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Insights about the common 
generative rule underlying 
an information foraging task can be 
facilitated via collective search
Aoi Naito1,2, Kentaro Katahira3 & Tatsuya Kameda1,4,5*

Social learning is beneficial for efficient information search in unfamiliar environments (“within-task” 
learning). In the real world, however, possible search spaces are often so large that decision makers 
are incapable of covering all options, even if they pool their information collectively. One strategy 
to handle such overload is developing generalizable knowledge that extends to multiple related 
environments (“across-task” learning). However, it is unknown whether and how social information 
may facilitate such across-task learning. Here, we investigated participants’ social learning processes 
across multiple laboratory foraging sessions in spatially correlated reward landscapes that were 
generated according to a common rule. The results showed that paired participants were able to 
improve efficiency in information search across sessions more than solo participants. Computational 
analysis of participants’ choice-behaviors revealed that such improvement across sessions was related 
to better understanding of the common generative rule. Rule understanding was correlated within a 
pair, suggesting that social interaction is a key to the improvement of across-task learning.

Learning how to adjust decision strategies under uncertainty through repeated experiences constitutes a fun-
damental problem both in modern human societies (e.g., consumer choices, financial decisions, or scientific 
enquiries) and in natural environments (e.g., searching for food, water, and shelter). In particular, given limited 
time and energy budgets, individual decision makers often must strike a balance between acquiring new informa-
tion (“exploration”) and harvesting to the best of their current knowledge (“exploitation”) to maximize overall 
expected outcomes from their choices. The ubiquity of this exploration–exploitation tradeoff has prompted a 
wide range of research from animal foraging to computer  science1–3. Previous research has also shown that deci-
sion makers interacting with others can increase their decision performances collectively, through decentralized 
information pooling affected by various social learning  strategies4–9.

In the real world, however, the possible search space is often so huge that decision makers are incapable of 
encountering or evaluating all options, even if they can pool information collectively. One potential strategy to 
cope with the overflow is developing some cognitive model about the environment that systematically guides 
information search under uncertainty. This involves cognitively inferring the proximate structure of the cur-
rent environment (“reward landscape”) from available/sampled data (“within-task” learning; Fig. 1 bottom). 
Additionally, if similar decisions are repeated in a series of environments, decision makers may also examine 
whether and how knowledge about the old environment may be generalizable to new environments by inferring 
some common generative rule (“across-task” learning; Fig. 1 top). If such generalization is warranted (i.e., the 
old and new environments are structured or generated according to a common  rule10–13), decision makers can 
solve the exploration–exploitation tradeoff in the new environments more efficiently. Although the question of 
knowledge generalizability has been discussed for many  years14,15, it has remained largely unanswered because 
of the computational difficulty of quantifying its cognitive underpinnings in detail. However, recently developed 
techniques in machine  learning16 have enabled computational approaches to assess cognitive mechanisms for 
knowledge generalization at a finer  level17–20.
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On the other hand, to the best of our knowledge, these new developments are concerned only with individual 
decision making, and insights about how people may incorporate social information into across-task learning 
through decentralized information pooling remain elusive. For example, most previous research on social learn-
ing has focused on imitation learning, investigating when and how learners copy others’ preceding choices in 
the current  environment8,21–28. Certainly, such imitation learning allows learners to efficiently acquire locally 
useful knowledge about the reward landscape in the current environment (within-task learning). However, even 
if local knowledge obtained through imitation learning is highly accurate, it remains unknown how such local 
knowledge may be extendable to a new environment. To empirically assess how the use of social information 
may possibly enhance not only within-task learning but also across-task  learning10,11, we need to create a new 
testbed where a group of individuals simultaneously participate in a series of task environments that follow a 
common generative rule but have random components specific to each environment.

In this study, we investigated social learning processes in a large search space, using multi-armed bandit 
(MAB) tasks with 165 options. As illustrated in Fig. 1 bottom, the 165 options in the search space were arrayed 
in a 11 × 15 grid on a computer screen, where rewards from more nearby options were more similar. Following 
previous studies about individual decision  making18–20, we generated such a spatially-correlated reward landscape 
using a Gaussian process, which is a widely-used variant of machine learning models (Fig. 1 top). If participants 
developed some understanding of the spatially-correlated structure of the environment, it would allow them to 
do more systematic exploration under uncertainty, rather than simple random  exploration29. Participants worked 
on a total of six experimental sessions (Fig. 1 top), each composed of 25 trials (Fig. 1 bottom), in which the total 
number of search opportunities (= 25) was much fewer than the number of options (= 165). Prior to the experi-
ment, we created each search space following a common generative rule to implement in all six sessions (i.e., we 
sampled each space independently from the Gaussian process prior with � = 1.5; Fig. 1 top).

In the experiment, we had solo and pair conditions. Upon arrival at the laboratory, each participant was 
seated in a private soundproof cubicle and received further instructions on a computer monitor. No direct 
communication between participants was allowed at any point during the experiment. Before the main ses-
sions, all participants worked on the same practice task (i.e., the 165-armed bandit task; Supplementary Fig. S1) 
individually for 10 trials with feedback. In the main sessions, forty-seven participants worked on the task alone, 
while 74 participants worked in pairs (i.e., 37 pairs in total). Prior to making a choice in each trial, participants 
in the pair condition were provided information about their partner’s choice in the preceding trial in the form 
of a visual cue highlighting the chosen option (but not the partner’s reward information, which was available 
only to the partner). After making a choice, participants in both conditions received individual feedback about 
their reward in the trial (Fig. 1 bottom).

In the following, we examine how and to what extent social learning may facilitate not only within-task 
learning about a particular environment, but also across-task learning about multiple related environments. We 
are concerned with whether and how the social-learning opportunities in the pair condition may help partici-
pants to develop general knowledge about the common structure of the environments, as well as to solve the 
exploration–exploitation tradeoff specific to each environment more efficiently. To address this question, we first 
compare trajectories of performance across the six main sessions between the solo and pair conditions. We then 
analyze each participant’s choice behaviors using computational models. The computational modelling allows 
us a finer analysis of the possibility of across-task learning by dissociating the key parameter that corresponds 
to understanding of the common generative rule from other parameters that correspond to imitation learning 
and basic choice strategies for solving the exploitation-exploration tradeoff under uncertainty.

