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Investigating the efficiency 
of dynamic vaccination 
by consolidating detecting errors 
and vaccine efficacy
Yuichi Tatsukawa1*, Md. Rajib Arefin1,2*, Shinobu Utsumi1 & Jun Tanimoto1,3

Vaccination, if available, is the best preventive measure against infectious diseases. It is, however, 
needed to prudently design vaccination strategies to successfully mitigate the disease spreading, 
especially in a time when vaccine scarcity is inevitable. Here we investigate a vaccination strategy 
on a scale-free network where susceptible individuals, who have social connections with infected 
people, are being detected and given vaccination before having any physical contact with the infected 
one. Nevertheless, detecting susceptible (also infected ones) may not be perfect due to the lack of 
information. Also, vaccines do not confer perfect immunity in reality. We incorporate these pragmatic 
hindrances in our analysis. We find that if vaccines are highly efficacious, and the detecting error is low, 
then it is possible to confine the disease spreading—by administering a less amount of vaccination—
within a short period. In a situation where tracing susceptible seems difficult, then expanding the 
range for vaccination targets can be socially advantageous only if vaccines are effective enough. 
Our analysis further reveals that a more frequent screening for vaccination can reduce the effect of 
detecting errors. In the end, we present a link percolation-based analytic method to approximate the 
results of our simulation.

Infectious diseases have been encumbering us for a long, claiming lots of lives besides financial burdens, and 
therefore is regarded as one of the major threats to human society1,2. Due to the high mobility in this modern age, 
communicable diseases can rapidly spread throughout the world. The ongoing Covid-19 pandemic has already 
caused grave catastrophes to the global public health and is continuing to do so. The near past has experienced 
outbreaks of several infectious diseases among which influenza is the most circulated one that recurrently appears 
with new strains3. It is much needed for policymakers to comprehend the spreading trends as well as possible 
consequences of the disease so that they can undertake a better plan to control the disease diffusion. Mathemati-
cal modeling can incorporate diverse features of the disease dynamics and then suggest the best use of control 
strategies among several alternatives, analyzing the short- and long-term effects by considering several constraints 
of the society4. Since the seminal contribution of Kermack and Mckendrick5 in 1927, it has become a standard 
practice to analyze disease dynamics through compartment modeling to predict the possible consequences and 
to compare the effects of different management strategies6. Vaccination, if available, is the most effective strategy 
for suppressing the disease spreading since it directly removes the fraction of the host population (susceptible) 
into the immune class via successful immunization7. When vaccines are unavailable, other protocols such as 
quarantine and isolation4,8,9, social distancing10–12, wearing masks13,14, border restrictions15,16, etc. have been used 
as alternative options to control or delay the peak of the epidemic so that health authorities get time to develop 
vaccines to stop the epidemic. Even if vaccines are developed, owing to supply and demand constraints, there 
is a possibility of vaccine shortages (for instance, Ref.17 for Covid-19). Therefore, it is much needed to strategi-
cally design the vaccination campaign to efficiently mitigate the disease spreading with minimizing social costs.

It is well known that infectious diseases spread through physical contact between individuals who are con-
nected by some social networks18,19. Over the last few years, it has become a common practice to model contact 
patterns20–22 on complex networks where each node corresponds to an individual, and links among nodes rep-
resent interactions among individuals23. On such networks, one can explore the disease dynamics through a 
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susceptible-infected-recovered (SIR) process by grouping individuals according to their states. If a susceptible 
individual has contact with an infected one, then the former becomes infected with a probability β . The infected 
individuals recover at a rate γ (day−1). In this work, with the aid of multi-agent simulation (MAS), we investigate 
such a process by dovetailing a ‘dynamic vaccination’ campaign on a scale-free network24 in which susceptible 
neighbors become vaccinated—before having any physical contact with the infected individual—to avoid the 
infection. However, due to the lack of information, errors can occur in tracing infected individuals or the neigh-
bors of infected people, or both. Our model takes into account such detecting errors. The model further assumes 
vaccine’s imperfectness to comply with reality. In the latter case, we assume that if any susceptible neighbor of 
an infected person misses out on immunity from vaccination, that particular neighbor will not be given another 
chance to vaccinate during the epidemic period. A similar line of research can be found in Ref.23 where—on a 
multiplex network—susceptible neighbors of an infected agent get vaccinated with a probability prior to physical 
contact with an infected patient. The authors mapped the ‘dynamic vaccination’ model into link percolation25,26 
and used a generating function27 framework to theoretically predict the steady-state behavior. The theoretical 
results were found to be in a nice agreement with that of agent-based stochastic simulations or multi-agent 
simulations. The basic difference between Ref.23 and the current framework is that the latter introduces the 
notion of several detecting errors (i.e., error in tracing infected agents, their neighbors, and both). In addition, 
we further take into account the provision of vaccine imperfectness to capture the reality. Percolation models of 
statistical physics have been extended into a flexible framework for predicting infectious disease dynamics19,28,29. 
Unlike other methods for networked populations, such as degree-based mean field approach for SIR process30–32 
in which deriving an analytic expression for the epidemic threshold or the final epidemic size is not always easy, 
the link percolation framework can solve a large class of standard epidemiological models on networks, giving 
exact solutions for the final size of the epidemic, presence of an epidemic, and other quantities of interests19. This 
fact has motivated us to present a link percolation-based model—dovetailing imperfect vaccination and error 
in tracing susceptible neighbors—to compare results arising from the theory and stochastic simulations. In this 
regard, we particularly follow the methodology presented in Refs.19,23,29. The analytic procedure gives us an exact 
expression for the vaccination coverage as well as the final epidemic size. On the ‘error versus vaccine efficacy’ 
phase plane, the results, concerning vaccination coverage and the final size of the epidemic, arising from the 
theoretical equations are generally found to be slightly less than that of the agent-based stochastic simulations. 
We argue that such a discrepancy appears due to the presence of super-hub agents in agent-based simulations.

