and 24 h, respectively, relative to samples processed after one hour. Sequencing coverage 
of transcripts was similar between samples from the 24‑h and one‑hour groups, thus showing no 
indication of RNA degradation. This alteration in transcriptome profiles can impair the accuracy of 
mRNA‑based biomarkers, therefore, blood samples collected for mRNA‑based biomarker discovery 
should be refrigerated immediately and processed within six hours post‑sampling.

Blood is a fluid connective tissue that links the entire biological system of an individual, and is composed of 
plasma and red and white blood  cells1. Liew and  colleagues1 coined the idea of the “sentinel principle”, whereby 
blood can harbor molecular indicators of physiological changes in organs, tissues, and cells. Gene transcripts 
in peripheral white blood cells (PWBCs) are among these molecular indicators. The transcriptome profile of 
PWBCs is distinct from one individual to  another2,3, and the profile is as dynamic as the physiological changes 
that an individual  experiences4–6. Most importantly, changes in gene expression are detected in the blood relative 
to several environmental and pathological factors (reviewed  in1,7).

Liquid biopsy, including from blood, has emerged as a powerful source of biological material for studying 
messenger RNA (mRNA) based  biomarkers8. For instance, mRNAs have been associated with chemo-sensitivity 
in advanced gastric cancer  patients9, non-small cell lung  cancer10, acute ischemic  stroke11, neuroendocrine 
 tumor12, prostate  cancer13, hepatocellular  carcinoma14,15, and Huntington’s  disease16. In reproductive health, 
several studies have focused on changes in genes expressed in PWBCs. A cohort of women who were enrolled 
in the PREVIENI  project17, and identified as infertile, presented altered levels of diverse genes expressed in the 
PWBCs relative to fertile  women18,19. Recently, we have identified several genes that are differentially expressed 
when contrasting heifers of different pregnancy outcomes (pregnant by AI, pregnant by natural breeding, or 
not pregnant)20,21. Therefore, the analysis of mRNAs is one possible avenue for the determination of bloodborne 
molecules that serve as biomarkers of health.

The processing of blood samples for the separation of the buffy coat followed by resuspension in TRIzol 
Reagent and immediate cryopreservation at − 80 °C is very efficacious for the extraction of RNAs with high 
quality and  purity20–23 suitable for producing data by RNA-sequencing20,21,24,25. However, when the site of col-
lection cannot be used to process the blood samples, there is a window of time between sampling and collection. 
Malentacchi et al. detected the alteration of transcript abundance of one gene, out of seven tested by polymerase 
chain reaction, when samples were stored for 24 h at 4 degrees Celsius (°C)26. To date, no study has carried out 
a systematic interrogation of the transcriptome of PWBCs to understand the consequences of storing blood on 
the alteration of transcript abundance.
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Here, we designed an experiment to systematically interrogate the consequences of storing blood samples at 
different periods up to 24 h at 4 °C on RNA degradation and the transcriptome profile in PWBCs. We hypoth-
esized that the preservation of blood samples for 24 h at 4 °C would lead to RNA degradation, which would result 
in an alteration in the transcriptome profile of PWBCs.

Results
Overview of the experimental design. We collected blood samples from five estrus-synchronized heif-
ers. Ten mL of blood were drawn from the coccygeal vein and five samples of 10 mL were drawn from the jugular 
vein within seconds among all samplings within each animal. All samplings were performed within 45 min. All 
tubes were preserved on ice and the samples from the jugular vein were randomly assigned to different groups 
for delayed processing (one, three, six, eight or 24 hours (h), Fig. 1A). At the assigned time, PWBCs were iso-
lated, pelleted and resuspended in TRIzol™ Reagent for cryopreservation at  − 80 °C. We extracted total RNA 
from all samples in one batch, assessed quantity and quality and submitted all samples for library preparation 
prior to freezing (Fig. 1B).

Parameters of total RNA based on sampling location and processing delay. We extracted total 
RNA from 30 samples in one batch, with an average yield of 11.8 µg ± 4.5. There was no difference (P > 0.05) 
of the parameters from the samples obtained from the coccygeal versus jugular vein (Table 1, Supplementary 
Fig. S1). We then compared the effect of delayed processing on the parameters from samples obtained from the 
jugular vein. There was no difference (P > 0.05) for values of absorbance  (A260 and  A280) and the ratio  (A260/A280). 
However, there was an effect (P = 0.03) of the time for delayed processing on the RNA integrity number (RIN). 
The samples processed 24 h post-collection presented lower RIN relative to the samples processed 1 h post-
collection ( xRIN .1hr=8.52 ± 0.37, xRIN .24hr=8 ± 0.37, P = 0.03, Z-test, Table 1, Supplementary Fig. S2).