Results
Behavioral performance. In Fig. 2a, we show participants’ performance in terms of average points earned 
during the six sessions. Collapsed across all sessions, participants in the pair condition performed better than 
those in the solo condition (Linear Mixed Model (LMM), condition: 95% CI [1.41, 5.16], mean = 3.28; Fig. 2a 

Figure 1.  Across- and within-task learning in the spatially correlated multi-armed bandit (MAB). (Top) 
Across-task learning: Prior to the experiment, six environments (reward landscapes) were independently 
sampled from a gaussian process prior with radial basis function kernel with a single length-scale parameter � 
(= 1.5 in the experiment; Supplementary Fig. S12). For each of the six environments, we rescaled reward values 
to range from 0 to a maximum value that was randomly generated from a discrete uniform distribution [80, 
120]. In other words, the value of the global optimum was different across environments so that participants 
could not infer it from experience in a previous environment. In the experiment, the six environments 
were assigned to six sessions randomly across participants, with the constraint that those in the same pair 
experienced the same sequence of the environments. Thus, participants in both the solo and pair conditions 
experienced the six variations of the reward landscape in a randomized order across six sessions. If participants 
developed a general knowledge about the common structure gradually across the sessions (across-task learning), 
then they could solve the specific exploration–exploitation tradeoff in each environment more efficiently in 
later sessions. (Bottom) Within-task learning: In each of the six sessions, all participants worked on the 165-
armed bandit task (displayed as a 11 × 15 grid on a computer screen) for a total of 25 trials. Each box in the 
11 × 15 grid corresponds to an option whose color represents the magnitude of mean rewards (e.g., red boxes 
indicate options with high rewards while violet boxes indicate those with low rewards, according to the rainbow 
colormap). Notice that the number of options (= 165) was much larger than the total number of trials within a 
session (= 25), during which they had to learn to find good (if not necessarily the best) options in the current 
environment (within-task learning).
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right). There was no performance difference in the practice session, in which participants worked on the task 
individually for 10 trials with feedback (LMM, condition: 95% CI [− 5.14, 2.56], mean = − 1.34; Fig. 2a left). 
These patterns are in line with the performance improvement due to social learning in simpler MAB environ-
ments without spatial  correlations7. As shown in Fig. 2b, the difference in performance between the solo and 
pair conditions across all six environments increased in later trials within each session (LMM, condition × trial: 
95% CI: [0.04, 0.47], mean = 0.26). This indicates that, compared to individual learning (i.e., the solo condition), 
social learning opportunities helped participants find and exploit better options relatively earlier, consequently 
achieving greater overall performance in the current environment. Interestingly, the proportion of sessions (out 
of 6) in which each participant found the optimal option over 25 trials was not different between the two condi-
tions (Generalized Linear Mixed Model (GLM), condition: 95% CI [− 0.06, 0.53], mean = 0.23; Supplementary 
Fig. S2), suggesting that social learning helped participants cope with the exploration–exploitation tradeoff by 
settling on better options while avoiding the risk of a wasteful search for the global optimum.

Most importantly, the advantage of social learning (the pair condition) over individual learning (the solo con-
dition) was manifested more clearly in later sessions in the task sequence (Fig. 2c). The interaction effect between 
session progress and condition was significant (LMM, session × condition: 95% CI [0.31, 2.06], mean = 1.21; see 
also Supplementary Fig. S3). As seen in Fig. 2c, participants in the pair condition became more adept at solving 
the exploration–exploitation efficiently in later sessions, while this was not the case in the solo condition. These 
patterns are in line with our conjecture that social learning opportunities may promote not only within-task 
learning but also across-task learning. Later, we revisit these notions more directly by introducing several com-
putational models to analyze each participant’s choice behavior.

Exploration pattern. To obtain further insights about how social learning opportunities are used in search 
decisions under the exploration–exploitation tradeoff, we also examined participants’ exploration patterns. As a 
behavioral metric of exploration, we examined proportions of unique (i.e., once-only, “new”) choices that each 
participant made in each session. Because the desirable balance between exploration and exploitation should 
depend on the progress of trials, we divided each session into three phases (the first phase from trial 1 to 8, the 
second from trial 9 to 16, and the third from trial 17 to 25), and counted the number of unique choices by each 
participant. Collapsed across the six sessions, the average proportion of unique choices gradually decreased from 
the first to the third phases (Fig. 2d). The proportion of unique options was no different between the two condi-
tions in the first phase (GLMM, condition: 95% CI [− 1.32, 0.26], mean: − 0.52), whereas it was lower in the pair 
condition than in the solo condition for the second (GLMM, condition: 95% CI [− 1.34, − 0.34], mean = − 0.84) 

Figure 2.  Behavioral performance. (a) Performance in the practice session (left) and performance collapsed 
across the main 6 sessions (right). Each dot represents one participant. (b) Participants’ mean performance over 
25 trials in each of the six environments. The colored traces represent mean performance in the two conditions 
(red: solo, blue: pair), and the shaded areas show the standard errors of the mean. Each panel corresponds to one 
of the six environments shown in Supplementary Fig. S11; their order was counterbalanced across participants. 
(c) Trajectories of mean performance over the 6 sessions. Error bars show standard errors of the mean. (d) 
Proportions of unique choices in the first (trial 1–8), second (trial 9–16), and third (trial 17–25) phases. Each 
dot represents one participant’s mean in each phase. (e) Trajectories of the proportion of unique choices in each 
phase across sessions for the solo and pair conditions. The dark, intermediate, and light colored lines stand for 
means in the first (trial 1–8), second (trial 9–16), and third (trial 17–25) phases, respectively. The shaded areas 
show the standard errors of the mean.
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and third phases (GLMM, condition: 95% CI [− 1.18, − 0.22], mean = − 0.7). This means that the participants in 
the pair condition explored the environment more efficiently in earlier trials, engaging in more exploitation in 
later trials (see also Supplementary Fig. S4 for related results about the mean migration length from one trial to 
the next as another measure of participants’ exploration behaviors).

We further examined how this pattern may have evolved across the six sessions. In Fig. 2e, we decomposed 
Fig. 2d to show trajectories of proportions of unique choices across sessions, for the first, second, and third 
phases respectively. We examined whether participants exhibited different trajectories across sessions between 
the solo and pair conditions by focusing on the condition × session interaction. The GLMM revealed significant 
condition × session interactions for the first and second phases (GLMM: 95% CI for the first phase [− 0.97, 
− 0.25], mean = − 0.6; second phase [− 0.45, − 0.07], mean = − 0.26), but not for the third phase ([− 0.24, 0.04], 
mean = − 0.1). That is, as the sessions progressed, participants in the pair condition switched to exploitation in 
earlier phases compared to those in the solo condition. These results again suggest greater across-task learning 
of the common environmental structure in the pair condition than in the solo condition (see also Supplemen-
tary Fig. S5 for exploratory analysis of participants’ subjective understanding of the environmental structure).