The rest of the paper is organized as follows. The second section provides the detailed methodology of the 
work, focusing on both agent-based simulation and analytic approximation. The third section discusses results 
arising from simulations. This section also presents the comparative outcomes of simulations and the analytic 
approximation. Finally, last section delivers the concluding remarks of the work.

Methods
In this section, we present two different approaches to explore the dynamic vaccination model, namely agent-
based stochastic simulation, and a link percolation-based analytic approximation. In the following, we first 
provide a detailed illustration of the agent-based model (MAS) and then deliver an analytical approximation 
of the MAS model.

Multi‑agent simulation (MAS).  Disease spreading.  We consider an infectious disease that propagates on 
a Barabási-Albert or BA scale-free network24 containing N = 104 nodes with an average degree < k >= 8 . The 
disease diffuses through the network following the SIR process in which a susceptible individual, having physical 
contact with an infected person, becomes infected with a rate β (day−1 person−1). Also, the infected one recovers 
with the rate γ (day−1). The model assumes that anyone who recovered from the disease remains in the recov-
ered state forever. For the SIR process to be implemented in a time discretized MAS, we adopt the well-known 
Gillespie algorithm33, described by Fu et al. (see the supplementary material of34), to simulate the epidemiologi-
cal process. To account for the effect of population structure, one needs to adjust the epidemic parameters35. In 
this regard, following the procedure of Fu et al.34 as well as other subsequent works (such as36–38) we choose the 
transmission rate β such that the final epidemic size (FES), without vaccination, is that of the well-mixed popu-
lation. The FES ( R∞ ) for the well-mixed population (without vaccination) satisfies34, R∞ = 1− exp(−R0R∞) , 
where R0 is the basic reproduction ratio. Taking R0 = 2.5 and recovery rate γ = 1/3 day−1 (the average infectious 
period is 3 days), we can estimate the FES for the well-mixed case as 0.8962 with the corresponding transmission 
rate for the scale-free network as, β = 0.196 day−1 person−1. Note that we will use this β-value (corresponding to 
R0 = 2.5 ) throughout the paper unless we state it explicitly.

Dynamic vaccination policy.  The disease spreading starts with a random appearance of initially infected agents 
I0 (we set I0 = 5 throughout the work unless stated otherwise) on the network at time t = 0 . We assume that 
vaccines are available. The vaccination campaign starts at t = 1 , that is, one day after the onset of the epidemic. 
The first step is to identify susceptible people—staying in the first neighborhood of infected individuals—to 
have them vaccinated. This identification process is not always perfect, and the success or failure is determined 
by the influence of information noise as described below. The next step is to vaccinate the successfully detected 
susceptible individuals. Furthermore, as the vaccination is not perfect, a fraction of the vaccinee can still get 
infected due to vaccine failure. The same procedure will be implemented in the next time step. Note that the 
individual who has already been vaccinated is excluded from the vaccination target for the whole season. This 
process repeats until there is no infected individual in the system. Figure 1 demonstrates the schematic of the 
whole dynamical system, portraying two possible scenarios—success (panel (a)) or failure (panel (b)) to confine 
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the disease spreading—which can occur as a possible consequence of detecting error and vaccine failure under 
the dynamic vaccination policy.

Since, in addition to the disease mitigation, our aim is to assess the overall social cost or social performance 
of the dynamic vaccination policy, at the end of the epidemic we evaluate each individual’s gain based on her/
his health status. Suppose the cost of vaccination and infection are denoted by Cv and Ci , respectively with the 
condition Cv ≤ Ci . Thus, the relative cost of vaccination ( Cr ) is defined as, Cr =

Cv
Ci
. Without loss of generality, 

we can set Ci = 1 , which enables us to consider Cv ∈ [0, 1] , i.e., Cr ∈ [0, 1]. Hence a vaccinated person attaining 
perfect immunity (did not get infected), denoted by HV, incurs a vaccination cost Cr (i.e., payoff: −Cr ), whereas 
an infected yet vaccinated individual, denoted by IV, obtains a payoff of −Cr − 1 . A non-vaccinated but healthy 
person, denoted by NH, is associated with a payoff of 0, while an infected and non-vaccinated one, denoted by 
NI, is assigned a payoff of -1. Table 1 summarizes all possible gains according to the health status of individuals. 
Taking into account all possible payoffs, we finally estimate the average social payoff (ASP), as follows, to quantify 
the overall performance of the dynamic vaccination campaign for mitigating the disease spreading.

 where VC = (HV + IV) and FES = (IV + NI) denote the vaccination coverage and final epidemic size, respec-
tively. Note that a higher ASP indicates a lower social cost.

