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Decision making for large‑scale 
multi‑armed bandit problems using 
bias control of chaotic temporal 
waveforms in semiconductor lasers
Kensei Morijiri1*, Takatomo Mihana1, Kazutaka Kanno1, Makoto Naruse2 & Atsushi Uchida1*

Decision making using photonic technologies has been intensively researched for solving the multi‑
armed bandit problem, which is fundamental to reinforcement learning. However, these technologies 
are yet to be extended to large‑scale multi‑armed bandit problems. In this study, we conduct a 
numerical investigation of decision making to solve large‑scale multi‑armed bandit problems by 
controlling the biases of chaotic temporal waveforms generated in semiconductor lasers with 
optical feedback. We generate chaotic temporal waveforms using the semiconductor lasers, and 
each waveform is assigned to a slot machine (or choice) in the multi‑armed bandit problem. The 
biases in the amplitudes of the chaotic waveforms are adjusted based on rewards using the tug‑of‑
war method. Subsequently, the slot machine that yields the maximum‑amplitude chaotic temporal 
waveform with bias is selected. The scaling properties of the correct decision‑making process are 
examined by increasing the number of slot machines to 1024, and the scaling exponent of the power‑
law distribution is 0.97. We demonstrate that the proposed method outperforms existing software 
algorithms in terms of the scaling exponent. This result paves the way for photonic decision making in 
large‑scale multi‑armed bandit problems using photonic accelerators.

Machine learning and artificial intelligence have revolutionized information and communication technol-
ogy. Recently, machine learning techniques based on photonic technologies, known as photonic accelerators, 
have been studied  intensively1. Using photonic technologies in machine learning has advantages such as fast 
and energy-efficient  processing1. The latest advancements in photonic accelerators include photonic neural 
 networks2, photonic reservoir  computing3–6, coherent Ising  machine7, optical pass gate  logic8, and photonic 
decision  making9–21.

Photonic decision-making techniques have been used to solve the multi-armed bandit problem, which is 
fundamental to reinforcement  learning22,23. In the multi-armed bandit problem, a player aims to maximize the 
total reward by making a limited number of selections of multiple slot machines (or arms) with unknown hit 
probabilities. To solve this problem, the player needs to search for the slot machine with the highest hit probability 
(i.e., exploration). The player then concentrates on the slot machine that is estimated to offer the best chance of 
reward (i.e., exploitation). However, there is a difficult trade-off between exploration and exploitation, known as 
the exploration–exploitation  dilemma22. Excessive exploration leads to a reduction in the total reward, whereas 
insufficient exploration means that the best slot machine is not identified.

Decision making using photonic technologies has been widely  demonstrated9–21. For example, chaotic tem-
poral waveforms generated by semiconductor lasers have been used, where the threshold level of the temporal 
waveform can be  controlled9–12. Furthermore, mode competition dynamics in a ring–cavity semiconductor laser 
on a chip has been utilized to solve two-armed bandit problems (i.e., problems with two slot machines)13. The 
lag synchronization of chaos in mutually coupled semiconductor lasers has been used for decision  making14, 
and this approach has been extended to laser networks with a large number of slot  machines15,16. Furthermore, 
 single17,18 and  entangled19–21 photons have been utilized for photonic decision making.

Scalability, in terms of the number of slot machines, is an important challenge in photonic decision making. 
Although the two-armed bandit problem is the most fundamental problem, extending solutions to large-scale 
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multi-armed bandit problems remains an important challenge. A hierarchical structure using chaotic temporal 
waveforms was introduced to increase the number of slot machines to  6410. In addition, a laser network consisting 
of coupled semiconductor lasers in a ring configuration has been used to solve problems with up to seven slot 
 machines15. However, no solutions have been reported for problems with more than 100 slot machines. In fact, 
the solutions to large-scale multi-armed bandit problems are expected to exploit the unique advantages of light, 
such as temporal, spatial, and wavelength domain multiplexing. These solutions are useful in communication 
applications, such as channel  selection24,25 and non-orthogonal multiple access (NOMA)26.

In this study, we propose a decision-making scheme to solve multi-armed bandit problems using bias control 
of chaotic temporal waveforms in semiconductor lasers with optical feedback. We numerically investigate the 
decision-making performance for different numbers of slot machines. Next, we examine the scaling character-
istics of the performance in terms of the number of slot machines, up to 1024 machines, which is beyond the 
number used in the previous studies of photonic decision making. Finally, we compare the performance of our 
proposed method with that of existing software algorithms.