Computational accounts of behavior. The results so far are in line with our conjecture that social learn-
ing opportunities may facilitate not only within-task learning but also across-task learning. To examine these 
results at a finer level, we introduce a computational model of participant decision processes. As we have dis-
cussed earlier, copying the partner’s choice in the current  environment21,22 does not necessarily explain how 
enriched local knowledge (within-task learning) can be extended to a new environment (across-task learning).

Here, we consider a decision model with Gaussian Process regression and an Upper Confidence Bound 
policy (GP-UCB model hereafter). The GP-UCB model has been empirically verified in several studies about 
human exploratory behavior in spatially-correlated environments as in Fig. 118–20. In the following, we outline 
each component of the model and discuss the interpretation of each parameter (for details of the model, see 
Methods and Supplementary Information).

The GP-UCB model has two elements: GP, which represents the spatial structure of the environment, and 
UCB, which represents a person’s choice policy in the environment.

The first element, Gaussian Process (GP) regression, generates the spatial distribution of rewards in the 
environment, which is characterized by the parameter � (Fig. 1). This parameter controls the spatial correla-
tion of rewards between options: the larger the parameter � , the smaller the decay of correlation between more 
distant locations (options), yielding a flatter reward landscape (i.e., the mean rewards are more similar between 
two adjacent options). Using this model, we can estimate how much a participant subjectively believed that the 
rewards were spatially correlated. To distinguish from the true � used to generate the actual reward functions 
for each option/location in the environment, we denote the participant’s subjective belief about � as �̂ . In other 
words, �̂ reflects the participant’s understanding of the generative rule for the environment.

We also assume that, after making each choice, the participant updates his/her understanding about the spa-
tial distribution of rewards using the GP regression  model30. That is, using �̂ and the experienced reward from 
the choice, the participant updates predictions about the mean and the standard deviation of each option in the 
environment in a Bayesian manner (see Supplementary Information for details).

The second element, the Upper Confidence Bound (UCB) policy, represents how a decision maker integrates 
several characteristics of an option into its value (i.e., decision utility; V(x) in Fig. 3a where x is a vector represent-
ing the 165 options). Most importantly, the UCB policy integrates the mean of each option (predicted mean m(x) 
in Fig. 3a) with its uncertainty (predicted standard deviation s(x) in Fig. 3a) to emphasize exploratory behavior 
under uncertainty. As shown in Fig. 3a, the values of options V(x) under the UCB policy are represented as 
m(x) + β · s(x) , where β reflects the extent to which a decision maker systematically directs his/her explorations 
to more uncertain  options31–33 (“uncertainty premium”).

For the model in the pair condition (UCB + S model), we further incorporated value kRBF
(

x, xpartner
)

 accruing 
from social information into the option’s overall value (Fig. 3a). This component implies “imitation bias”, whereby 
a decision maker values options that are spatially closer to the option chosen by the partner in the preceding 
trial. The magnitude of imitation bias for a decision maker is governed by the parameter γ.

The overall value of options V(x) , as defined above, are fed into the standard softmax function to proba-
bilistically determine a participant’s choice behavior in the next trial. Similar to the temperature parameter in 
reinforcement  learning3, we assumed another parameter τ that determines the decision maker’s degree of undi-
rected exploration independent of value (i.e., “random exploration”). Thus, we have a total of four parameters 
in our model: �̂ , β , γ , and τ . Figure 3b provides a schematic summary of the UCB + S model (see Methods and 
Supplementary Information for details).

In the computational modeling, we conjecture that participants in the solo and pair conditions may adjust the 
parameter values of the model differently. In particular, if the accuracy of participants’ subjective beliefs about 
the generative rule for the reward landscape (Fig. 1) is improved by social learning opportunities in the pair 
condition, then the values of �̂ for spatial correlation would be more similar within actual pairs as compared to 
shuffled pairs (who did not interact with each other), and would also be closer to the true value � as compared 
to the solo condition.

Modelling results. We evaluated the UCB + S (full) model quantitatively by comparing it with its sub-
models using the Akaike Information  Criterion34 (AIC). Because Wu and  colleagues20 have already shown that 
the GP-UCB model provides a robust account of how solo learners utilize generalized beliefs across different 
environments, we took Gaussian process learning as given and tested the plausibility of the UCB + S model (i.e., 
the UCB model with the added component of imitation bias; Fig. 3a, b, and Eq. (3) in Methods). The alterna-
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tive models that we tested are six sub-models of the UCB + S model (Supplementary Fig. S6). The model fitting 
revealed that the mean AIC of the UCB + S model was the smallest among the models tested (Supplementary 
Table S2). These results indicate that considering imitation bias in addition to the UCB  policy18–20,22,23 provided 
reasonable overall fit to the participants’ choices in the pair condition. Figure 3c shows estimates of the four 
parameters of the UCB + S model.

Given the fit of the UCB + S model, we first explore the adaptive value of imitation bias ( γ ) on performance 
through a numeric simulation. In the experiment, we observed that the median of γ was 0.18 (see Fig. 3c). How 
did this magnitude of imitation bias affect participants’ performance in the experiment? To answer this ques-
tion, we varied the value of γ systematically in the simulation while fixing the values of the other parameters ( ̂� , 
β , γ , and τ ) at their medians obtained from the experiment (see Supplementary Information for details; Sup-
plementary Fig. S7). We observed that the effect of imitation bias on performance follows an inverted U-shape 
pattern: while a small to moderate imitation bias is beneficial, no bias or more extreme bias leads to less efficient 
performance. The observed magnitude of participants’ imitation bias (median γ = 0.18) in the experiment seems 
to have contributed to the superior performance of the pair condition (see also Fig. 2a), as compared to the solo 
condition where γ can be regarded as 0.

Next, we compare the parameter values estimated for the UCB + S model between the solo and pair conditions. 
There are three parameters that are directly comparable between the two conditions: (1) subjective belief about 
the generative rule �̂ , (2) uncertainty premium β , and (3) random exploration τ (Fig. 3c). As seen in the figure, 
only the subjective belief parameter �̂ was significantly different between the two conditions (LMM: 95% CI 
[− 1.21, − 0.25], mean = − 0.72), while the two exploration parameters ( β for uncertainty-directed and τ for ran-
dom exploration) were not (LMM: β : 95% CI [− 0.13, 0.12], mean = − 0.01; τ : 95%CI [− 0.01, 0.01], mean = 0.00). 
It is noteworthy that �̂ was closer to the true value ( � = 1.5) in the pair condition (median of �̂ = 1.59) than in the 
solo condition (median of �̂ = 1.86), implying that paired participants acquired a more accurate understanding 
of the spatial correlation of the environment.