Quality of libraries produced based on sampling location and processing delay. Because the low-
est value for RIN was 7.4, which is suitable for transcriptome  analysis27, we proceeded with RNA-sequencing and 
produced genome-wide transcriptome data for all 30 samples. On average, we produced 29,871,716 ± 3,365,045 
pairs of reads per sample (ranging from 21,139,000 to 34,856,707, median 29,941,861, Table 2).

There was no difference (P > 0.05) on library parameters of 3’/5’ bias, efficiency of reads assigned to the 
annotation, number of genes in relationship to the location of blood sampling, nor the delayed processing of the 
samples (Table 2, Supplementary Fig. S3 and S4). We noted, that among the samples with delayed processing, the 
library with the lowest efficiency of reads assigned to the annotation (40%) did not originate from the sample with 

Figure 1.  Experimental design and workflow. (A) Overview of the experimental design with the number of 
subjects and tubes processed at different times after storage at 4 °C. (B) Workflow of the assays from sample 
processing to RNA-sequencing. Elements of this figure were created with BioRender.com.

Table 1.  RNA parameters obtained from peripheral white blood cells. x : average; σ̂ : standard deviation.

Processing Time

RIN A260

Ratio(A260/
A280)

x σ̂ x σ̂ x σ̂

Coccygeal

1 h 8.48 0.16 13.27 4.02 1.93 0.02

Jugular

1 h 8.52 0.37 15.99 2.75 1.93 0.02

3 h 8.60 0.23 17.74 6.34 1.93 0.01

6 h 8.66 0.23 13.76 4.84 1.93 0.02

8 h 8.34 0.33 12.40 6.85 1.91 0.06

24 h 8.00 0.37 14.48 2.52 1.92 0.03
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lowest RIN (7.4), but both samples were processed after 24 h of preservation at 4 °C. Further interrogation of the 
relationship between RIN and library percentage of reads assigned to the annotation showed only a moderate 
correlation between these two metrics (Pearson’s r = 0.3799, P = 0.0610).

There was no difference (P > 0.05) for number of genes detected pre- or post-filtering in relationship to sam-
pling location or delayed processing (Table 2, Supplementary Fig. S3 and S4). After filtering for lowly expressed 
genes (FPKM > 1 and CPM > 1 in five or more samples), we quantified transcript abundance for 12,414 protein-
coding genes, followed by 287 long non-coding RNAs and 109 pseudogenes.

Differential transcript abundance based on sampling location and processing delay. First, we 
tested whether transcript abundance would be distinguishable based on the location of sampling. The results 
show no difference (FDR > 0.05) between transcripts from samples obtained from coccygeal or jugular veins. 
Next, we assessed the consistency of transcript abundance within each animal by calculating the correlation 
of the transcript abundance between the two sources of sampling. The Pearson’s correlation coefficients were 
greater than 0.99 for all subjects. Both results convergently show no variation in transcript abundance within 
subject based on sampling source (Fig. 2). Thus, mRNA quantitation data collected from liquid biopsies are 
consistent regardless of which vein is used for sampling.

Second, we asked if the transcript abundance in PWBCs would change if blood samples remained stored at 
4 °C for different periods of time, relative to the processing of the blood samples within one hour of collection. 
There was no differential transcript abundance between the samples stored for three or six hours at 4 °C relative 
to the samples processed within one hour of collection (FDR > 0.05, Fig. 3A).

By comparison, we identified four and 515 genes with differential transcript abundance between samples 
stored for eight and 24 h, respectively, at 4 °C relative to the samples processed within one hour of collection 
(Fig. 3A). Notably, the four genes detected in the ‘8 h vs 1 h’ contrast were also detected in the ‘24 h vs 1 h’ con-
trast with higher transcript abundance in the preserved samples relative to those processed within one hour of 
collection (Fig. 3B). Furthermore, 291 and 224 genes presented greater and lower abundance, respectively, for 
the ‘24 h vs 1 h’ contrast (please see Supplementary Table S1 for the lists of genes, and Supplementary Fig. S5 
for the individual graphs of transcript abundance for all genes for the contrast ‘24 h vs 1 h’). These results show 
that storage of blood samples for ≥ 8 h prior to cryopreservation of PWBCs causes significant changes in the 
transcriptome profile.