Results
Bias control of chaotic temporal waveforms. We consider a multi-armed bandit problem with N slot 
machines, which produce the binary results 1 (hit) or 0 (miss) and have different hit probabilities. Figure 1a 
shows a schematic of our decision-making method using chaotic temporal waveforms. We numerically gen-
erate N-independent chaotic temporal waveforms from semiconductor lasers with optical feedback using the 
Lang–Kobayashi  equations27–29. Each temporal waveform is assigned to a slot machine, i.e., the chaotic temporal 
waveform i is assigned to slot machine i (a total of N slot machines). The waveforms are sampled at a constant 
sampling interval. The bias Bi(t) is added to the amplitude Ii(t) of the i-th chaotic temporal waveform as:

where k is the bias coefficient. Slot machine i, corresponding to maximum Di(t) , is selected by comparing the 
values of Di(t) for all the temporal waveforms at time t. After the selection, bias Bi(t) is added to (or subtracted 
from) the amplitude of the chaotic temporal waveform based on the result of the slot machine selection. For 
example, as shown in Fig. 1a, waveform 3 has the maximum amplitude at sampling time t1, so slot machine 3 is 

(1)Di(t) = Ii(t)+ kBi(t),
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Figure 1.  Decision-making method using chaotic temporal waveforms with bias control. (a) Schematic 
diagram. (b) Chaotic temporal waveforms assigned to slot machines (N = 4).
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selected. If the result for slot machine 3 is “hit,” then the bias is added to the amplitude of temporal waveform 
3, and the amplitudes of the other temporal waveforms are reduced so that slot machine 3 will be selected more 
frequently in the future. In contrast, if the result for slot machine 3 is “miss”, the bias is subtracted from the 
amplitude of temporal waveform 3, and the amplitudes of other temporal waveforms are increased so that slot 
machine 3 will be selected less frequently in the future. These procedures are repeated by changing the sampling 
times for the temporal waveforms.

More precisely, the bias Bi(t) for temporal waveform i and slot machine i is determined by the tug-of-war 
algorithm, described by the following  equations30–33:

Here, Qi is the evaluation value (Q-value) of slot machine i in the tug-of-war algorithm, P̂i denotes the estimated 
hit probability for slot machine i, P̂top1 is the highest estimated hit probability, and P̂top2 is the second-highest 
estimated hit probability. In addition, Ti, Wi, and Li denote the number of total, “hit” (win), and “miss” (lose) 
selections, respectively, for slot machine i.

The bias coefficient k is a control parameter for the balance between exploration and exploitation. A smaller 
bias coefficient leads to finer exploration; however, more time is required to determine the slot machine with 
the highest hit probability. In contrast, a larger bias coefficient results in a faster transition to exploitation; 
however, the process could fail to identify the slot machine with the highest hit probability during exploration. 
Therefore, it is necessary to set an appropriate value for the bias coefficient k, which depends on the difficulty of 
the decision-making problem.

Decision‑making results. As previously discussed, the chaotic temporal waveforms are numerically 
generated using the Lang–Kobayashi  equations27–29. The Lang–Kobayashi equations and their corresponding 
parameter values are described in the “Methods” section, along with an example of the generated chaotic tempo-
ral waveforms and their statistical characteristics. Independent chaotic temporal waveforms are generated from 
different initial conditions for decision making.

First, we consider the multi-armed bandit problem with four slot machines (N = 4) with hit probabilities 
 P1 = 0.7,  P2 = 0.5,  P3 = 0.9, and  P4 = 0.1. In this setting, slot machine 3 has the highest hit probability. Therefore, 
selecting slot machine 3 is the best decision. Four independent chaotic temporal waveforms are generated, and 
each is assigned to a different slot machine. Decision making is performed based on bias control of the amplitude 
of the chaotic temporal waveforms at a sampling interval of 10 ps. The shortest time taken for one decision-
making play is 10 ps, because the sampling interval of the chaotic temporal waveforms is set to 10 ps. However, 
a specialized post-processing equipment for decision making is required to achieve such a fast decision-making 
rate.

Figure 1b shows an example of four chaotic temporal waveforms assigned to four slot machines. The chaotic 
temporal waveforms change, and their amplitudes are updated by adding or subtracting the bias Bi(t), based on 
Eq. (1), at each sampling interval. After the 34th play (340 ps), the amplitude of temporal waveform 3 retains 
the maximum value; hence, slot machine 3 is continuously selected.