Figure 3.  Overview of the computational model and estimated parameters. (a) Schematic illustration of the 
value function V(x) for options ( x is a vector representing the 165 options), when social learning is allowed 
(“UCB + S model” hereafter; see the text and Eq. (3) in Methods for explanation). Here, the value function 
V(x) is a weighted sum of the predicted mean m(x) , the predicted variability s(x) (weighted by the uncertainty-
premium parameter β ), and the social information about the partner’s preceding choice kRBF

(

x, xpartner
)

 
(weighted by the imitation-bias parameter γ ). (b) Model space of the UCB + S model. Based on Rewards R from 
the current trial, a decision maker first updates predictions about the expected rewards m(x) and uncertainties 
s(x) for the whole environment by Gaussian process regression using the parameter �̂ (i.e., subjective belief 
about the generative rule). The decision maker then combines the information above into the overall value 
V(x) . Here, in addition to the value derived from the UCB policy (sum of m(x) and β · s(x) , where  β is the 
uncertainty-premium parameter), the decision maker also incorporates the value kRBF

(

x, xpartner
)

 accruing 
from social information about the partner’s preceding choice (see the text and Methods for details) weighted by 
his/ her imitation-bias parameter γ (Fig. 3a). The overall values for the 165 options, V(x) , are then transformed 
into a choice in the next trial. The participant’s choice C is determined probabilistically according to the softmax 
function with the random exploration parameter τ (similar to temperature in reinforcement learning). (c) 
Estimates of the model parameters in the solo and pair conditions. For �̂ , the true spatial correlation in the 
environment ( � = 1.5) is shown as a dotted line.
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At this point it remains unclear whether the observed improvement in the understanding of the generative 
rule ( ̂�) in the pair condition over the solo condition occurred independently for each individual within a pair 
or for both individuals at the pair level. To address this point, we conducted the following pair-level analyses. 
First, we examined correlations of parameter values between paired participants. As seen in Fig. 4a, among the 
four model parameters, only �̂ was significantly correlated between the paired participants (Spearman’s Rank 
Correlation test: ρ = 0.39, P < 0.01), whereas the other three parameters were not ( β : ρ = 0.22, P = 0.06; τ : ρ = 0.17, 
P = 0.14; γ : ρ = 0.15, P = 0.21). Second, to see if the parameter values converged within a pair due to social interac-
tion, we created shuffled pairs (composed of two participants in the pair condition who were not actually paired) 
as a benchmark, and compared the absolute difference in parameter values for the real and shuffled pairs. As 
shown in Fig. 4b, again, the differences in �̂ were significantly smaller in the real pairs than in the shuffled pairs 
(Mann–Whitney U test: U = 1006.0, P = 0.02), while the uncertainty premium β and the random exploration τ 
were not (Mann–Whitney U test: β : U = 1183.0, P = 0.17; τ : U = 1204.0, P = 0.21). The same patterns were observed 
when compared with nominal pairs, in which two participants in the solo condition were randomly matched 
(Mann–Whitney U test: �̂ : U = 398.0, P < 0.01; β : U = 683.0, P = 0.08; τ : U = 734.0, P = 0.16; Supplementary Fig. S8).

Discussion
Social learning is one of the core human capacities that have been vital in both growth and habitat expansion 
of human  populations28,35. Previous research has shown that humans flexibly use various social learning strate-
gies in response to the adaptive features of an  environment8,9,36. Previous research has also used the explora-
tion–exploitation tradeoff in information  search1–3 as a common platform to clarify computational algorithms 
underlying social learning. Yet, as these works have been mainly concerned with how social information helps 
solve the exploration–exploitation tradeoff in an immediate environment (within-task  learning8,21,22,24), it remains 
unknown whether and how social information may facilitate across-task learning, whereby acquired knowledge 
in one environment is generalized or extended to other related environments. Given the exponential expansion 
of possible search spaces in the modern world, it is fundamental to study how such across-task  learning17–20 may 
emerge as a form of collective intelligence through social interaction. Here, we investigated this issue through a 
laboratory experiment and accompanying computational modeling that focused on social learning when par-
ticipants engaged in a series of foraging sessions in spatially-correlated reward landscapes that were generated 
according to a common rule (Fig. 1).

This experiment has revealed the following observations. Firstly, the paired participants consistently out-
performed the solo participants in all six spatially-correlated 165-armed bandit environments (Fig. 2a, b), rep-
licating the performance improvement due to social learning in simpler MAB environments without spatial 
 correlations7. More central to our argument, the superiority of the paired participants to the solo participants 

Figure 4.  Paired participants were similar to each other in subjective understanding of the generative rule ( ̂�) , 
but not in the other parameters. (a) Correlation between paired participants’ parameter values. The solid lines 
and shaded areas represent linear regression and 95% credible intervals, respectively. (b) Parameter differences 
within pairs. Shuffled pairs (red) consist of two random participants in the pair condition, while real pairs (blue) 
consist of the actually paired participants.
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was more pronounced in later sessions (Fig. 2c). This suggests that the paired participants may have developed 
some generalizable  knowledge10,11 across the six environments through social interaction. This conjecture was 
also consistent with the results of participants’ exploration behavior in terms of unique choices that they made 
during information search (Fig. 2d,e). As the sessions progressed, the paired participants switched to exploita-
tion in earlier phases compared to the solo participants, suggesting that they had acquired better insights about 
the common feature of the reward landscapes (see also Supplementary Figs. S4 & S5).