Analysis of the relationship between the decline in transcript abundance and mRNA cover‑
age. Considering the results of differential transcript abundance, we asked if lower values of FPKM for tran-
scripts in the samples processed after 24 h of storage at 4 °C were caused by reduced transcript coverage, which 

Table 2.  Metrics for RNA-sequencing data produced from peripheral white blood cells.

Processing Time

Reads Produced

Genes 
detected 
before 
filtering

Genes 
detected 
after filtering

Proportion 
of reads 
matching 
annotation 3’/5’ Bias

x σ̂ x σ̂ x σ̂ x σ̂ x σ̂

Coccygeal

1 h 30,214,519 4,270,887 13,135 167 12,490 51 0.56 0.04 0.51 0.02

Jugular

1 h 28,452,995 5,098,116 13,055 165 12,462 74 0.58 0.03 0.51 0.03

3 h 32,132,121 1,968,340 13,118 128 12,499 49 0.56 0.03 0.50 0.01

6 h 28,263,832 2,338,260 13,130 139 12,497 57 0.59 0.02 0.51 0.03

8 h 30,483,625 3,040,358 13,102 132 12,478 54 0.57 0.04 0.52 0.02

24 h 29,683,203 2,546,563 13,112 105 12,502 40 0.53 0.08 0.52 0.01

Figure 2.  Transcript abundances obtained from the jugular and coccygeal veins from different subjects. The 
values presented are variance stabilizing read counts obtained from the “DESeq2”  package55.
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can be indicative of RNA  degradation28. First, we inspected whether there was a global trend of transcripts to 
have prominent reduced coverage in one of the extremities (3’ or 5’). Coverage plots for the 224 genes with lower 
transcript abundance at 24 h of delayed processing showed a relative nucleotide sequencing depth similar to the 
12,264 genes that were not differentially abundant (Fig. 4A, B).

We further tested whether the nucleotide coverage of the 224 genes with lower transcript abundance at 24 h 
of delayed processing was statistically different from distribution of the same genes observed at 1 h of processing 
(Fig. 4B). First, we calculated the Kolmogorov–Smirnov D-statistic29 for the relative nucleotide coverage of genes 
from samples obtained from the jugular and coccygeal veins (both processed within 1 h of blood collection), 
which we referred to as ( Dj,c,1hr ). We also calculated the D-statistic for the relative nucleotide coverage of genes 
from samples obtained from the jugular vein processed at 24 h and 1 h post-sampling, which we referred to as 
( Dj,24h,1hr ). Next, we calculated the difference between the two statistics ( Delta D = (D(j,24h,1hr)−D(j,c,1hr)) ). We 
reasoned that, for a given gene, Delta D would approximate to zero if the variation in the sequencing coverage 
was similar between the samples processed at different times (24 h vs 1 h) and the samples processed at the same 
time (1 h). Indeed, only seven out of the 224 genes (24 h < 1 h) had Delta D within the range of -0.25 and 0.25 
(Fig. 4C, left plot). Furthermore, the range of Delta D calculated for the genes with lower transcript abundance 
at 24 h of storage (24 h < 1 h) was within the range of Delta D calculated for the genes with no transcript vari-
ation with the passing of 24 h post-collection (Fig. 4C, center plots). Altogether, these results provided strong 
evidence that the overall sequencing coverage of transcripts was similar between samples processed after 24 h 
storage at 4 °C and within one hour of sampling.

Gene ontology enrichment analysis of differentially expressed genes. Because we did not 
observe a systematic reduction in transcript coverage, we reasoned that the differential transcript abundance 
was a cellular regulatory response to the preservation of blood samples ex vivo. It was noteworthy that three 
out of four genes with greater transcript abundance at ‘8 h vs 1 h’ (H1-4, H2AC10 and H4C3) were involved in 
chromatin configuration, specifically annotated with the gene ontology terms ‘nucleosome assembly’ (H1-4 and 
H4C3), and ‘chromatin silencing’ (H2AC10).

Further interrogation of the 291 genes that had greater abundance at ‘24 h vs 1 h’ also revealed an enrich-
ment of the category ‘nucleosome assembly’ with a series of histone related genes (H1-4, H2BC12, H2BC13, 
H2BC14, H2BC18, H2BC4, H2BU1, H4C14, H4C3, H4C4 and H4C8, fold enrichment = 9.78, Fig. 5A, please see 
Supplementary Table S2 for a complete list of categories and gene annotation). All these genes overlapped with 
the molecular function ‘DNA binding’ (BSX, DNMT3B, H1-4, H2AC21, H2AC6, H2AW, H2BC12, H2BC13, 

