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A genome‑wide association study 
for melatonin secretion
Pi‑Hua Liu1,2,16, Gwo‑Tsann Chuang3,4,16, Chia‑Ni Hsiung5, Wei‑Shun Yang4,6, Hsiao‑Chia Ku7, 
Yi‑Ching Lin7, Yi‑Shun Chen7, Yu‑Yao Huang2,8, Chia‑Hung Lin2,9, Wen‑Yi Li10, Jou‑Wei Lin11, 
Chih‑Neng Hsu11, Juey‑Jen Hwang11,12, Karen Chia‑Wen Liao13, Meng‑Lun Hsieh12, 
Hsiao‑Lin Lee12, Chen‑Yang Shen14,15 & Yi‑Cheng Chang4,12,14*

Melatonin exerts a wide range of effects among various tissues and organs. However, there is 
currently no study to investigate the genetic determinants of melatonin secretion. Here, we 
conducted a genome‑wide association study (GWAS) for melatonin secretion using morning urine 
6‑hydroxymelatonin sulfate‑to‑creatinine ratio (UMCR). We initially enrolled 5000 participants from 
Taiwan Biobank in this study. After excluding individuals that did not have their urine collected in 
the morning, those who had history of neurological or psychiatric disorder, and those who failed 
to pass quality control, association of single nucleotide polymorphisms with log‑transformed 
UMCR adjusted for age, sex and principal components of ancestry were analyzed. A second model 
additionally adjusted for estimated glomerular filtration rate (eGFR). A total of 2373 participants 
underwent the genome‑wide analysis. Five candidate loci associated with log UMCR (P value ranging 
from 6.83 ×  10−7 to 3.44 ×  10−6) encompassing ZFHX3, GALNT15, GALNT13, LDLRAD3 and intergenic 
between SEPP1 and FLJ32255 were identified. Similar results were yielded with further adjustment 
for eGFR. Interestingly, the identified genes are associated with circadian behavior, neuronal 
differentiation, motor disorders, anxiety, and neurodegenerative diseases. We conducted the first 
GWAS for melatonin secretion and identified five candidate genetic loci associated with melatonin 
level. Replication and functional studies are needed in the future.

Melatonin is a pleiotropic hormone primarily synthesized and secreted from the pineal gland. Many other tis-
sues can also produce it, including leukocytes, bone marrow, gastrointestinal tract, neuronal cells, and  gonads1–3. 
Melatonin regulates various physiological processes, including circadian and seasonal rhythms, energy and 
glucose metabolism, antioxidant effects, anti-inflammatory actions, and immune  function1,3–6. There are many 
studies showing associations between melatonin and many disorders, including certain types of mental illness, 
cancer, cardiovascular disease, metabolic syndrome, type 2 diabetes, and  obesity6–11. Melatonin is secreted into 
the circulation following a circadian rhythm with peak levels at  night12. Aging was once thought to be directly 
associated with decreased melatonin secretion. However, there was no significant difference between circadian 
amplitude of the plasma melatonin between healthy elderlies and young  adults13. Instead of aging, the degree of 
pineal calcification was associated with melatonin excretion  amount14.
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Substantial evidence suggests genetic factors also play a significant role in melatonin  secretion15,16. Genome-
wide association study (GWAS) has been introduced as a powerful tool to identify common genetic variants 
of complex diseases or quantitative  traits17. Currently, there is no published GWAS regarding melatonin levels. 
Here, we conducted the first GWAS of urine melatonin metabolite, 6-hydroxymelatonin sulfate (aMT6s), which 
surrogate the circulating melatonin  level18.

Materials and methods
Study population. Five thousand individuals aged 30–70  years old and without cancer history were 
enrolled from Taiwan Biobank. Biological specimens, personal and clinical information as delinked data were 
used in this study. Individuals with a record of neurological disorders or psychiatric illnesses were excluded 
from this study as these conditions may affect melatonin  secretion19,20. This study was approved by the Institu-
tional Review Board of Chang Gung Medical Foundation and the Institutional Review Board of National Taiwan 
University Hospital. All subjects have provided written informed consent, and all methods were carried out in 
accordance with relevant guidelines and regulations.