Figure 2a shows the decision-making process of the chaotic temporal waveforms assigned to four slot 
machines. One of the slot machines is selected for each play. After the 34th play, slot machine 3 is always selected 
(the red dots), which is consistent with the maximum value of temporal waveform 3 in Fig. 1b. Therefore, correct 
decisions are made using the proposed method for this case.

We introduce the correct decision rate (CDR) to evaluate the statistical characteristics of the decision-making 
performance. This is expressed by the following  equation9:

where m and n represent the numbers of plays and cycles, respectively. In addition, C(i, t) is a function that 
returns 1 if the slot machine with the highest hit probability is selected, and 0 otherwise, for the t-th play and 
i-th cycle. A large CDR indicates that the slot machine with the highest hit probability is selected. We define one 
cycle as 500 plays ( m = 500) and repeat the process for 1000 cycles ( n = 1000) to evaluate the decision-making 
performance. We determine that decision making is correct if the CDR is at least 0.95. Figure 2b shows the CDR 
for N = 4 as the number of plays increase. The CDR reaches 0.95 after approximately 100 plays; thus, the decision 
making shows high accuracy.
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We extend the proposed method to situations involving a large number of slot machines, up to N = 1024. In 
this case, we set the hit probabilities to  P1 = 0.7,  P2 = 0.5,  P3 = 0.9,  P4 = 0.1,…,  P2j−1 = 0.7, and  P2j = 0.5 (j ≥ 3, where 
j is an integer). In this setting, slot machine 3 has the highest hit probability of  P3 = 0.9. We also increase the 
number of plays to m = 30,000 because more plays are required to explore a large number of slot machines and 
achieve correct decision making. Figure 2c shows an example of the selected slot machines after each play for one 
cycle for N = 1024. Slot machines are randomly and uniformly selected. After approximately 12,500 plays, only 
slot machine 3 is selected (the red dots). Figure 2d shows the CDR as the number of plays increases for N = 1024. 
The CDR increases gradually and reaches 0.95 after approximately 19,000 plays, determined by the statistical 
average over 1000 cycles. Therefore, we found that the proposed method can achieve correct decision making, 
even for a large number of slot machines (N = 1024). The number of plays for achieving a CDR of 0.95 depends 
on the difference between the highest and second-highest hit probabilities. However, the hit probabilities of the 
other slot machines do not strongly affect the number of plays required to achieve CDR = 0.95.

Scalability of decision making. We investigate the scalability of the decision-making performance when 
the number of slot machines is changed. First, we calculate the CDR for different numbers of slot machines, 
N. We set the hit probabilities to  P1 = 0.7,  P2 = 0.5,  P3 = 0.9,  P4 = 0.1,…,  P2j−1 = 0.7, and  P2j = 0.5 (j ≥ 3, where j is 
an integer), as shown in Fig. 2. The bias coefficient k is optimized for different values of N, as described in the 
“Methods” section. Figure 3a shows the CDR as the number of plays increases for different numbers of slot 
machines from N = 4 to 1024  (2i, i = 2, 3,…, 10). For all values of N, as the number of plays increases, the CDR 
curves gradually increases until they reach 0.95. However, the number of plays required for the CDR to converge 
to 0.95 increases as N increases. It should be noted that the curves are equidistantly distributed on a semi-
logarithmic scale; therefore, a scaling law can be obtained from the curves.

As shown in Fig. 3a, we measure the number of plays y at which the CDR reaches 0.95 for different values 
of N to investigate the scalability in terms of N. Figure 3b shows the relationship between y and N plotted on a 
double-logarithmic scale. The number of plays required for CDR = 0.95 shows an approximately linear increase 
as the number of slot machines increases, as shown in Fig. 3b. We identify a power–law relationship between y 
and N, (i.e., y = A Nγ), and obtain y = 23.4 N0.97 from Fig. 3b. The exponent γ = 0.97 is close to 1, which indicates 

Figure 2.  Performance of decision-making process: (a) selected slot machines from four slot machines (N = 4) 
(red dots indicates correct selection); (b) correct decision rate (CDR) as the number of plays increases for N = 4; 
(c) selected slot machines among 1024 slot machines (N = 1024) (red dots indicates correct selection); and (d) 
CDR as the number of plays increases for N = 1024. The bias coefficients are set to (a,b) k = 0.3 and (c,d) k = 1.7.
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that the number of plays required for correct decision making is approximately proportional to the number of 
slot machines (i.e., order N, O(N)). This exponent is smaller than previous results in other photonic decision-
making schemes (e.g., γ = 1.1610 and γ = 1.8515).