Figure 3.  Comparison of transcript abundance in PWBCs from blood samples processed after prolonged 
storage at 4 °C. (A) M-A plots of the contrasts between each of the prolonged storage times versus samples 
processed within one hour. Gray shapes indicate genes whose transcript abundance are not significantly altered 
following the preservation of blood samples (FDR > 0.05). Squares indicate genes whose transcript abundance 
were significantly altered (FDR < 0.05) based on the DESeq2 algorithm. Triangles indicate genes whose 
transcript abundance were significantly altered (FDR < 0.05) based on the edgeR algorithm. Circles indicate 
genes whose transcript abundance were significantly altered (FDR < 0.05) based on both DESeq2 and edgeR 
algorithms. (B) Transcript abundance for genes with differential abundance in both the ‘8 h vs 1 h’ and ‘24 h vs 
1 h’ contrasts.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8196  | https://doi.org/10.1038/s41598-022-12178-5

www.nature.com/scientificreports/

H2BC14, H2BC18, H2BC4, H2BU1, H3C6, H4C14, H4C3, H4C4, H4C8, MSH5, PROX2, SNAPC4, TEAD3 and 
TERT, fold enrichment = 1, Fig. 5B, Supplementary Table S3). Other biological processes significantly enriched 
were ‘neutrophil chemotaxis’ (fold enrichment = 7.34), ‘cell adhesion’ (fold enrichment = 3.19), and ‘transport 
membrane’ (fold enrichment = 2.4) (Fig. 5A, Supplementary Table S2).

We also asked if there was enrichment of gene ontology categories within the 224 genes that had less transcript 
abundance after 24 h of storage at 4 °C, and there were several categories significantly enriched (FWER < 0.05, 
Fig. 6A, please see Supplementary Table S4 for a complete list of categories and gene annotation). Notably, there 
were a series of signaling related categories such as ‘positive regulation of interferon-gamma production’, ‘positive 
regulation of interleukin-8 production’, ‘negative regulation of interferon-gamma production’, ‘positive regula-
tion of ERK1 and ERK2 cascade’, ‘positive regulation of MAPK cascade’ ‘positive regulation of interleukin-1 beta 
production’, ‘positive regulation of interleukin-12 production’, ‘positive regulation of interleukin-6 production’, 
‘positive regulation of NF-kappaB transcription factor activity’, ‘positive regulation of NIK/NF-kappaB signal-
ing’, ‘positive regulation of peptidyl-tyrosine phosphorylation’, and ‘positive regulation of phosphatidylinositol 
3-kinase signaling’.

Figure 4.  Comparison of overall transcript sequencing coverage from samples that were processed within 1 h 
and 24 h after blood collection. (A) Genes with no change in transcript abundance 24 h of storage at 4 °C. (B) 
Genes with lower transcript abundance after 24 h of storage at 4 °C. (C) Plots of the Delta D-statistic for all 
genes separated by their results of the contrast ‘24 h vs 1 h’.

Figure 5.  Gene ontology categories enriched in the genes with greater transcript abundance at 24 h versus one 
h. (A) Biological processes and (B) Molecular functions. To improve readability, only categories with more than 
five genes are displayed on the graphs, please, see Supplementary Table S2 and S3 for a full list of categories and 
the associated genes with their annotation.
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Also within the 224 genes that had less transcript abundance after 24 h of storage at 4 °C, there was significant 
enrichment of a series of categories involved in regulation of transcription and gene expression (FWER < 0.05, 
Fig. 6A, Supplementary Table S4), such as ‘positive regulation of transcription by RNA polymerase II’, ‘regulation 
of transcription, DNA-templated’, ‘regulation of transcription by RNA polymerase II’, ‘positive regulation of gene 
expression’, and ‘positive regulation of transcription, DNA-templated’.

In parallel with the identification of the significant enrichment of the categories involved in regulation of 
signaling and gene expression, the test for enrichment of molecular functions identified that many of those 224 
genes were associated with functions that involve interaction with DNA to regulate gene expression, such as ‘RNA 
polymerase II cis-regulatory region sequence-specific DNA binding’, ‘DNA-binding transcription factor activity, 
RNA polymerase II-specific’, and ‘DNA-binding transcription factor activity’ (Fig. 6B , Supplementary Table S5).