Urine aMT6s and creatinine measurement. It is infeasible to draw blood samples from volunteers in 
the middle of the night for serum melatonin levels. Urinary aMT6s is the major metabolite of melatonin excreted 
from the  kidneys21. Thus, measuring morning urine aMT6s level is a practical alternative for serum melatonin 
level at  night18. For better correlation, spot urine aMT6s level should be creatinine-corrected to adjust the effect 
of variable urinary  dilution22. Urine aMT6s-to-creatinine ratio (UMCR) was calculated from urinary aMT6s 
divided by urine creatinine level. The concentration of aMT6s was measured in the urine of Taiwan Biobank sub-
jects by an enzyme-linked immunosorbent assay (ELISA) kit using the manufacturer’s protocol (Human Mela-
tonin Sulfate ELISA kit, Elab science). No significant cross-reactivity or interference between melatonin sulfate 
and analogs was observed. All standards via serial dilution were assayed in duplicates. The urine creatinine level 
was measured using a chemistry analyzer (AU5800, Beckman Coulter) with compensated Jaffe method.

Genotyping, quality control and imputation. Genotyping with the Axiom-Taiwan Biobank Array 
Plate (TWB chip; Affymetrix Inc, Santa Clara, California) was performed at the National Center for Genome 
Medicine of Academia  Sinica23. We use PLINK (version 1.9), an open-source whole-genome data analysis tool-
set, for quality control  procedures24. For SNPs with batch effect, their genotypes were set as missing. SNPs were 
excluded if missing genotype rate was high (> 5%), minor allele frequency was low (< 1%) or deviated from 
Hardy–Weinberg equilibrium (P value <  10−5). Individuals with discordant sex (self-reported sex incongruent 
to genetic sex, where genetic male or female was defined by X chromosome homozygosity estimate above 0.8 or 
below 0.2), high missing genotyping rate (> 5%), extreme heterozygosity rate (more than 5 standard deviations 
away from the mean) or high identity-by-descent score (≥ 0.1875) implying close relatedness were excluded 
from subsequent analyses. We computed the principal components on a linkage disequilibrium (LD)-pruned 
(r2 < 0.2) set of autosomal variants obtained by removing high-LD regions via PLINK. Genotype imputation was 
carried out with  SHAPEIT25 and  IMPUTE226. We applied1000 Genomes Project Phase 3 East Asian Ancestry 
as the reference population. For gene annotation, Genome Reference Consortium Human Build 37 was used. 
Imputed SNPs with low-quality scores (info  score27 lower than 0.8) were excluded. Indels were removed by using 
 VCFtools28.

Statistical analyses. Age and estimated glomerular filtration rate (eGFR) were expressed as mean and 
standard deviation. Urine aMT6s and UMCR were expressed as median and interquartile range. Logarithmic 
transformation of UMCR was done to normalize the data. GWAS analysis was carried out via PLINK v1.9 with 
an additive genetic model. We applied linear regression for analyzing associations between SNPs and log UMCR. 
Covariate adjustment in Model 1 included age, sex, and the first ten principal components of ancestry. eGFR was 
additionally adjusted in Model 2. We used a genome-wide significance threshold of P < 5.0 ×  10−829. Since this 
threshold is very conservative for small sample size, we set the level for suggestive significance at P < 5 ×  10−630,31. 
The Manhattan plot and quantile–quantile plot were generated by the qqman R  package32,33. Regional associa-
tion plots were made via  LocusZoom34. The proportion of phenotypic variance explained by SNP was calculated 
using the following items: effect size estimate of each minor allele on log UMCR, standard error of the effect size, 
sample size, and minor allele frequency for the  SNP35. The statistical power of this study was calculated using 
methods for quantitative  GWAS36.

Bioethics statement. This study was approved by the Institutional Review Board of Chang Gung Medi-
cal Foundation and the Institutional Review Board of National Taiwan University Hospital. All subjects have 
provided written informed consent and all methods were carried out in accordance with relevant guidelines and 
regulations.