Comparison with other decision‑making methods. We compare the decision-making performance 
of our laser-chaos-based method with other decision-making methods. We consider four well-known software 
algorithms for solving the multi-armed bandit problem: ε-greedy22,  softmax22, UCB1-tuned (upper confidence 
bound 1-tuned)34, and Thompson  sampling35. The hyperparameters are optimized for different numbers of slot 
machines for the ε-greedy and softmax algorithms, whereas there are no hyperparameters for the Thompson 
sampling and UCB1-tuned methods.

Figure 4a shows the CDR for each play over 1000 cycles for the laser-chaos-based method and the four soft-
ware algorithms for N = 4. The CDR increases and reaches 0.95 for the laser-chaos-based method, UCB1-tuned 
algorithm, and Thompson sampling algorithm. However, it does not reach 0.95 for the ε-greedy and softmax 
algorithms. The first three methods show similar CDR characteristics, except there are fluctuations in the CDR 
of the UCB1-tuned algorithm. Next, we increase the number of slot machines to N = 1024. Figure 4b shows the 
CDR for the laser-chaos-based method and four software algorithms with N = 1024. In this case, the CDR for 
the laser-chaos-based method converges above 0.95, whereas the CDR for all four software algorithms does not 
reach 0.95. A sharp CDR peak appears at approximately the 1000th play for the UCB1-tuned algorithm (the red 
curve). We speculate that the correct decision making is achieved at approximately the 1000th play for a small 
number of local explorations. However, the algorithm starts searching the remaining slot machines globally, and 
hence the CDR decreases again.

We also compare the scaling characteristics of the laser-chaos-based method, UCB1-tuned algorithm, and 
Thompson sampling algorithm. The number of plays y required for the CDR to reach 0.95 with different num-
bers of slot machines is calculated for each of the three methods. Figure 4c shows the relationship between y 
and N for the three methods on a double logarithmic scale. The power-law relationship is approximated, and 
we obtain y = 45.4 N1.11 and y = 28.1 N1.14 for the UCB1-tuned and Thompson sampling algorithms, respectively. 
The exponents for the UCB1-tuned and Thompson sampling, γ = 1.11 and γ = 1.14, respectively, are larger than 
that for the laser-chaos-based method, γ = 0.97. The small exponent indicates that the laser-chaos-based method 
performs better than these software algorithms. Figure 4d shows that similar results are obtained using double 
linear scales for the vertical and horizontal axes, and shows the difference between the methods. For example, 
when N = 1024, the laser-chaos-based method is 3.5 times faster at achieving correct decision making than both 
the UCB1-tuned and Thompson sampling algorithms. Therefore, the laser-chaos-based method outperforms 
these well-known software algorithms.

Effect of temporal correlation on decision making. In the previous scheme, we assigned independent 
chaotic temporal waveforms to the slot machines for decision making. However, a negative correlation of chaotic 
temporal waveforms may enhance the decision-making  performance9,36. Therefore, we now generate correlated 
chaotic temporal waveforms and assign them to the slot machines. For simplicity, we consider the case of two 
slot machines (N = 2), to which two temporal waveforms with negative or positive correlations are assigned. 
We generate two identical chaotic temporal waveforms from the same initial conditions, one of which is time-
shifted, to obtain two correlated temporal waveforms. The positive and negative correlation values are 0.300 

Figure 3.  Correct decision rate (CDR) and scaling characteristics. (a) CDR as the number of plays increases for 
different numbers of slot machines from N = 4 to 1024  (2i, i = 2, 3,…, 10). (b) Relationship between the number 
of plays y at which the CDR reaches 0.95 and the number of slot machines N on double-logarithmic scales. The 
bias coefficient k is optimized for different values of N (see Fig. 7).
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and − 0.583, respectively. We also generate two chaotic temporal waveforms from different initial conditions to 
obtain independent (non-correlated) temporal waveforms for comparison.

Figure 5 shows the CDR of the two slot machines (N = 2) assigned to the chaotic temporal waveforms with 
negative, positive, and no correlations, as the bias coefficient k is changed. The CDR of the negatively correlated 
temporal waveforms is larger than that of the independent temporal waveforms. In addition, the CDR of the 
positively correlated temporal waveforms is smaller than that of the independent temporal waveforms. This 
indicates that negative correlation is effective for decision making in the case where N = 2, because the alternate 
selection of two slot machines enhances the exploration for the estimation of hit probabilities.