To explore this conjecture further, we next analyzed each participant’s choice behavior using a computational 
model. The model comparison revealed that the full model (UCB + S model; see Fig. 3a,b and Supplementary 
Fig. S6) was the best in terms of AIC (Supplementary Table S2), and it also passed the parameter recovery test 
(Supplementary Figs. S9 & S10). This model assumed that participants assessed the value of an option as a 
weighted sum of the predicted mean m(x) , the predicted variability s(x) (weighted by the uncertainty-premium 
parameter, β ), and the social information about the partner’s preceding choice kRBF

(

x, xpartner
)

 (weighted by the 
imitation-bias parameter, γ ). It is important to note the presence of this latter parameter in the selected UCB + S 
model, by which participants incorporate social information into valuation of the choice options. This model-
selection result is consistent with previous research on simple imitation learning, showing that people tend to 
copy others’ choices in a shared  environment21,22. The numeric simulation with the UCB + S model also revealed 
that the effect of imitation bias on performance follows an inverted U-shape pattern: while a small to moderate 
imitation bias (which was actually observed in the behavioral experiment with median γ = 0.18) is beneficial, no 
bias or more extreme bias is detrimental to performance (Supplementary Fig. S7).

However, we should emphasize that the success of such simple copying of other’s choices in solving the 
exploration–exploitation tradeoff in one environment does not necessarily mean that current knowledge has 
been acquired at a general level (e.g., a common generative rule) that can be extended to other related environ-
ments. In our model, such understanding about the common generative rule is captured by �̂ , which reflects the 
participant’s understanding of the spatially-correlated feature of the environment. Among the parameters of the 
UCB + S model, �̂ was the only parameter that improved significantly in the pair condition (i.e., was closer to the 
true environmental � = 1.5) over the solo condition (Fig. 3c), suggesting that paired participants had acquired 
some insights about the common rule underlying the reward landscapes.

Furthermore, among the four parameters, �̂ was again the only parameter that was correlated (Fig. 4a) and 
converged significantly within real pairs (as compared to the shuffled pairs: Fig. 4b; and to the nominal pairs: Sup-
plementary Fig. S8). This result indicates that the social interaction between decision makers played an essential 
role in developing insights about the generative rule. In other words, across-task learning may be achieved as a 
kind of collective intelligence, emerging through reciprocal interactions of learning with a partner, rather than 
one-way observational  learning37–39.

There are several limitations in our study that should be addressed in future research. Firstly, while our results 
showed that social interaction opportunities facilitated across-task learning by refining participants’ understand-
ing of the generative rule, the identity of the critical interaction element in this process remains unknown. There 
are several dimensions that we believe warrant future investigation. For instance, the amounts or kinds of infor-
mation exchanged during interaction may be critical. In this experiment, we informed the paired participants 
only of the partner’s behavioral choice in the preceding round. In the real world, however, people sometimes 
have access to the actual outcomes (e.g., the rewards) from others’ choices as well (see Goldstone, Ashpole, and 
Roberts (2005)27 for effects of visibility/invisibility of choices/rewards of other individuals under competitive 
group foraging). It is important to examine how and when the amounts/kinds of social information may facilitate 
across-task learning (e.g., is more information or less information better for understanding of the generative 
 rule7; how do people incorporate the history of others’ behavioral choices in their own valuation of the  options29). 
We also conjecture that the emergence of division of labor via coordination of collective  search40,41 may be of 
key importance. As we observed in the experiment, individuals exhibit various search strategies, psychological 
propensities for directed or random exploration, risk tolerance, and so on under the exploration–exploitation 
tradeoff. When grouped, people can potentially capitalize on such individual differences for efficient information 
 search42,43, which may facilitate across-task learning in multiple related environments. To test this conjecture, we 
will need to develop a fine-grained computational model of trial-by-trial interaction processes and test its valid-
ity by manipulating the social process experimentally, for example by introducing artificial “bots” as interaction 
 partners39,44. Future research incorporating these techniques seems promising for illuminating the interaction 
elements that are critical for across-task learning in groups.

Secondly, the key environmental parameter, � , that generated each search space was fixed to be the same 
(= 1.5) across the sessions in this experiment. Thus, our results remain as a demonstration with the specific 
spatial correlation employed in the experiment. To see whether our observations may be robust across broader 
situations, future research should vary the value of � systematically and test the hypothesis across different 
 values18–20. Relatedly, we estimated a participant’s subjective understanding about the generative rule, �̂ , by col-
lapsing across all six sessions. This analysis precluded seeing how �̂ may have evolved across the six sessions. 
We actually tried to estimate �̂ separately for the first half (sessions 1–3) and the second half (sessions 4–6), but 
neither parameter estimation converged due to the small number of samples (25 × 3 = 75 trials). In future work, 
increasing the number of trials per session would be desirable to address this point, although this may introduce 
other problems such as boredom or habituation among participants.

Finally, introducing other environmental structures will be important to further test the possibility of across-
task learning through social interaction. Here we have used a spatially-correlated structure. On the other hand, 
some previous research on within-task learning through social interaction has used temporally-correlated 
structure (a “restless” MAB), whereby mean values of options are autocorrelated over time (i.e., more similar-
ity between nearer time  points24,45). Comparing the spatially-correlated and temporally-correlated structures 
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for emergence of across-task learning may provide a more comprehensive picture about its robustness and/or 
boundary conditions.

In this article, we have shown that social learning through real interaction can facilitate across-task learn-
ing in a large search space by improving the participant’s understanding of a common generative rule across 
environments. To our knowledge, this is the first study that has demonstrated the empirical relation between 
social learning opportunities and across-task learning. In the social learning literature, it has repeatedly been 
shown that social information is actively used through various social learning strategies to promote within-task 
learning about the immediate  environment21,22. However, almost no research has addressed whether and how 
the use of social information may promote higher-level understanding about generative rules to enable across-
task  learning28. We believe that investigating how collective intelligence can emerge at a higher level beyond the 
immediate task environment is critical for modern societies, where decision makers can be overwhelmed by 
large amounts of locally useful yet fragmentary information.

Methods
Participants. Participants (n = 121; 61 female; mean ± s.d. age: 21.4 ± 0.2 years) were recruited from the sub-
ject pools of Hokkaido University (Hokkaido, Japan) and the University of Tokyo (Tokyo, Japan). For about 
70 min of participation, they were paid 1,479 yen (s.d.: 289.58 yen) on average (about 13 ± 2.5 USD), including an 
additional performance bonus. The experiment was approved by the Ethics Committee of Hokkaido University 
and that of the University of Tokyo, in accordance with the Declaration of Helsinki. Written informed consent 
was obtained from each participant before the experiment, and no deception was involved. Participants were 
instructed to collect as many points as possible to increase their rewards. Three participants were not able to 
participate in the last three sessions due to failures of the computer system; thus only the data from their first 
three sessions were included in the analysis.

Design & task. Participants were randomly assigned to the solo condition (n = 47) or the pair condition 
(n = 74). Upon arrival at the laboratory, each participant was seated in a private soundproof cubicle and was not 
able to communicate with others.