Results
Five thousand subjects were enrolled from Taiwan Biobank initially. One withdrew from the study. 2361 did 
not have their urine collected in the morning and were excluded. 128 people had documented neurological 
or psychiatric illness. 137 individuals did not pass quality control procedures. After imputation and quality 
control, 7,897,704 autosomal SNPs remained. After log transformation of UMCR, data is still not normalized, 
but the shape of the histogram is better. We performed a GWAS analysis for log UMCR in the remaining 2373 
subjects. The characteristics of our study population are listed in Table 1. Age is not significantly associated with 
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log UMCR (Pearson’s r = 0.031; P = 0.137). There is no significant gender difference of log UMCR shown by T 
test (males 1.208, females 1.205; P = 0.857). eGFR is also not significantly associated with log UMCR (Pearson’s 
r = 0.001; P = 0.973). Variants with the strongest association in each region regarding to log UMCR are shown 
in Table 2. Melatonin production is known to be decreased with advanced chronic kidney  disease37; thus, we 
adjusted eGFR additionally in Model 2. There was no evidence of liver disorders in these 2373 individuals, and 
thus no additional model was generated. Figures 1 and 2 are the Manhattan plot and quantile–quantile plot. The 
genomic inflation factor, defined as the median of the observed chi-squared test statistics divided by the expected 
median of the corresponding chi-squared distribution, was 1.006. Regional association plots of the top SNPs 
are shown in Fig. 3. Five loci showed suggestive significance, with one within the ZFHX3 gene on chromosome 
16 (rs17681554; P = 6.83 ×  10−7, Fig. 3a), another near the GALNT15 gene on chromosome 3 (rs142037747; 
P = 7.82 ×  10−7, Fig. 3b), a third within the GALNT13 gene on chromosome 2 (rs7571016; P = 1.53 ×  10−6, Fig. 3c), a 
fourth within the LDLRAD3 gene on chromosome 11 (rs9645614; P = 2.90 ×  10−6, Fig. 3d), and the other between 
SEPP1 and FLJ32255 on chromosome 5 (rs6451653; P = 3.44 ×  10−6, Fig. 3e).

Proportion of variance explained by the individual SNPs are 0.98%, 1.01%, 1.08%, 0.95% and 0.92% for 
rs17681554, rs142037747, rs7571016, rs9645614 and rs6451653 respectively. The calculated power of this GWAS 
was 56%.

Discussion
In this first GWAS on melatonin secretion, we identified five suggestive loci associated with variation in log 
UMCR. rs17681554 is located within ZFHX3 (Zinc Finger Homeobox 3). ZFHX3 is a transcriptional regula-
tor which contains four homeodomains and seventeen zinc  fingers38. During neuronal differentiation, there 
is a preferential expression pattern of ZFHX3  isoforms39. In addition, circadian behavior alteration is shown 
in inducible conditional Zfhx3 knockout adult  mice40. Further studies are needed to elucidate a direct linkage 
between ZFHX3 and melatonin.

rs142037747 and rs7571016 are located near GALNT15 (polypeptide N-acetylgalactosaminyltransferase 15) 
and within GALNT13 (polypeptide N-acetylgalactosaminyltransferase 13), respectively. These two polypeptide 
N-acetylgalactosaminyltransferases of the same family catalyze initiation of mucin-type O-linked glycosylation 
by adding N-acetylgalactosamine to serine or threonine residues of the polypeptide  chain41,42. Glycosylation is 
associated with cell adhesion, signal transduction, molecular trafficking, and differentiation in central nervous 
system  development43. Whether and how GALNT15 or GALNT13 significantly affects melatonin levels remains 
determined.

rs9645614 is located within LDLRAD3 (low density lipoprotein receptor class A domain containing 3). LDL-
RAD3 alters the proteolysis of amyloid precursor protein and increases the production of amyloid beta-peptide 
(Aβ)44. The primary pathogenesis of Alzheimer’s disease (AD) has been attributed to the extracellular aggrega-
tion of Aβ45. Melatonin levels are altered in AD patients, possibly due to decreased suprachiasmatic nucleus cell 
number and functional pineal gland  volume46. Patients with neurodegenerative disorder such as Alzheimer’s 
disease exhibit reduced serum and cerebrospinal fluid melatonin levels comparing to age-matched  controls47,48. 

Table 1.  Descriptive characteristics of study subjects. Data are mean ± SD, median (IQR) or number (%), as 
appropriate. Age is at specimen collection. eGFR estimated glomerular filtration rate (by modification of diet in 
renal disease equation), UMCR urine aMT6s/creatinine ratio.

Characteristics

Total participants, N 2373

Age, year 50.75 ± 10.83

Males, N (%) 890 (37.51)

eGFR, ml/min/1.73  m2 108.20 ± 27.83

Urine aMT6s, ng/ml 20.41 (11.88–30.19)

UMCR, ng/mg 16.98 (10.32–27.33)

Table 2.  Association of genetic loci with log UMCR in a Taiwan Han Chinese population. Model 1 was 
adjusted for age, sex and the first ten principal components of ancestry. Model 2 was additionally adjusted for 
eGFR. SNP single nucleotide polymorphism, Chr chromosome. SNPs are imputed with high info score (0.831, 
0.988 and 0.946 for rs142037747, rs9645614 and rs6451653, respectively).