However, this effect is only observed for a limited range of the bias coefficient k, and the CDR is between 
0.8 and 0.9. When k is optimized, there is no major difference between the CDR of the negative-, positive-, and 
non-correlated temporal waveforms. In addition, when N is large, the benefits of correlation disappears because 
different correlations emerge among N temporal waveforms, and the N temporal waveforms effectively become 
independent.

In addition, the optimization of the sampling interval results in an improvement in decision-making per-
formance when the sampling interval is set to be close to the negative autocorrelation time for a small number 
of slot  machines9. However, the advantage of the correlation characteristics disappears when the number of slot 
machines is large.

Discussion
In this section, we compare the proposed laser-chaos-based method with previous photonic methods for solv-
ing the multi-armed bandit problem with a large number of slot machines. Previous photonic methods have 
used hierarchical  structures10 and laser  networks15, in which the decision-making performance was affected by 
the arrangement of the slot machines. However, in the laser-chaos-based method, all of the slot machines are 

Figure 4.  Comparison of correct decision rate (CDR) and scaling characteristics for the laser-chaos-based 
method (black), the UCB1-tuned (red), Thompson sampling (blue), ε-greedy (brown), and softmax (light blue) 
algorithms. (a) CDR as the number of plays increases for N = 4; (b) CDR as the number of plays increases for 
N = 1024; and (c), (d) scaling characteristics for the relationship between the number of plays y at which the 
CDR reaches 0.95 and the number of slot machines N for laser-chaos-based method (black), UCB1-tuned 
(red), and Thompson sampling (blue) algorithms on (c) double logarithmic and (d) double linear scales. The 
hyperparameter values are optimized for the ε-greedy and softmax algorithms for different N.
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compared in parallel, and the selection is determined by the maximum chaotic temporal waveform with bias. 
Thus, the laser-chaos-based method is independent of the arrangement of the slot machines, and is advantageous 
for solving large-scale multi-armed bandit problems.

The use of chaotic temporal waveforms in semiconductor lasers makes it possible to generate fast random 
signals in the gigahertz order, which are implemented as physical random number  generators37. Random signals 
can be generated easily using a semiconductor laser with optical feedback, and the generation speed is much 
faster than that of pseudo-random number generators in a computer. In addition, one of the advantages of using 
chaotic signals is the existence of temporal correlation, which can be useful for decision making with a small 
number of slot machines, e.g., N = 2. However, the advantages of correlation disappear as the number of tem-
poral waveforms (slot machines) increases. In addition, we speculate that chaotic signals generated from other 
nonlinear dynamical systems could also be effective for decision making using the proposed method.

We also demonstrated that a smaller scaling exponent (γ = 0.97) is obtained using laser-chaos-based decision 
making, compared with well-known software algorithms. However, the difference in the scaling exponents is 
very small, and we consider the scaling performance of the laser-chaos-based method to be comparable to that 
of well-known software algorithms. One of the advantages of chaotic temporal waveforms is their generation 
speed, which is several gigahertz; thus, fast decision making can be achieved using chaotic temporal waveforms 
generated by semiconductor lasers.

In the proposed method, white Gaussian noise could be utilized instead of chaotic temporal waveforms. In 
particular, we found that the difference in the CDRs obtained from white Gaussian noise and chaotic temporal 
waveforms decreases with an increase in the number of slot machines, unlike the results in the  literature9,10, 
because the assigned temporal waveforms show no correlation (i.e., are independent) among them. We speculate 
that the correlation characteristics and statistical distribution of chaotic temporal waveforms are less important 
for large numbers of slot machines, and no significant difference is obtained between the schemes using white 
Gaussian noise and chaotic temporal waveforms. In fact, an advantage of using chaotic temporal waveforms is 
their generation speed. Fast gigahertz-frequency chaotic oscillations can be utilized as physical random numbers 
for decision making.

In the proposed method, the number of chaotic temporal waveforms is required to be the same as the 
number of slot machines N. However, chaotic temporal waveforms can be generated from a smaller number 
of semiconductor lasers using time-multiplexing. In other words, a chaotic temporal waveform generated by a 
semiconductor laser can be divided into multiple temporal waveforms, which are then assigned to multiple slot 
machines for decision making. In this case, it is important to reduce the cross-correlation among the divided 
temporal waveforms to generate independent chaotic temporal waveforms. In addition, there is a trade-off 
between the generation speed of the chaotic temporal waveforms and the number of semiconductor lasers used 
for decision making.