In the experiments, they worked on a multi-armed bandit (MAB) task with 165 options. As seen in Fig. 1, 
the 165 options in the search space were arrayed in a 11 × 15 grid on a computer screen. All participants first 
completed a 10-trial practice session individually, followed by the main sessions. Participants worked on a total of 
six unique environments, the order of which were randomized across participants (see Fig. 1 caption for details). 
Participants made 25 choices (i.e., 25 trials) for each environment, and afterwards were asked to predict reward 
values for 16 options, which were randomly selected from the set of unchosen options in the environment. Of 
the 16 options, eight were sampled from the higher-reward area in which the reward was equal to or higher 
than 0.5 in the min–max normalization scale, and the other eight were sampled from the lower-reward area (see 
Supplementary Fig. S11). As a measure of the accuracy of subjective estimates, we calculated the mean absolute 
deviation of the participant’s estimates from the true reward values.

Procedure. Before starting, participants were explicitly informed that the expected rewards from “boxes” in 
the environment would be spatially correlated (i.e., rewards from more nearby boxes would be more similar), 
but the exact magnitude of the correlation (i.e., the generative rule) was not specified. We generated six environ-
ments in advance from an RBF kernel (see Eq. (1)) with � = 1.5. In the main sessions, participants worked on 
these six environments in a randomized order (Fig. 1). For each of the 25 trials under each environment, partici-
pants chose one of the 165 boxes and received a point reward. The point reward was randomly generated from a 
distribution unique to the box with normally distributed noise, ε ∼ N(0, 1) . The point rewards from the chosen 
boxes were kept visible until the end of the 25 trials. If the same box was chosen several times, the reward display 
was updated with the most recent reward. For each of the six environments, we rescaled point-reward values to 
range from 0 to a maximum value randomly generated from a uniform distribution [80, 120]. Thus, the value of 
the globally optimal box was different across the six environments, so that participants could not guess the value 
from previous experience in another environment. In the pair condition, participants could observe the location 
of the box chosen by the partner in the preceding trial, but not the reward value obtained by the partner.

Statistical analyses. We introduced generalized linear mixed models (GLMMs) in the following three 
analyses. First, to analyze how the solo individuals and the pairs performed over the course of sessions and trials 
(Fig. 2), we used a hierarchical Bayesian Gaussian regression model with a random effect of person (participant 
ID). The dependent variable was the reward value obtained from each choice. The model included fixed effects 
of experimental condition (0: solo, 1: pair), session (standardized), trial (standardized), and all two-way interac-
tions between the fixed effects (Supplementary Table S1).

Second, to test whether the experimental condition and session progress affected the proportions of unique 
choices in the first, second, and third stages of the task, we used a hierarchical Bayesian binomial regression 
model with a random effect of person. The dependent variable was the number of unique choices a participant 
made, and fixed effects were the condition (0: solo, 1: pair), session (standardized), and all two-way interactions 
between the fixed effects.

Computational models. We used the GP-UCB  model30, with an added component to analyze the effects of 
social learning. The model assumes that, through Gaussian process regression, participants update their current 
knowledge of the spatial distribution of rewards; they make predictions about the expected mean m(x) and the 
associated uncertainty s(x) (estimated as a standard deviation) for each option x, conditioned on the previous 
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observations of rewards yt =
[

y1, y2, . . . , yt
]T at inputs Xt = [x1, x2, . . . , xt] . The estimates about m(x) and s(x) 

at trial t are provided in the form of the posterior distribution of the 165-dimensional Gaussian distribution and 
are updated trial-by-trial according to the Bayes rule. The covariance between options x and x′ in the Gaussian 
process prior are set by using a radial basis function (RBF) kernel kRBF

(

x, x′
)

 as below:

where the length-scale parameter � (> 0) controls how quickly the spatial correlation of rewards between options 
decay towards zero. A smaller � means a more rapid decay in correlation with increase in distance between two 
options. To distinguish from the true � used to generate the actual reward function of the environment, we denote 
the participant’s subjective belief about � as �̂ . Hereafter, � is used to denote the objective rule for generating the 
environment, and �̂ is used to denote the subjects’ belief estimated by the model fitting. We regard the parameter 
�̂ as a participant’s understanding about the generative rule for the environment.

UCB sampling provides the value (utility) function of options at each trial, based on estimates about mean 
rewards m(x) and the underlying uncertainty s(x) from Gaussian process regression:

where β(> 0) is a free parameter governing how much uncertainty is valued, relative to capitalizing on expec-
tations of reward. Therefore, β can be interpreted as the uncertainty premium. Furthermore, to consider the 
effects of social information in the pair condition (see UCB + S model in Fig. 3a,b), we added value accruing 
from imitation to the UCB value, producing an overall valuation function V(x):

where γ is a free parameter governing the magnitude of imitation bias (Fig. 3a), and xpartner is the partner’s choice 
in the preceding trial. Because social learning opportunities only informed the participant about the location 
of the partner’s preceding choice and not the actual reward value obtained by the partner (i.e., a ‘frequency-
dependent’ rather than ‘payoff-based’ social learning  strategy21), we assumed in Eq. (3) that the vicarious reward 
value of the partner’s preceding choice is  122 and those of neighboring options decay according to the distance 
from the partner’s choice, denoted by kRBF

(

x, xpartner
)

 ( 0 < kRBF
(

x, xpartner
)

≤ 1).
The overall valuation function was combined according to a softmax choice rule, producing choice prob-

abilities of each option at each trial:

where τ(> 0) is a free parameter governing the softmax temperature. τ reflects random exploration. We call this 
model the UCB + S model (Fig. 3a,b). By a series of simulations prior to the experiment, we confirmed that the 
four free parameters of the UCB + S model (i.e., subjective belief about the generative rule �̂ , uncertainty premium 
β , random exploration τ , and the imitation bias γ ) are distinguishable from each other and robustly recoverable 
(see the section on parameter recovery below).

Model fitting procedure. Each model was fitted separately to the behavioral data of each participant. We 
used maximum likelihood estimation (MLE) with a Differential Evolution  algorithm46,47 to estimate free param-
eters. From the log-likelihood, we derived the Akaike Information  Criterion34 (AIC) defined as

where k is the number of free parameters. All fitting procedures were implemented using a set of packages 
in Python (v3.7.6). We used Scipy.optimize (v1.5.2) for MLE, and scikit-learn (v0.23.2) for Gaussian process 
regression.