Discussion
The main purpose of our study was to understand the dynamics of RNA degradation and the consequences 
of this RNA degradation on the quantification of transcript abundance in PWBCs from samples stored in the 
fridge (4 °C). We collected multiple samples from the same subject and proceeded with a strategic delay in the 
processing of samples, followed by immediate cryopreservation of PWBCs. Our methodical interrogation of 
the RNA quality and systematic analysis of transcriptome data lead us to identify critical factors related to the 
short-term preservation of blood samples for RNA analysis: (i) the vein used for sampling blood is not a source 
of significant and systematic changes in the transcriptome profiling of PWBCs; (ii) storing blood samples under 
refrigeration for 24 h does reduce their RIN values by approximately one unit, however the drop in RIN values 
does not interfere with the quantification of transcripts from protein-coding genes or long non-coding RNAs 
produced in PWBCs; (iii) even if blood samples are refrigerated, the abundance of gene transcripts produced in 
PWBCs starts to drop irregularly as early as three hours past blood sampling, but changes are consistent across 

Figure 6.  Gene ontology categories enriched in the genes with lower transcript abundance at 24 h versus one h. 
(A) Biological processes and (B) Molecular functions. To improve readability, only categories with more than 
five genes are displayed on the graphs, please see Supplementary Table S4 and S5 for a full list of categories and 
the associated genes with their annotation.
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samples after eight hours of refrigeration; and (iv) the transcriptome of PWBCs is severely altered after blood 
samples are refrigerated for 24 h post-collection.

According to our hypothesis, we expected that storage of blood tubes at 4 °C for a long period of time would 
reduce the RNA quality through degradation. Indeed, there was a reduction in RIN values from RNA obtained 
from PWBCs after blood samples were preserved at 4 °C for 24 h (from 8.52 ± 0.37 at 1 h to 8 ± 0.37 at 24 h). 
The relatively high values of RIN after the preservation of blood samples at 4 °C for 24 h are similar to RIN val-
ues reported  elsewhere23. However, the results observed from the RNA-sequencing did not show indication of 
reduced RNA quality. The values of the 3’/5’ bias for all libraries ranged from 0.47 to 0.56, with no effect of the 
processing time on the averages. In samples with degraded RNA, there is a bias towards transcript coverage on 
the 3’ end, whereas samples with 3’/5’ bias values close to 0.5 have balanced coverage of RNA extremities and 
are only observed in samples with high RNA  quality30. Thus, there was no systematic coverage bias towards the 
3’ end of polyadenylated transcripts in our samples.

Also based on our hypothesis, we anticipated that transcripts with significantly lower quantification would 
be a consequence of RNA degradation following a period of storage of blood samples at 4 °C. Here we reasoned 
that coverage plots for the 224 genes with lower abundance at 24 h in the contrast ‘24 h vs 1 h’ would be distinct 
between the libraries produced from the 24 h group versus the 1 h group. Contrary to our expectation, the cov-
erage charts (Fig. 4A) showed a virtually identical coverage of transcripts with significantly lower quantification 
whether on samples processed within one hour or 24 h of collection. Furthermore, a comparison of the distribu-
tions using the Kolmogorov–Smirnov test confirmed no significant changes in transcript coverage based on the 
amount of time that samples were preserved.

A possible explanation for the discrepancy between the significantly lower values of RIN for samples preserved 
for 24 h and the consistent sequencing coverage across transcripts is on the source of data. The RIN values are 
computed based on data collected from a series of features of an electropherogram, most of which involve infor-
mation from ribosomal RNAs (5S, 5.8S, 18S and 28S)31. On the other hand, RNA-sequencing libraries were pro-
duced with enrichment of polyadenylated transcripts, and thus, the results from 3’/5’ bias nor coverage plots do 
not account for ribosomal RNA. Our results indicate that, although a correlation between transcript coverage and 
RIN values have been  identified28,31, this relationship may be prominent in samples with RIN values less than 8.

Our results show that there is a prominent systematic alteration of transcript abundance in PWBCs when 
blood samples are preserved for 24 h at 4 °C, which is aligned with previous  reports23,26. Interestingly, we deter-
mined that this alteration of transcript abundance across individuals starts as early as eight hours post-collection.

Because we could not find indication that RNA degradation was a cause of these alterations, we reasoned that 
the alteration in transcript abundance was a consequence of the PWBCs responding to the cold temperature 
(4 °C) and lack of oxygen. The consequences of long-term exposure of mammalian cells at 4 °C have not been 
well studied, but Al-Fageeh and  Smales32 proposed that the active transcription of a selected group of genes 
would cause a wide-spread reduction in transcription activity. Well-aligned with this possible mechanism, three 
out of four genes up regulated in PWBCs after the storage of blood samples for eight hours at 4 °C have a role in 
chromatin organization, including nucleosome assembly, which can be related to a compaction of the chromatin 
and reduction in transcriptional activity.