Vaccination efficacy and detecting error.  We examine the impacts of two parameters—namely vaccine efficacy 
and detecting error—on whether the dynamic vaccination policy can successfully mitigate the disease spreading. 
As for vaccine efficacy, we assume that vaccine grants perfect immunity to a fraction e ∈ [0, 1] (we name this 
parameter as ‘vaccine effectiveness’) of the vaccinators and no protection to the remainder. This is also called 
failure-in-take vaccine39. As for detecting errors, our model considers the following three types.

	 (i)	 Error type I (ErI ) : An infected individual cannot be traced with the probability ErI . However, if the 
infected one is identified, all of her/his susceptible neighbors will surely be detected and vaccinated.

(1)ASP = −Cr ∗HV − (Cr + 1) ∗ IV − NI = −Cr ∗ VC − FES,

Figure 1.   A schematic of the dynamic vaccination policy on a complex network. Here we portray two possible 
scenarios: success (panel a) or failure (panel b) to control the disease diffusion. The initial infection occurs at 
time t = 0 . The vaccination campaign starts in the next time step ( t = 1 ) by detecting susceptible individuals in 
the first neighborhood. However, all neighbors may not be traced due to information error (enclosed by orange-
colored dashed line). Detected neighbors (enclosed by green dashed line) are given vaccination. A portion of 
the vaccinee fails to immunize due to vaccine failure. These issues may cause the infection to spread through the 
network. Depending upon the extent of vaccine efficacy and detecting error, there is a possibility of successful 
(panel a) or failed (panel b) confinement of the disease spreading.

Table 1.   Classification of individual’s gain according to the health status.

Vaccination/state Healthy Infected

Vaccinated −Cr −Cr − 1

Not vaccinated 0 −1
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	 (ii)	 Error type II (ErN ) : In this assumption, there is no failure to detect infected individuals. Nonetheless, 
the failure may occur in recognizing their susceptible neighbors with the probability ErN .

	 (iii)	 Error type III (ErI&N ) : This case is a generalization of the above two errors. In contrast to error type 
II, this scenario takes into account the error in tracing infected individuals. If an infected person is 
detected, then—unlike error type I—some of the susceptible neighbors may not be detected for vaccina-
tion. Understandably, if the infected one is unnoticed, there is no question of searching for susceptible 
neighbors and consequently, they remain unidentified.

Clearly, error type III captures a more realistic scenario compared to the other two types (see Fig. 2). By 
assuming an error, for example, ErI&N = 0.5, we mean that an infected individual can be overlooked with the 
probability of 0.5; however, if the identification is successful, then each of the susceptible neighbors may fail to 
be detected with the probability of 0.5.

Taking into account the above factors, we run the agent-based simulation, following a similar procedure 
to that in3,36–38. The numerical results are obtained by taking an average over 100 independent episodes while 
changing the vaccine efficacy ( e or η ) and detecting errors ( ErI or ErN or ErI&N ) within the range from 0 up to 1.

A link percolation‑based analytic approximation model.  Inspired by the work in Ref.23, here we pre-
sent a link percolation25,26,29,40 model and use the generating function27 framework—taking into account imper-
fect vaccine (failure-in-take vaccine) and error in detecting susceptible neighbors—to approximate the results 
of stochastic simulations. Suppose a fraction ω of the susceptible neighbors, of an infected person, are being 
detected and thereby given vaccination. Consequently, the fraction 1− ω (can be regarded as detecting error) 
remains undetected due to the lack of information. Furthermore, we assume that a fraction e of the vaccinees 
acquires perfect immunity from vaccination. That is, the fraction of immunized vaccinee in the neighborhood of 
an infected node is ωe , which indicates that the fraction 1− ωe still remains susceptible. Hence, at each time step 
an infected agent infects a susceptible neighbor with the probability β(1− ωe) during a period of recovery time 
tr . Referring to23,29, we define the overall transmissibility Tβ ≡ Tβ(β , tr ,ω, e) as the probability that a susceptible 
neighbor becomes infected before the focal infected individual recovers, which is given by the sum

The term (1− ωe)(1− β) signifies the probability of remaining uninfected after each time step. In a similar 
way, we can define the transmissibility Tω ≡ Tω(β , tr ,ω) of vaccination which is the effective probability that 
a susceptible neighbor, of an infected agent, will be given vaccination within a period of time tr . This can be 
defined as23

(2)Tβ = (1− ωe)β�
tr
t=1[(1− ωe)(1− β)]t−1.