In this study, we solved the multi-armed bandit problem with pre-defined hit probabilities. However, we did 
not attempt to solve the multi-armed bandit problem with hit probabilities that are defined based on a statistical 
 distribution38; this decision-making setup will be the focus of our future work.

Conclusions
We numerically investigated a decision-making method for solving the multi-armed bandit problem using bias 
control of chaotic temporal waveforms of laser intensities in a semiconductor laser with optical feedback. Each 
chaotic temporal waveform was assigned to a slot machine with an unknown hit probability. Chaotic temporal 
waveforms were sampled, and the amplitudes of these temporal waveforms with biases were compared. The slot 

Figure 5.  Correct decision rate (CDR) for two slot machines (N = 2) assigned to temporal waveforms with 
negative (black), positive (red), and no (blue) correlations as the bias coefficient k increases. The cross bars 
represent the maximum and minimum values of the CDR for ten repetitions of the numerical calculation.
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machine assigned to the temporal waveform with the maximum amplitude was selected. The amplitude of the 
chaotic temporal waveform was controlled by adding or subtracting the bias based on the results of slot machine 
selection using the tug-of-war method. We achieved successful decision making for the multi-armed bandit 
problem with up to 1024 slot machines. We also investigated the scaling characteristics of the decision-making 
performance as the number of slot machines increased. We identified a power-law relationship between the 
number of plays required for correct decision making and the number of slot machines. The scaling exponent 
was 0.97, which is close to one and better than those reported in previous studies. We compared the laser-chaos-
based method with well-known software algorithms (ε-greedy, softmax, UCB1-tuned, and Thompson sampling), 
and demonstrated that the laser-chaos-based method outperformed them. Finally, we investigated the effect of 
negative and positive correlations of chaotic temporal waveforms on decision-making performance, and found 
that negative-correlated temporal waveforms outperformed positive-correlated and independent temporal wave-
forms for the two-armed bandit problem within a certain parameter range. The laser-chaos-based method is 
a promising approach to decision making for large-scale multi-armed bandit problems. This method can also 
be applied for adaptive channel selection in wireless and optical communications using photonic accelerators.

Methods
Numerical model of a semiconductor laser with optical feedback. We numerically generate chaotic 
temporal waveforms in a semiconductor laser with optical feedback using the Lang–Kobayashi  equations25–27. 
These equations are described as follows:

where E(t) and N(t) represent the complex electric-field amplitude and carrier density of the semiconductor laser 
with optical feedback, respectively. The parameters and their values are summarized in Table 139.

Chaotic temporal waveforms. We numerically calculated the chaotic temporal waveforms of a semi-
conductor laser with optical feedback for decision making. Figure 6a shows an example of the chaotic temporal 
waveforms generated from the Lang–Kobayashi equations. The temporal waveform fluctuates chaotically with 
an order of nanoseconds. Figure 6b shows a histogram of the chaotic temporal waveforms for the laser intensi-
ties demonstrated in Fig. 6a. The histogram displays a Gaussian-like distribution; however, the distribution is 
skewed at larger intensities. Figure 6c shows fast Fourier transform (FFT) of the chaotic temporal waveform 
illustrated in Fig. 6a. The FFT is widely distributed, and the peak frequency of the FFT corresponds to 2.9 GHz. 
Figure 6d shows the autocorrelation function of the chaotic temporal waveform. The second peak of the cross-
correlation value is 0.35 ns, corresponding to the inverse of the peak frequency (2.9 GHz) of the FFT in Fig. 6c. 
Other independent chaotic temporal waveforms are generated from different initial conditions and used for 
decision making.

(7)
dE(t)

dt
=

1+ iα

2

[
GN (N(t)− N0)

1+ ε|E(t)|2
−

1

τp

]
E(t)+ κE(t − τ)exp(−iωτ),

(8)
dN(t)

dt
= J −

N(t)

τs
−

GN (N(t)− N0)

1+ ε|E(t)|2
|E(t)|2,

Table 1.  Parameter values used in the numerical simulations of a semiconductor laser with optical feedback.