The alteration of transcript abundance in PWBCs after storing blood samples at 4 °C for 24 h has been 
observed  before26. However, our genome-wide transcriptome analysis shows that the changes are more prominent 
after 24 h of storage of blood samples at 4 °C. The genes with greater transcript abundance after 24 h of storage 
of blood samples at 4 °C relative to those processed within one hour of collection seem to be enriched for few 
biological processes and again with a high enrichment for genes involved in nucleosome assembly. It is possible 
that the cells increase the transcription of histone related genes to increase the genome-wide compaction of 
chromatin. The greater number of biological processes enriched for genes with lower transcript abundance after 
24 h of storage of blood samples at 4 °C relative to those processed within one hour of collection corroborate the 
notion of a global silencing in transcription.

Considering the results of significant differential transcript abundance observed in the present study, we 
reasoned that the prolonged storage of blood samples at 4 °C would be relevant for investigations searching 
for mRNA markers in PWBCs. The overlap of our results with transcript abundance of genes also expressed in 
PWBCs and previously associated with fertility in  heifers20,21 identified two genes (NKG2A, PPP1R3B, Supple-
mentary Fig. S6) whose analysis of differential transcript abundance would have been compromised by storage 
of blood samples at 4 °C for eight hours or longer. These results strongly indicate that blood samples collected 
for studies of mRNA biomarkers should: (i) be preserved on ice as soon as they are collected and processed as 
early as possible, preferably within six hours of collection, for the proper cryopreservation of PWBCs, or (ii) if 
possible, collected in tubes that allow for the immediate preservation of RNA transcript abundance in the whole 
blood. However, we note that the chemical or cryopreservation of whole blood for RNA extraction requires 
further depletion of hemoglobin transcripts if the samples will be used for RNA-sequencing33,34.

The transcriptome of PWBCs changes after blood sampling, even if the samples are refrigerated. A systemic 
alteration is detected at eight hours post blood collection and follows a pattern where PWBCs increase the 
transcription of genes related to chromatin compaction. This compaction is likely to reduce the transcription 
of several genes that function across multiple cellular processes in PWBCs. It is evident that this alteration in 
transcriptome profiles after prolonged storage can mask the transcriptome signature of a specific physiological 
phenomenon.

Our findings can be used as a guide for the establishment of protocols for blood processing when samples 
are supposed to be used for genome-wide quantification of transcripts in PWBCs. Blood samples collected for 
mRNA-based biomarker discovery should be refrigerated immediately and processed within six hours post-sam-
pling. This recommendation can be considered by investigators working in diverse several areas of life sciences.
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Methods
The reporting in this study follows the recommendations in the ARRIVE  guidelines35. Please see Supplementary 
table S6 for catalog number of kits and reagents used in this work.

Animal handling and sample collection. All animal handling and use was approved by the Institutional 
Animal Care and Use Committee (IACUC) at Virginia Tech. All procedures involving animal handling were 
performed in accordance with IACUC guidelines and regulations.

Eleven crossbred beef heifers (Angus x Simmental cross), averaging 14 months of age, located at Kentland 
Farm (Virginia Tech, Blacksburg, VA) were subjected to estrus synchronization. On day zero we administered 
an intramuscular injection of gonadotrophin-releasing hormone (GnRH, 100 μg;  Factrel®; Zoetis Incorporated, 
Parsippany, NJ) and inserted a controlled internal drug release (CIDR, 1.38 g Progesterone; Eazi-Breed™  CIDR®; 
Zoetis Inc.) device in each heifer. On day seven we removed the CIDR insert and administered an intramuscular 
injection of prostaglandin F2alpha (PGF2α, 25 μg;  Lutalyse®; Zoetis Inc.), which was followed by a second injec-
tion of GnRH on day ten of the protocol. We used estrus synchronization to mitigate possible effects that the 
stages of the estrus cycle may have on gene  expression36.

We collected blood samples from heifers that expressed estrus (n = 5) at the time artificial insemination would 
normally be performed. Fifty mL of blood were sampled from the jugular vein and 10 mL from the coccygeal 
vein of each heifer using vacutainers containing 18 mg K2 EDTA (Becton, Dickinson, and Company, Franklin 
Lakes, NJ). Each tube was inverted several times to prevent blood coagulation and placed on ice immediately 
until processing.