Figure 2.   An illustration of three types of detecting errors. In error type I, the failure may occur in tracing 
infected ones, but not in detecting the susceptible neighbors of an identified infected person. In error type II, 
there is no failure in detecting infected individuals. The error can only occur in recognizing the susceptible 
neighbors. On the other hand, error type III combines both type I and II. A failure to trace the infected ones 
causes the failure in detecting the susceptible neighbors. Nonetheless, if the infected one is identified, some of 
the neighbors may remain unnoticed (unlike type I) for vaccination.
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Since the current work does not consider vaccinating behaviors—which can be elucidated by vaccination 
game models34,41–47 where a highly efficacious vaccine can increase the chance of vaccination—the above prob-
ability (Eq. (3)) is independent of vaccine efficacy.

The SIR process follows a treelike structure in which branches of infection develop and expand throughout the 
network23. Such a process can be mapped into link percolation25,26 which allows us to use the generating function 
framework. Suppose f  is the probability that a branch of infection will expand throughout the network23. The 
expression for f  satisfies the following transcendental equation

where G1 =
∑kmax

k=kmin

kP(k)
�k� xk−1,with x ∈ [0, 1], is the generating function of the underlying branching 

process23,25,26.
Using above transmissibility parameters (Eq. (2–3)) and the expression for f  (Eq. (4)) in the generating 

function framework, we finally obtain (see Appendix B in SI for the detailed derivation) following equations for 
expressing the fractions of recovered (R, i.e., FES) and vaccinated (V) individuals, respectively

where Tβ
Tβ+eTω

 (or 
(

Tω
Tβ+Tω

)

 ) is the probability that a susceptible node becomes infected (or vaccinated) if its state 
is changed by one of its infected neighbors23. Also, G0 =

∑kmax
k=kmin

P(k)xk is the generating function of the degree 
distribution P(k)19,25,26.

Results and discussion
We choose model parameters focusing on an influenza type disease. However, it should be noted that the motiva-
tions and results of the model are not limited to influenza alone. It can be understood for other similar infectious 
diseases such as Covid-19. We summarize relevant parameter values in Table 2 which have been used throughout 
the simulations unless stated explicitly.

Impact of vaccine efficacy and detecting errors on dynamic vaccination.  Figure 3 demonstrates 
the outcomes of the dynamic vaccination campaign in terms of vaccination coverage (VC) and final epidemic 
size (FES) as a function of detecting error and vaccine efficacy in which we take into account three types of errors 
as discussed in “Vaccination efficacy and detecting error”. Results in panel (b) (Fig. 3) suggest that a moderate 
to a high level of effectiveness can ensure the disease suppression for a considerable detecting error. In the areas 
where the detecting errors (types I, II, and III) are quite high, the vaccine uptake level is quite low (blue regime 
enclosed by the yellow dotted line in panel (a) in Fig. 3), and thereby the dynamic vaccination campaign fails due 
to the high prevalence of the disease (red regime enclosed by yellow dotted line in panel (b) in Fig. 3). This means 
that due to the oversight of infectious persons and vaccination targets, the infection route cannot be blocked. 
Consequently, the disease emerges through the whole population. If the vaccine is less efficacious ( e ), then even 
a higher vaccine uptake (see the red region with lower effectiveness in panel (a) in Fig. 3) cannot guarantee 
the disease mitigation (a higher FES for a lower effectiveness in panel (b) in Fig. 3) which is quite conceivable. 
Contrarily, a highly efficacious vaccine requires less coverage (the blue region enclosed by the black dotted line 
in panel (a) in Fig. 3)—with a lower to moderate level of detecting error—to attain a disease-free situation (cor-
responding blue region enclosed by the black dotted line in panel (b) in Fig. 3). This is because an exceedingly 
efficacious vaccine can immediately cut off the infection route within a few time steps after detecting initially 
infected individuals (here we set I0 = 5 ). This indicates that the initial confinement of the disease is possible 
only when vaccines are highly efficacious, and detecting errors are not so high. However, if there are many initial 

(3)Tω = ω�
tr
t=1[(1− ω)(1− β)]t−1.

(4)f = 1− G1

(

1− Tβ f
)

,

(5)R =
Tβ

Tβ+eTω

(

1− G0

(

1− Tβ f
))

,

(6)VC =
Tω

Tβ+Tω

(

1− G0

(

1− Tβ f
))

,

Table 2.   Relevant parameters and their values used in multi-agent simulations. These values have been 
presumed throughout unless stated otherwise.