Parameter recovery and comparison between parameters. To ensure that each parameter in the 
selected model (UCB + S model) robustly captured separate and distinct phenomena, we conducted a parameter 
recovery  test48 (see Supplementary Information). As seen in Supplementary Fig.  S9, for all free parameters, 
the generated and the recovered parameter estimates were highly correlated. Also, as seen in Supplementary 
Fig. S10, the off-diagonal elements of the correlation matrix were poorly correlated (at most r = 0.12), indicat-
ing that the free parameters in the UCB + S model were independently estimated from each other in the fitting 
procedure. The good parameter discovery displayed by the winning model indicated that their estimates are 
meaningful and can be statistically compared. As assumptions about normal distributions were not verified, we 
used nonparametric tests for comparing model parameters. A LMM with a random effect of pair was used for 
comparing parameters between the solo and pair conditions.

Data availability
Anonymized participant data, model simulation data, and the codes used for all models and analyses are avail-
able at https:// osf. io/ 9vayd/.

(1)kRBF
(

x, x′
)

= exp

(

−

∥

∥x − x′
∥

∥

2

�

)

,

(2)UCB(x) = m(x)+ β · s(x),

(3)V(x) = UCB(x)+ γ · kRBF
(

x, xpartner
)

,

(4)P(x) =
exp(V(x)/τ)

∑165
j=1 exp

(

V
(

xj
)

/τ
) ,

(5)AIC = −2LogLik + 2k

https://osf.io/9vayd/


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8047  | https://doi.org/10.1038/s41598-022-12126-3

www.nature.com/scientificreports/

Received: 18 January 2022; Accepted: 4 April 2022

References
 1. Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploita-

tion and exploration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 933–942 (2007).
 2. Hills, T. T. et al. Exploration versus exploitation in space, mind, and society. Trends Cogn. Sci. 19, 46–54 (2015).
 3. Sutton, R. S. & Barto, A. G. Reinforcement Learning, Second Edition: An Introduction (MIT Press, London, 2018).
 4. Derex, M. & Boyd, R. Partial connectivity increases cultural accumulation within groups. Proc. Natl. Acad. Sci. U. S. A. 113, 

2982–2987 (2016).
 5. Hoppitt, W. & Laland, K. N. Social Learning (Princeton University Press, 2013).
 6. Mason, W. & Watts, D. J. Collaborative learning in networks. Proc. Natl. Acad. Sci. USA 109, 764–769 (2012).
 7. Toyokawa, W., Kim, H.-R. & Kameda, T. Human collective intelligence under dual exploration-exploitation dilemmas. PLoS ONE 

9, e95789. https:// doi. org/ 10. 1371/ journ al. pone. 00957 89 (2014).
 8. Toyokawa, W., Whalen, A. & Laland, K. N. Social learning strategies regulate the wisdom and madness of interactive crowds. Nat. 

Hum. Behav. 3, 183–193 (2019).
 9. Kendal, R. L. et al. Social learning strategies: bridge-building between fields. Trends Cogn. Sci. 22, 651–665 (2018).
 10. Kattner, F., Cochrane, A., Cox, C. R., Gorman, T. E. & Green, C. S. Perceptual learning generalization from sequential perceptual 

training as a change in learning rate. Curr. Biol. 27, 840–846 (2017).
 11. Castañón, S. H. et al. A mixture of generative models strategy helps humans generalize across tasks. Preprint at https:// www. biorx 

iv. org/ conte nt/ 10. 1101/ 2021. 02. 16. 43150 6v2 (2021).
 12. Flesch, T., Balaguer, J., Dekker, R., Nili, H. & Summerfield, C. Comparing continual task learning in minds and machines. Proc. 

Natl. Acad. Sci. USA 115, E10313–E10322. https:// doi. org/ 10. 1073/ pnas. 18007 55115 (2018).
 13. Menghi, N., Kacar, K. & Penny, W. Multitask learning over shared subspaces. PLoS Comput. Biol. 17, e1009092. https:// doi. org/ 

10. 1371/ journ al. pcbi. 10090 92 (2021).
 14. Cleeremans, A. & McClelland, J. L. Learning the structure of event sequences. J. Exp. Psychol. Gen. 120, 235–253 (1991).
 15. Elman, J. L. Finding structure in time. Cogn. Sci. 14, 179–211 (1990).
 16. Griffiths, T. L. et al. Doing more with less: Meta-reasoning and meta-learning in humans and machines. Curr. Opin. Behav. Sci. 

29, 24–30 (2019).
 17. Kemp, C., Perfors, A. & Tenenbaum, J. B. Learning overhypotheses with hierarchical Bayesian models. Dev. Sci. 10, 307–321 (2007).
 18. Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M. & Gershman, S. J. Compositional inductive biases in function 

learning. Cogn. Psychol. 99, 44–79 (2017).
 19. Schulz, E., Wu, C. M., Ruggeri, A. & Meder, B. Searching for rewards like a child means less generalization and more directed 

exploration. Psychol. Sci. 30, 1561–1572 (2019).
 20. Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D. & Meder, B. Generalization guides human exploration in vast decision 

spaces. Nat. Hum. Behav. 2, 915–924 (2018).
 21. McElreath, R. et al. Beyond existence and aiming outside the laboratory: estimating frequency-dependent and pay-off-biased 

social learning strategies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3515–3528 (2008).
 22. Biele, G., Rieskamp, J., Krugel, L. K. & Heekeren, H. R. The neural basis of following advice. PLoS Biol. 9, e1001089. https:// doi. 

org/ 10. 1371/ journ al. pbio. 10010 89 (2011).
 23. Najar, A., Bonnet, E., Bahrami, B. & Palminteri, S. The actions of others act as a pseudo-reward to drive imitation in the context 

of social reinforcement learning. PLoS Biol. 18, e3001028. https:// doi. org/ 10. 1371/ journ al. pbio. 30010 28 (2020).
 24. Toyokawa, W., Saito, Y. & Kameda, T. Individual differences in learning behaviours in humans: Asocial exploration tendency does 

not predict reliance on social learning. Evol. Hum. Behav. 38, 325–333 (2017).
 25. Miu, E., Gulley, N., Laland, K. N. & Rendell, L. Innovation and cumulative culture through tweaks and leaps in online program-

ming contests. Nat. Commun. 9, 2321. https:// doi. org/ 10. 1038/ s41467- 018- 04494-0 (2018).
 26. Derex, M., Bonnefon, J.-F., Boyd, R. & Mesoudi, A. Causal understanding is not necessary for the improvement of culturally 

evolving technology. Nat. Hum. Behav. 3, 446–452 (2019).
 27. Goldstone, R. L., Ashpole, B. C. & Roberts, M. E. Knowledge of resources and competitors in human foraging. Psychon. Bull. Rev. 