Symbol Parameter Value

GN Gain coefficient 8.40 ×  10−13  m3  s−1

N0 Carrier density at transparency 1.40 ×  1024  m−3

τp Photon lifetime 1.927 ×  10−12 s

τs Carrier lifetime 2.04 ×  10−9 s

τin Round-trip time in internal cavity 8.0 ×  10−12 s

α Linewidth enhancement factor 3.0

ε Gain saturation coefficient 2.5 ×  10−23

r2 Reflectivity of laser facet 0.556

r3 Reflectivity of external mirror 0.036

κ = (1 − r2
2)r3/(r2τin) Optical feedback strength 5.592 ×  109  s−1

J/Jth Normalized injection current 1.36

c Speed of light 2.998 ×  108 m  s−1

L External cavity length 0.3 m

τ = 2L/c Round-trip time of light in external cavity 2.001 ×  10−9 s

λ Optical wavelength 1.537 ×  10−6 m

ω = 2πc/λ Optical angular frequency 1.226 ×  1015  s−1

Nth =  N0 + 1/(GNτp) Carrier density at lasing threshold 2.018 ×  1024  m−3

Jth = Nth/τs Injection current at lasing threshold 9.891 ×  1032  m−3  s−1
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Optimization of bias coefficient. We optimized the bias coefficient k for different numbers of slot 
machines N to obtain the CDR and scaling characteristics shown in Fig. 3. Figure 7a shows the number of plays 
required to achieve a CDR of 0.95 when k is changed for different values of N. The optimal k is obtained from the 
minimum number of plays required to achieve a CDR of 0.95, as shown in Fig. 7a. Figure 7b shows the optimal 
k for different values of N, obtained from Fig. 7a. The optimal value of k increases monotonically as N increases, 
indicating that a large k is required for a large N. A small k results in too much exploration when N is large, so k 

Figure 6.  Chaotic temporal waveforms for decision-making. Examples of chaotic temporal waveform of (a) 
laser intensity, (b) histogram, (c) fast Fourier transform (FFT), and (d) autocorrelation function.

Figure 7.  Optimization of bias coefficient k for different numbers of slot machines N. (a) Number of plays to 
achieve CDR = 0.95 as the bias coefficient k increases for different values of N. (b) Optimal bias coefficient k for 
different values of N obtained from (a).
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must be sufficiently large for a large N. These optimal values of k are used to obtain the CDR curve and scaling 
characteristics shown in Fig. 3.

Data availability
The datasets generated during the current study are available from the corresponding author upon reasonable 
request.

Received: 14 March 2022; Accepted: 3 May 2022

References
 1. Kitayama, K. et al. Novel frontier of photonics for data processing—Photonic accelerator. APL Photonics 4, 090901 (2019).
 2. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).
 3. Larger, L. et al. Photonic information processing beyond turing: An optoelectronic implementation of reservoir computing. Opt. 

Express 20, 3241–3249 (2012).
 4. Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates 

using transient states. Nat. Commun. 4, 1364 (2013).
 5. Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).
 6. Takano, K. et al. Compact reservoir computing with a photonic integrated circuit. Opt. Express 26, 29424–29439 (2018).
 7. Inagaki, T. et al. A coherent ising machine for 2000-node optimization problems. Science 354, 603–606 (2016).
 8. Ishihara, T., Shinya, A., Inoue, K., Nozaki, K. & Notomi, M. An integrated nanophotonic parallel adder. ACM J. Emerg. Technol. 

Comput. Syst. 14, 1–20 (2018).
 9. Naruse, M., Terashima, Y., Uchida, A. & Kim, S. J. Ultrafast photonic reinforcement learning based on laser chaos. Sci. Rep. 7, 8772 

(2017).
 10. Naruse, M. et al. Scalable photonic reinforcement learning by time-division multiplexing of laser chaos. Sci. Rep. 8, 10890 (2018).
 11. Mihana, T., Terashima, Y., Naruse, M., Kim, S.-J. & Uchida, A. Memory effect on adaptive decision making with a chaotic semi-

conductor laser. Complexity 2018, 4318127 (2018).
 12. Oda, A., Mihana, T., Kanno, K., Naruse, M. & Uchida, A. Adaptive decision making using a chaotic semiconductor laser for multi-

armed bandit problem with time-varying hit probabilities. NOLTA 13, 112–122 (2022).
 13. Homma, R. et al. On-chip photonic decision maker using spontaneous mode switching in a ring laser. Sci. Rep. 9, 9429 (2019).
 14. Mihana, T. et al. Decision making for the multi-armed bandit problem using lag synchronization of chaos in mutually coupled 

semiconductor lasers. Opt. Express 27, 26989–27008 (2019).
 15. Mihana, T., Fujii, K., Kanno, K., Naruse, M. & Uchida, A. Laser network decision making by lag synchronization of chaos in a ring 

configuration. Opt. Express 28, 40112–40130 (2020).
 16. Han, Y. et al. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision 

making based on a globally-coupled semiconductor laser network. Photonics Res. 8, 1792–1799 (2020).
 17. Naruse, M. et al. Single-photon decision maker. Sci. Rep. 5, 13253 (2015).
 18. Naruse, M. et al. Single photon in hierarchical architecture for physical decision making: Photon intelligence. ACS Photonics 3, 