Experimental design and blood processing. Blood tubes were sprayed thoroughly with a disinfectant 
 (Lysol®) prior to storage. While on ice, tubes containing samples from the jugular vein were randomly assigned 
into five groups: 1 h, 3 h, 6 h, 8 h, and 24 h, which correspond to the time the samples remained at 4 °C prior to 
processing. We processed blood samples from the coccygeal vein in group 1 h for comparison of gene expression 
with samples from the jugular vein.

The buffy coat was separated from whole blood by centrifugation for 20 min at 2000xg at 4 °C. The buffy 
coat of each sample was aspirated and dispensed into 14 mL of a red blood cell lysis buffer solution (1.55 M 
ammonium chloride, 0.12 M sodium bicarbonate, 1 mM EDTA, Cold Spring Harbor Protocols). The mixture 
was gently mixed on a rocker for 10 min at room temperature, and then centrifuged for 10 min at 800xg at 4 °C. 
The supernatant was removed, and each sample was mixed with 200 µL of TRIzol™ Reagent (Invitrogen™, Thermo 
Fisher Scientific, Waltham, MA). The mixture of TRIzol™ and PWBCs was transferred into cryotubes (Corn-
ing Incorporated, Corning, New York) and then snap frozen in liquid nitrogen prior to storage at  − 80 °C20,21.

Total RNA extraction. Total RNA was extracted from the PWBCs using the acid guanidinium thiocy-
anate-phenol–chloroform  procedure37,38, with the aid of Phasemaker™ tubes (Invitrogen™, Thermo Fisher Sci-
entific, Waltham, MA), following the manufacturer’s instructions. Briefly, the samples were thawed on ice and 
800 μL of TRIzol™ was added to each. Once homogenized, the mixture was transferred into Phasemaker™ tubes, 
where it was mixed with 200 μL of chloroform and centrifuged for 5 min at 12,000xg at 4 °C to complete phase 
separation. Next, the aqueous phase was collected into 1.7 mL microtubes and mixed with 0.5 μL of glycoblue. 
Then, 500 μL of 100% isopropanol was added to each tube and they were centrifuged for 10 min at 12,000xg 
at 4 °C to precipitate the RNA. The RNA pellet was collected and washed twice with 1 mL of 75% ethanol and 
centrifuged for 2 min at 7,500xg at 4 °C. Then, the RNA pellet was air-dried briefly and eluted in nuclease free 
water and maintained on ice for quantification and assessment of quality.

We quantified the total RNA concentration  (A260) and purity  (A260/A280 ratios) using a NanoDrop™ 2000 
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA). We also quantified the RNA using a Qubit RNA 
High Sensitivity Assay Kit (Invitrogen™, Thermo Fisher Scientific, Waltham, MA) assayed on a Qubit 4 Fluorom-
eter (Invitrogen™, Thermo Fisher Scientific, Waltham, MA). Next, we evaluated the RNA integrity by assaying a 
sample on an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA) using the Agilent RNA 6000 Pico Kit (Agilent, 
Santa Clara, CA).

Library preparation and high‑throughput sequencing. We diluted the RNA samples to 1  ng/mL 
for library preparation and confirmed the concentration using a Qubit RNA High Sensitivity Assay Kit (Invit-
rogen™, Thermo Fisher Scientific, Waltham, MA) and Qubit 4 Fluorometer (Invitrogen™, Thermo Fisher Scien-
tific, Waltham, MA). Five hundred ng were used as starting material for library preparation using the  TruSeq® 
Stranded mRNA Library Prep (Illumina, Inc, San Diego, CA) and the IDT-ILMN TruSeq UD indexes. Sequenc-
ing was assayed in a NovaSeq 6000 sequencing platform (Illumina, Inc, San Diego, CA) using a NovaSeq 6000 
SP Reagent Kit v1.5, to produce paired-end reads 150 nucleotides long. Preparation of libraries and sequencing 
assays was performed by staff at the Virginia Tech Genomics Sequencing Center.

Alignment of sequences and filtering. We removed the sequencing adapters using cutadapt (v. 2.8) and 
the sequences indicated by the manufacturer (Illumina, Inc, San Diego, CA). Next, we aligned the sequences 
to the cattle  genome39,40 (Bos_taurus.ARS-UCD1.2.99) obtained from the Ensembl  database41 using hisat2 
(v. 2.2.042) with the –very-sensitive parameter. Using samtools (v. 1.1043), we filtered the alignment to remove 
unmapped reads, secondary alignments, alignments whose reads failed quality control, and duplicates. We then 
utilized biobambam2 (v. 2.0.9544) to mark and eliminate duplicates.
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For the estimation of transcript coverage, we aligned the sequences trimmed from adapters to transcript 
sequences obtained from the Ensembl  database41 with bowtie2 (v.2.4.245) using the –very-sensitive-local 
parameter.