SNP Chr Position Nearest gene
UMCR increasing 
allele Other allele

UMCR increasing 
allele frequency

Model 1 Model 2

P value Beta (SEM) P value Beta (SEM)

rs17681554 16 73,016,768 ZFHX3 A C 0.804 6.86 ×  10−7 0.068 (0.014) 6.83 ×  10−7 0.068 (0.014)

rs142037747 3 16,121,712 GALNT15 G A 0.989 7.82 ×  10−7 0.256 (0.052) 7.73 ×  10−7 0.256 (0.052)

rs7571016 2 155,166,873 GALNT13 A G 0.617 1.53 ×  10−6 0.056 (0.011) 1.54 ×  10−6 0.056 (0.012)

rs9645614 11 36,159,947 LDLRAD3 A G 0.953 2.90 ×  10−6 0.124 (0.026) 2.91 ×  10−6 0.124 (0.026)

rs6451653 5 42,915,584 SEPP1-FLJ32255 G A 0.869 3.44 ×  10−6 0.080 (0.017) 3.42 ×  10−6 0.080 (0.017)
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Figure 1.  Manhattan plot of the GWAS results for log UMCR. SNPs are plotted on the x axis according to their 
chromosome position against association with log UMCR on the y axis. The red horizontal line represents the 
suggestive association threshold of P = 5.0 ×  10−6.

Figure 2.  Quantile–quantile plots of log UMCR.
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(A) rs17681554 (B) rs142037747

(C) rs7571016 (D) rs9645614

(E) rs6451653

Figure 3.  Regional association plots of log UMCR. (A) rs17681554, (B) rs142037747, (C) rs7571016, (D) 
rs9645614, (E) rs6451653.
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Our present unbiased genetic study, revealing the LDLRAD3 variant associated with melatonin secretion from 
pineal gland, provides additional evidence for potential mechanistic explanation in AD patients with altered 
melatonin levels.

rs6451653 is located between SEPP1 (selenoprotein P, or SELENOP) and pseudogene FLJ32255. SEPP1 serves 
as a phospholipid hydroperoxide glutathione peroxidase and thus protect the plasma membrane from oxidative 
damage and is expressed in all brain  tissues49. SEPP1 is secreted from astrocytes to neurons for prevention of 
oxidative  damage50. Several studies demonstrated that Sepp1 knockout mice displayed cerebellar ataxia, anxiety, 
impaired spatial memory, and widespread neurodegeneration in various  studies51–55. Also, deletion of SEPP1 in 
dogs resulted in central nervous system atrophy and cerebellar  ataxia56. It is convincing that the SEPP1 variant 
is associated with melatonin levels.

This study also showed borderline significance regarding the positive correlation between age and log UMCR. 
Since aging causes sarcopenia, the subsequently decreased creatinine excretion from urine increases the sub-
stance-to-creatinine ratio. Our results support the current concept that aging itself will not cause a decrease in 
melatonin secretion or excretion.

There was a concern that aMT6s excretion may be altered when renal function declines. A previous study 
enrolling 20 elderlies demonstrated that 24-h urine aMT6s was a reliable surrogate for plasma melatonin level, 
at least among individuals with GFR 24.6 ml/min or  above57. Our study confirmed that morning UMCR is not 
significantly correlated with eGFR, and adjusting eGFR in GWAS analysis essentially did not influence the results.

There are limitations to our study. First, it lacks replication of the result in another cohort. We searched in the 
UK Biobank, but melatonin as phenotype does not exist in the database. Moreover, the sample size is relatively 
small; thus, for the time being, these SNPs can only be seen as suggestive signals. The statistical power of this 
GWAS is only 56%, and therefore there are true loci that remain to be identified and validated. Also, there might 
be individuals receiving medications that can affect melatonin levels but not documented in the Taiwan Biobank 
data due to the imprecise nature of the questionnaire survey. However, production or selling of melatonin pills 
is illegal in Taiwan, and thus this important confounding factor may not be significant in our study.

In summary, we have performed the first GWAS regarding melatonin secretion to date. This GWAS identi-
fied five highly suggestive genetic loci encompassing genes that demonstrated potential functional connectivity 
between the genes-associated melatonin level and circadian behavior, neuronal differentiation, cerebellar ataxia, 
neurodegeneration and Alzheimer’s disease. Replication and functional studies of these genetic variations are 
warranted to understand better the regulation of melatonin secretion and related clinical disorders.

Data availability
Individual researchers may request to use the data for specific projects on a collaborative basis. Our data has 
been submitted to the NHGRI-EBI GWAS Catalog (accession ID: GCST90101875).
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