Network BA scale free24 with �k� = 8 and N = 10
4

Transmission rate β 0.196 day−1 person−1 corresponding to R0 = 2.534

Recovery rate γ 1/3 day−134

Initial infection I0 5(assumed)

Relative vaccination cost Cr 0.5(assumed)

Error in tracing infected individuals ErI [0,1]

Error in tracing susceptible
neighbors ErN

[0,1]

Error in tracing infected and
susceptible neighbors ErI&N

[0,1]



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8111  | https://doi.org/10.1038/s41598-022-12039-1

www.nature.com/scientificreports/

infections, for instance I0 = 500, that is, if the disease has already emerged with a greater degree, or if the disease 
transmissibility is quite strong, for example β = 0.6 with R0 = 5 (see Appendix C in SI), then the initial confine-
ment of the disease may not be possible. Fig. C in Appendix C shows that in such a situation, the regime for the 
less disease prevalence, on the detecting errors versus vaccine efficacy heatmaps, shrinks compared to that in 
Fig. 3b. Moreover, it requires a larger vaccine uptake (even with a greater efficacy) and fewer detecting errors, to 
control the disease contagion. Understandably, error type III (i.e., ErI&N ) imposes a greater possibility of disease 
diffusion than that of the other two types (i.e., ErI and ErN ). However, the patterns of the dynamics, arising from 
all error types, are almost comparable.

Frequency of implementing vaccination.  So far, we have presumed that the screening for the vaccina-
tion is conducted once per day, that is, the vaccination is administered once in a day. We now intend to examine 
the performance of the dynamic vaccination by varying the frequency of the screening process. In Fig. 4, we 
investigate the efficiency of the dynamic vaccination by varying the frequency of screening from low to high. 
More specifically, we set the frequency as time/day. Panels (*-i) up to (*-vi) in Fig. 4 chronologically show the 
results—as a function of the detecting error (caused by the failure to trace infected ones) and vaccine effective-
ness—when vaccination is implemented once per every three days (1/3), once per every two days (1/2), once 
per day (1/1), twice per day (2/1), thrice per day (3/1), and every �t (defined in Eq. (A2) in Appendix A of SI) 
time step per day, based on the Gillespie algorithm (described in Appendix A of SI). In particular, panel (*-vi) in 
Fig. 4 implies that the vaccination campaign is executed every time an agent changes its state, which represents 
the highest frequency of administering vaccination. The heatmaps from left to right demonstrate that the area of 
successful containment (blue regime in panels (a-*) and (b-*) of Fig. 4 where both FES and VC are low) expands 
as the frequency of vaccination surges. Interestingly, as the frequency of screening increases, the dynamic vac-
cination campaign can perform well even with a higher degree of detecting error (see blue regions above the 
yellow dotted lines in panels (b-iv) to (b-vi) in Fig. 4), especially when the vaccine is reasonably effective. This 
suggests that if the vaccination campaign is conducted more frequently, then—even though it is difficult to iden-
tify the vaccination targets—the chance for vaccination upsurges, which can eventually lead to a disease-free 
situation with an effective vaccine. This is why, we observe a relatively less sensitivity, along the detecting error, 
for the case of a highly frequent vaccination campaign (for instance, panel (*-vi) in Fig. 4). Contrarily, for a low 

Figure 3.   Stationary outcomes of the dynamic vaccination policy. Results are generated in terms of vaccination 
coverage (VC) and final epidemic size (FES) considering three error types. The dynamic vaccination can 
successfully mitigate the disease diffusion with a moderate to high level of vaccine effectiveness. A higher 
degree of detecting error causes a less vaccination coverage (blue region enclosed by yellow dotted line) and 
thereby, resulting in a higher disease prevalence (red region enclosed by yellow dotted line). Interestingly, a 
highly effective vaccine requires a less coverage (blue region enclosed by black dashed line in panel (a)) to 
attain a disease-free situation (corresponding blue region enclosed by black dashed line in panel (b)). Relevant 
parameter values are stated in Table 2.
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effective vaccine, although VC is considerably high, FES is still large. This suggests that a less effective vaccine 
fails to control the epidemic even with a higher frequency of vaccination campaign (see red regions in panels 
(a-iv)–(a-vi) and (b-iv)–(b-vi) in Fig. 4). It is worth noting that the average social payoff (ASP), which accounts 
for the cost of infection and vaccination to assess the overall performance of the dynamic vaccination, seems to 
improve with the frequency of vaccination campaign (see blue regions in panels (c-i)–(c-vi) in Fig. 4). Further-
more, a higher frequency of screening—with a highly effective vaccine—can reduce the time required to end the 
disease prevalence (for instance, see blue areas above yellow dotted lines in Fig. 4d(iv–vi).

Extending vaccination targets to the second neighborhood.  We now investigate whether—in 
addition to the first neighborhood—extending vaccination targets to the second neighborhood of an infected 
agent (if successfully detected) can outperform the default case (i.e., focusing on the first neighborhood only). 
The aim is to examine whether such an extension can improve the epidemic scenario when vaccines are less effi-
cacious, or the detecting errors are quite high. Since it is practically difficult to trace out all individuals in the sec-
ond neighborhood, we examine two cases: taking into account 5% (Fig. 5a-*) and 50% (Fig. 5b-*) of the second 
neighborhood (randomly) of an identified infected individual as the vaccination target. Note that in this case, 
we only consider the error in detecting infected individuals ( ErI ) as the other two error types possess almost 
similar dynamics. Figure 5 illustrates the results by subtracting outcomes focusing only on the first neighbor-
hood (i.e., the default case as in Fig. 3a,b) from that of the expansion to the second neighborhood (5% or 50%). 
Our discussion in this regard will be based on the comparative performance, quantified by the average social 
payoff (ASP), of both cases. The results indicate that the difference in ASP in Fig. 5(*-iii)—where the blue (red) 
color delineates a better (worse) ASP than the default case—varies over the detecting error ( ErI ) vs. effectiveness 