Quantification of transcript abundance and gene filtering. We used featureCounts (subread 
v. 2.0.146) to count the fragments that matched to the Ensembl cattle annotation gene (Bos_taurus.ARS-
UCD1.2.103). Genes annotated as protein coding, long non-coding RNA and pseudogene were retained. Fol-
lowing the calculation of counts per million (CPM) and reads per million per kilobase (FPKM) we retained 
genes that presented FPKM and CPM greater than one in five or more samples.

Quantification of library properties. We calculated the 3’/5’ bias in our libraries using RNA-SeQC (v. 
2.4.230), and the proportion of reads assigned to annotation by dividing the number of reads mapped to the 
Ensembl annotation divided by the total number of reads sequenced.

Statistical analyses. RNA metrics (RIN,  A280,  A260 and  A280/A260) and number of genes detected per li-
brary. We used paired Student’s  t47,48 and  Wilcoxon49 tests to access the null hypothesis of no difference be-
tween two sampling locations  (H0:μjugular = μcoccygeal). Within the samples obtained from the jugular vein, we used 
a generalized linear mixed model to access the null hypothesis of no difference between groups of delayed pro-
cessing  (H0:μ(T1h) = μ(T2h) = … = μ(T24h)). The model included time of processing (T(1 h, 3 h, 6 h, 8 h or 24 h)) as fixed effect 
and animal as random variable (A(1,2,3,4 or 5)). When the model indicated significance of the fixed effect (P < 0.05), 
we used the Z-test50 and the Dunnett’s  approach51 for simultaneous tests for general linear  hypothesis52,53 to 
compare the average of the groups T(3 h, 6 h, 8 h or 24 h) with the baseline T(1 h). Averages were inferred as statistically 
different when Bonferroni adjusted P < 0.05.

Library 3’/5’ bias, proportion of reads assigned to annotation and genes detected. We used a generalized linear 
mixed model, with a binomial family and a logistic regression function to access the null hypothesis of no differ-
ence between groups of delayed processing  (H0:μ(T1h) = μ(T2h) = … = μ(T24h)). The time of processing was included 
in the model as fixed effect and animal was set as random effect. Averages were inferred as statistically different 
when P < 0.05.

Differential transcript abundance. We compared the transcript abundance from samples obtained from the 
jugular and coccygeal veins by using a paired-sample structure  (H0:μjugular = μcoccygeal). Next, we compared the 
transcript abundance from samples obtained from the jugular vein that were processed at different times. The 
analyses were performed with the R packages ‘edgeR’54 using the quasi-likelihood F-test and ‘DESeq2′55 using 
the Wald’s test. In the case of the delayed processing, we set up contrasts to compare the different processing 
times versus  T1h  (H0:μ(T1h) = μ(T2h); ….;  H0:μ(T1h) = μ(T24h)). We adjusted nominal P values for multiple hypothesis 
testing using the Benjamini–Hochberg false discovery  rate56. We assumed a difference in transcript abundance 
to be significant when FDR < 0.05 in the results obtained by both ‘edgeR’ and ‘DESeq2’ packages and absolute 
 Log(fold-change) > 0.5. We utilized this approach to report robust results of differential transcript abundance inde-
pendent of algorithm biases or  limitations20,21,57,58.

Gene ontology enrichment analysis. We tested lists of genes for enrichment of gene ontology terms using the R 
package ‘GOseq’59 and the genes retained after filtering as a background  list60,61. Nominal P values were adjusted 
for multiple hypothesis testing by family wise error  rate62,63.

Contrasts of transcript coverage. We quantified the relative position of each nucleotide in relation to the total 
number of nucleotides in the transcript, given in percentage. In addition, we calculated the relative proportion 
of occurrence of each nucleotide in relation to the total coverage of the gene. Then, for each gene in different 
groups, in a pair-wise manner, we compared the relative position of each nucleotide weighed by the relative 
coverage using the weighted Kolmogorov–Smirnov test, as described  elsewhere29.

Data availability
The raw data generated and analyzed during the current study are available in the GEO NCBI repository, under 
accession GSE192530 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE19 2530). To make our work 
fully reproducible the code utilized for the bioinformatics pipeline and analytical procedures is deposited as 
Supplementary Methods S1, in the figshare repository (https:// doi. org/ 10. 6084/ m9. figsh are. 17886 068)64 and can 
also be accessible at https:// biase- lab. github. io/ rna_ tempo ral_ expre ssion_ PWBC/ index. html65.
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