2505–2514 (2016).
 19. Chauvet, N. et al. Entangled-photon decision maker. Sci. Rep. 9, 12229 (2019).
 20. Chauvet, N. et al. Entangled n-photon states for fair and optimal social decision making. Sci. Rep. 10, 20420 (2020).
 21. Maeda, S. et al. Entangled and correlated photon mixed strategy for social decision making. Sci. Rep. 11, 4832 (2021).
 22. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT, 1998).
 23. Robbins, H. Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58, 527–535 (1952).
 24. Takeuchi, S. et al. Dynamic channel selection in wireless communications via a multi-armed bandit algorithm using laser chaos 

time series. Sci. Rep. 10, 1574 (2020).
 25. Chen, X. et al. DeepRMSA: A deep reinforcement learning framework for routing, modulation and spectrum assignment in elastic 

optical networks. J. Lightwave Technol. 37, 4155–4163 (2019).
 26. Duan, Z. et al. User pairing using laser chaos decision maker for NOMA systems. NOLTA 13, 72–83 (2022).
 27. Uchida, A. Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization (Wiley-VCH, 

2012).
 28. Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos 4th edn. (Springer, 2017).
 29. Lang, R. & Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 

16, 347–355 (1980).
 30. Kim, S. J., Aono, M. & Hara, M. Tug-of-war model for the two-bandit problem: Nonlocally-correlated parallel exploration via 

resource conservation. Biosystems 101, 29–36 (2010).
 31. Kim, S.-J., Aono, M. & Nameda, E. Efficient decision-making by volume-conserving physical object. New J. Phys. 17, 083023 (2015).
 32. Kim, S.-J. & Aono, M. Amoeba-inspired algorithm for cognitive medium access. NOLTA 5, 198–209 (2014).
 33. Kim, S.-J., Naruse, M. & Aono, M. Harnessing the computational power of fluids for optimization of collective decision making. 

Philosophies 1, 245–260 (2016).
 34. Auer, P., Cesa-Bianchi, N. & Fischer, P. Finite-time analysis of the multi-armed bandit problem. Mach. Learn. 47, 235–256 (2002).
 35. Thompson, W. R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biom-

etrika 25, 285–294 (1933).
 36. Okada, N., Hasegawa, M., Chauvet, N., Li, A. & Naruse, M. Analysis on effectiveness of surrogate data-based laser chaos decision 

maker. Complexity 2021, 8877660 (2021).
 37. Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2, 728–732 (2008).
 38. Kuleshov, V. & Precup, D. Algorithms for the multi-armed bandit problem. Preprint at http:// arxiv. org/ abs/ 1402. 6028v1 (2016).
 39. Kanno, K. & Uchida, A. Consistency and complexity in coupled semiconductor lasers with time-delayed optical feedback. Phys. 

Rev. E Stat. Nonlinear Soft Matter Phys. 86, 066202 (2012).

Acknowledgements
This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Pro-
motion of Science (JSPS KAKENHI Grant Nos. JP19H00868, JP20K15185, JP20H00233); JST CREST, Japan 
(JPMJCR17N2); and the Telecommunications Advancement Foundation.

http://arxiv.org/abs/1402.6028v1


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8073  | https://doi.org/10.1038/s41598-022-12155-y

www.nature.com/scientificreports/

Author contributions
K.M., K.K., and A.U. designed the system architecture and principles. K.M. conducted the numerical simulations. 
K.M., T.M., K.K., and A.U. analyzed the data. K.M., M.N., and A.U. wrote the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.M. or A.U.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Decision making for large-scale multi-armed bandit problems using bias control of chaotic temporal waveforms in semiconductor lasers
	Results
	Bias control of chaotic temporal waveforms. 
	Decision-making results. 
	Scalability of decision making. 
	Comparison with other decision-making methods. 
	Effect of temporal correlation on decision making. 

	Discussion
	Conclusions
	Methods
	Numerical model of a semiconductor laser with optical feedback. 
	Chaotic temporal waveforms. 
	Optimization of bias coefficient. 

	References
	Acknowledgements