Figure 4.   Impact of the frequency of vaccination campaign. This figure illustrates the performance of the 
dynamic vaccination, as a function of the detecting error (error in detecting infected node-ErI ) and vaccine 
efficacy, with increasing (from left to right) the frequency of screening for vaccination. Here we set the frequency 
as the number of times the screening process is conducted per day(s), i.e., time/day. The higher frequency in 
screening process upsurges the possibility of vaccination. Consequently, the dynamic vaccination can work well 
even with a higher detecting error (blue areas above yellow dotted lines in panels (b, iv–vi)). Also, the higher 
frequency of screening—with highly effective vaccine—reduces the time duration (blue regions above yellow 
dotted lines in panels (d, iv–vi)) of the disease prevalence. Note that the time step �t is estimated according to 
the Gillespie algorithm described in Appendix A of SI. Relevant parameter values are mentioned in Table 2.
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heatmap although VC (FES) seems larger (smaller) in the extended neighborhood version (see panels (*-i) and 
(*-ii) in Fig. 5). We provide reasoning for such variations in ASP for three different scenarios. (i) Highly effective 
vaccine and low detecting error: In this case, ASP for the extended neighborhood is worse than the default case 
(red region in the upper left corner enclosed by green dotted line in panels (*-iii) in Fig. 5). In such a situation, 
FES in the default case (see Fig. 3b-*) is sufficiently low due to a highly effective vaccine with less detecting error, 
and thereby, extending the vaccination range requires ‘extra’ vaccinations, which accordingly worsen the ASP. 
Furthermore, D[FES]/VC = (FESVC=0 − FES)/VC(here FESVC=0 means the FES without vaccination), which 
quantifies the effect of reducing FES by a single vaccination dose, has deteriorated (red regions in Fig. 5*-v). 
This illustrates that it would not be worthy (concerning the social cost) of expanding vaccination targets if vac-
cines are highly effective, and infected people are being detected with less error. (ii) Less vaccine efficacy: The 
extended neighborhood case again yields less ASP than the default case (red region below the black dotted line 
in Fig. 5*-iii). In such a situation, due to inefficacious vaccines, the infection route cannot be cut off, even with 
expanding the vaccination range. Hence, extending vaccination targets to the second neighborhood would not 
be beneficial for this scenario. (iii) High e and high error: The expansion of vaccination targets now yields a 
better ASP than the default case (blue region enclosed by orange dotted line in Fig. 5*-iii). With highly effective 
vaccines, the expansion of the vaccination range makes it possible to reduce the infection spreading, even under 
the condition of a high detecting error ( ErI ). As a result, the number of infected people is decreased significantly 
(see corresponding blue regions in Fig. 5*-ii). Additionally, D[FES]/VC becomes better, that is, the vaccination 
efficiency in reducing FES upsurges (see the corresponding region in Fig. 5*-v). Thus, in this situation, it would 
be advantageous to expand vaccination targets to the second nearest neighbors, even with a high detecting error. 
Regarding the time until the end of the disease prevalence, extending vaccination targets requires less time to 
end the disease spreading only when vaccines are highly effective (see the blue region in Fig. 5*-iv).

Furthermore, Fig. 6 demonstrates the critical relative vaccination cost Cr∗ at which ASP obtained in the 
expansion strategy is equal to that in the default case, meaning that adopting the expansion strategy would be 
more beneficial for the society whenever Cr is less than Cr∗ . Corresponding to the scenarios (i) and (ii) described 
above, Fig. 6 shows that C∗

r  is almost zero (red region in panels (a, b) in Fig. 6) which indicates that the expansion 
strategy always increases the social cost no matter how cheap the vaccination cost is. In contrast, the advantageous 
situation is scenario (iii), where Cr∗ is almost 1.0, suggesting that the social cost can be minimized by expanding 
the vaccination range, regardless of the cost Cr(< C∗

r ≈ 1).