12, 81–87 (2005).
 28. Kameda, T., Toyokawa, W. & Tindale, S. Information aggregation and collective intelligence beyond the wisdom of crowds. Nat. 

Rev. Psychol. https:// doi. org/ 10. 1038/ s44159- 022- 00054-y (2022).
 29. Roberts, M. E. & Goldstone, R. L. EPICURE: Spatial and knowledge limitations in group foraging. Adapt. Behav. 14, 291–313 

(2006).
 30. Schulz, E., Speekenbrink, M. & Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting func-

tions. J. Math. Psychol. 85, 1–16 (2018).
 31. Zajkowski, W. K., Kossut, M. & Wilson, R. C. A causal role for right frontopolar cortex in directed, but not random, exploration. 

Elife 6, e27430. https:// doi. org/ 10. 7554/ eLife. 27430 (2017).
 32. Schwartenbeck, P. et al. Computational mechanisms of curiosity and goal-directed exploration. Elife 8, e41703. https:// doi. org/ 10. 

7554/ eLife. 41703 (2019).
 33. Sadeghiyeh, H. et al. Temporal discounting correlates with directed exploration but not with random exploration. Sci. Rep. 10, 

4020. https:// doi. org/ 10. 1038/ s41598- 020- 60576-4 (2020).
 34. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
 35. Boyd, R. & Richerson, P. J. Culture and the Evolutionary Process (University of Chicago Press, 1988).
 36. Laland, K. N. Social learning strategies. Learn. Behav. 32, 4–14 (2004).
 37. Csibra, G. & Gergely, G. Natural pedagogy. Trends Cogn. Sci. 13, 148–153 (2009).
 38. Vélez, N. & Gweon, H. Learning from other minds: an optimistic critique of reinforcement learning models of social learning. 

Curr. Opin. Behav. Sci. 38, 110–115 (2021).
 39. Kuroda, K. et al. Bilateral (but not unilateral) interaction creates and cements norms at the covert psychophysical level: A behavioral 

and an fMRI study. Preprint at https:// psyar xiv. com/ sk9eq/ (2020).
 40. Kuroda, K. & Kameda, T. You watch my back, I’ll watch yours: Emergence of collective risk monitoring through tacit coordination 

in human social foraging. Evol. Hum. Behav. 40, 427–435 (2019).
 41. Andrade-Lotero, E. & Goldstone, R. L. Self-organized division of cognitive labor. PLoS ONE 16, e0254532. https:// doi. org/ 10. 1371/ 

journ al. pone. 02545 32 (2021).
 42. Knudsen, T., Marchiori, D. & Warglien, M. Hierarchical decision-making produces persistent differences in learning performance. 

Sci. Rep. 8, 15782. https:// doi. org/ 10. 1038/ s41598- 018- 34128-w (2018).
 43. Kim, H.-R., Toyokawa, W. & Kameda, T. How do we decide when (not) to free-ride? Risk tolerance predicts behavioral plasticity 

in cooperation. Evol. Hum. Behav. 40, 55–64 (2019).
 44. Shirado, H. & Christakis, N. A. Locally noisy autonomous agents improve global human coordination in network experiments. 

Nature 545, 370–374 (2017).

https://doi.org/10.1371/journal.pone.0095789
https://www.biorxiv.org/content/10.1101/2021.02.16.431506v2
https://www.biorxiv.org/content/10.1101/2021.02.16.431506v2
https://doi.org/10.1073/pnas.1800755115
https://doi.org/10.1371/journal.pcbi.1009092
https://doi.org/10.1371/journal.pcbi.1009092
https://doi.org/10.1371/journal.pbio.1001089
https://doi.org/10.1371/journal.pbio.1001089
https://doi.org/10.1371/journal.pbio.3001028
https://doi.org/10.1038/s41467-018-04494-0
https://doi.org/10.1038/s44159-022-00054-y
https://doi.org/10.7554/eLife.27430
https://doi.org/10.7554/eLife.41703
https://doi.org/10.7554/eLife.41703
https://doi.org/10.1038/s41598-020-60576-4
https://psyarxiv.com/sk9eq/
https://doi.org/10.1371/journal.pone.0254532
https://doi.org/10.1371/journal.pone.0254532
https://doi.org/10.1038/s41598-018-34128-w


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8047  | https://doi.org/10.1038/s41598-022-12126-3

www.nature.com/scientificreports/

 45. Naito, A., Masuda, N. & Kameda, T. Social network and collective intelligence under non-stationary uncertain environment. In 
Advances in Cognitive Neurodynamics (VII) 263–264 (Springer Singapore, 2021).

 46. Mullen, K., Ardia, D., Gil, D., Windover, D. & Cline, J. DEoptim: AnRPackage for global optimization by differential evolution. J. 
Stat. Softw. 40(6), 1–26 (2011).

 47. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
 48. Wilson, R. C. & Collins, A. G. Ten simple rules for the computational modeling of behavioral data. Elife 8, e49547. https:// doi. org/ 

10. 7554/ eLife. 49547 (2019).

Acknowledgements
We thank T. Wisdom for helpful feedback. This study was supported by Japan Society for the Promotion of 
Science (20J20900 to A.N. and JP16H0632 to T.K.) and Japan Science and Technology Agency CREST (JPMJ-
CR17A4 (17941861) to T.K.). We appreciate support from the Center for Experimental Social Sciences at Hok-
kaido University and the UTokyo Center for Integrative Science of Human Behavior.

Author contributions
A.N. and T.K. designed the experiment. A.N. analyzed the data, built the computational models, and drew all 
figures. A.N., K.K., and T.K. wrote the paper. T.K. supervised the entire process of the study.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 12126-3.

Correspondence and requests for materials should be addressed to T.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.1038/s41598-022-12126-3
https://doi.org/10.1038/s41598-022-12126-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Insights about the common generative rule underlying an information foraging task can be facilitated via collective search
	Results
	Behavioral performance. 
	Exploration pattern. 
	Computational accounts of behavior. 
	Modelling results. 

	Discussion
	Methods
	Participants. 
	Design & task. 
	Procedure. 
	Statistical analyses. 
	Computational models. 
	Model fitting procedure. 
	Parameter recovery and comparison between parameters. 

	References
	Acknowledgements