Figure 5.   Expansion of the vaccination target. Results are obtained by subtracting outcomes focusing only on 
the first neighborhood as the vaccination target (i.e., the default case as in Fig. 3a,b) from that of the expansion 
to the second neighborhood (covering 5% (upper panel) and 50% (lower panel)). Quantity of interests, from 
left to right, chronologically depict vaccination coverage (a-*), final epidemic size (b-*), average social payoff 
(c-*), total time until the end of the disease prevalence (d-*), and (e) the efficiency in reducing FES by a single 
vaccination dose. In the right most column, we define D[FES]/VC = (FESVC=0 − FES)/VC. In the case of 
ASP (panel (*-iii)), blue (red) stands for a better(worse) outcome in the extended range of vaccination targets. 
Obviously, it would require more vaccination coverage (yielding less FES) in the case of extended vaccination 
targets. With regard to the overall social gain (ASP defined in Eq. (1)), it would be beneficial to extend 
vaccination targets to the second neighborhood when vaccines are highly effective, and the detecting error is 
quite large (blue region enclosed by orange dotted line panel (*-iii)). The expansion to the second neighborhood 
would require less time to end the disease prevalence only when vaccines are highly efficacious (blue region in 
panel (*-iv)). The black dotted line in panels (*-v) depicts the boundary above which FES ≤ 0.45 . Below this 
line, the dynamic vaccination fails to confine the diseases spreading. Relevant parameters values are stated in 
Table 2.
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Stochastic simulation versus analytic approximation.  We finally compare results obtained from the 
analytic approximation (link-percolation model demonstrated in “A link percolation-based analytic approxi-
mation model”) and agent-based stochastic simulations (i.e., MAS). Note that the analytic approximation only 
captures the scenario with the error in detecting susceptible neighbors (i.e., ErN ). Panels (a-i) and (a-ii) of Fig. 7 
illustrate analytic approximations, in terms of VC and FES, of the stochastic simulations presented in panels 
(a-ii) and (b-ii) of Fig. 3. Comparing both results, we can perceive that the pattern of the dynamics in the analytic 
approximations is almost similar compared to the stochastic simulation albeit having some discrepancies. Panels 
(b-i) and (b-ii) in Fig. 7 depict such discrepancies by subtracting the results of stochastic simulations from that 
of the theoretical approximation. Overall, the theoretical prediction yields less FES than the simulation, which 
is caused by the difference in degree distribution between theory and the actual scenario (see Fig. 7c). Following 
Ref.48, we choose the degree distribution for the scale-free network as P(k) = 2m(m+1)

k(k+1)(k+2)
, where m is the half of 

the average degree. Also, in the generating function (i.e., G0 defined in Sect. 2.2) of the degree distribution, we set 
kmin = 4 and kmax = 312 to agree with the actual network configuration used in the simulation. Furthermore, 
the transmission rate β for the analytic approximation is estimated as 0.148 so that FES in the approximation 
framework, without vaccination, is that of the well-mixed population (details are given in Appendix D of SI). 
Compared to MAS, the approximation framework has a smaller proportion of Hub agents, especially nodes 
having degrees more than 100 (Fig. 7c). Hence, there is a relatively less chance of epidemic propagation from 
the analytic approximation. In addition, Fig. 7b–i reveals that the analytic approximation generally exhibits less 
vaccination coverage than MAS except for the case with high detecting error. The vaccination coverage depends 
upon the extent of detecting error and the total vaccination target. Since the approximation framework possesses 
fewer vaccination targets than that of MAS, with the same detecting error for both methods, the total number 
of vaccinators, per a single vaccination campaign, in the approximation framework is always smaller than MAS. 
Consequently, the former consumes less vaccination coverage as a whole. In contrast, in a high detecting error 
case, the identification of vaccination targets is hampered, to a greater scale in MAS, due to the presence of 
super-hub agents (i.e., agents having an extremely high degree). Since the impact brought by hub agents can be 
more significant in simulations, the total vaccination opportunities in MAS becomes lower than the analytic 
method.

Conclusion
Fighting against an epidemic or a pandemic requires strategic policymaking that can mitigate the disease spread-
ing taking into account various practical hindrances. The current Covid-19 pandemic has caused us to experi-
ence several obstacles—such as vaccine scarcity, vaccine efficacy, unconsciousness—in containing the infection 
spreading. The current work particularly takes into consideration some of these barriers and designs a dynamic 
vaccination strategy where susceptible neighbors of infected individuals are detected and given vaccination before 

Figure 6.   Examining the social benefit regarding the expansion of the vaccination target. The critical 
vaccination cost Cr∗ , as a function of detecting error and e, at which the ASP estimated in the expansion (to the 
second neighborhood) strategy (for vaccination) is equivalent to that in the default case (covering only the first 
neighborhood). Expanding vaccination targets makes the total social cost lower than the default case whenever 
Cr < Cr∗ . C∗

r ≈ 1 in the black regimes in both panels which demonstrates that expansion strategy can reduce 
the overall social cost in those scenarios. On the other hand, the red regions (in both panels) illustrate that 
C∗
r ≈ 0 , which means that it would not be beneficial to expand vaccination targets in those cases as Cr ≥ 0. 

Relevant parameters values are stated in Table 2.
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having any physical contact. Our purpose was to investigate whether such a policy can successfully cut off the 
infection route of disease while minimizing the overall social cost. Detecting infected as well as their susceptible 
neighbors cannot be flawless. Moreover, vaccines may not confer perfect immunity. Our model considers these 
pragmatic issues to demonstrate a more realistic picture.

It is worth stressing that although the model parameters (Table 2) are chosen focusing on an influenza type 
disease, the results are not limited to influenza alone. It can be understood within the context of other infectious 
diseases, such as Covid-19, as well since the motivation and background are almost similar. Our simulation 
reveals that the dynamic vaccination campaign can successfully diminish the disease diffusion as long as vac-
cines grant a moderate to high efficacy with a reasonable detecting error (Fig. 3a,b). In general, each error type 
exhibits almost a similar pattern of the dynamics although the degree of the impact caused by each type can be 
different. However, some of the findings could be affected by the change of parameters. For example, it is observed 
according to the parameter choice in Table 2 that if vaccines are highly efficacious, and the detecting error is low, 
it is possible to confine the disease spreading—by administering a less amount of vaccination—within a short 
period (Fig. 3a,b). Nonetheless, this phenomenon may not be possible under the condition of a stronger disease 
transmissibility, which can be quantified by a higher basic reproduction number, say R0 = 5 (see Appendix C 
in SI). We have found that in such a situation, the efficiency of the vaccination strategy in mitigating infections 
reduces significantly (see panel (d) in Fig. C in SI). Another aspect to be noted is that we have presumed the 
same recovery rate ( γ = 1/3 ) throughout the work (for simplicity). It is, however, conceivable that increasing 
the recovery rate, while keeping the transmission probability fixed, would decrease the epidemic threshold 
R0(= β/γ ) , and consequently, reduce the epidemic size. In such a scenario, the dynamic vaccination will perform 
even better than the current parameter setting.

As errors in detecting infected or susceptible neighbors cannot be entirely avoided in practice, we resort 
to remedy this issue indirectly by varying the frequency of employing vaccination and expanding vaccination 
targets from the first neighborhood up to a certain range of the second neighborhood. The chance for vaccina-
tion upsurges (thus, FES decreases) with the increase of the frequency of conducting vaccination campaigns, 
which accordingly reduces the impact of the error in detecting susceptible neighbors (Fig. 4). Such a situation 
inevitably grants a better average societal payoff (i.e., ASP quantified by the extent of VC and FES with associated 
costs); in other words, reduces the overall social cost. Furthermore, the expansion of the vaccination targets (of 
an infected person) has been found to be economically beneficial for society only when vaccines are effective, but 
the error in tracing susceptible neighbors is quite high (Fig. 5*-iii). Our results further suggest that expanding 
vaccination targets would not be worthwhile for a highly effective vaccine alongside a less detecting error (in 
identifying neighbors) because in such a case, focusing only on the first neighborhood—for vaccination—can 
efficiently diminish the disease spreading.

Finally, inspired by the work in23, we have presented an analytic approximation of the model using a link 
percolation-based generating function framework. This approach can greatly reduce the computational cost 
associated with agent-based stochastic simulations. In general, the analytic approximation provides an almost 

Figure 7.   Results obtained from the analytic method. Outcomes are generated from the analytic approximation 
(illustrated in Eqs. (2)–(6)) as a function of detecting error (error in detecting susceptible neighbors, ErN ) 
and vaccine efficacy e (panels (a-*)). Panel (b-*) demonstrates the difference in outcomes by subtracting 
results obtained in MAS (i.e., the corresponding panels (a-ii) and (b-ii) in Fig. 3) from that of the analytic 
approximation. The gap between the analytical prediction and stochastic simulation arises from the deviation 
in degree distribution (for BA scale-free network with < k >= 8 ) between theory and MAS. Note that the 
analytic approximation assumes the degree distribution as P(k) = 2m(m+1)

k(k+1)(k+2)
, where m is the half of the average 

degree48. Furthermore, we adjust the transmission rate β for the analytic method as β = 0.148 (see Appendix D 
in SI for more details). Other relevant parameters are stated in Table 2.
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similar pattern of the dynamics—about detecting error (to find neighbors) and vaccine efficacy—compared to 
that in MAS (multi-agent simulation) despite showing some discrepancies. We argue that such discrepancies 
arise due to the deviation in degree distribution between theory and simulation (Fig. 7c). More specifically, the 
actual network configuration in MAS contains more hub agents compared to the theory and accordingly, leads 
to a higher epidemic size (FES) than the analytical method.

The concept of dynamic vaccination in the current work postulates that an individual immediately obtains 
immunity right after an effective vaccination is administered, which can be regarded as an idealized assumption 
since, in reality, there is a certain time delay to start the immune system to work after vaccination. The inclusion 
of such a premise may demonstrate a more pragmatic context. Furthermore, all our analyses have been illustrated 
based on the scale-free network. However, the investigation on other networks (such as small-world49) could 
provide a more general impression of the current work. In addition, the work disregards the notion of human 
behaviors towards vaccination. However, in reality, behavioral attitude can alter outbreak trajectories of infectious 
diseases50,51. Therefore, it would be interesting to explore the inclusion of the behavioral aspect towards vaccina-
tion in the current context. More specifically, as the link percolation-based generating function framework can 
predict the steady-state behavior of the system in structured populations23, one fascinating extension could be 
the introduction of vaccinating behavioral dynamics (which is well depicted by vaccination game34,41–47) into 
that analytical framework.
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