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Modeling of wave run‑up 
by applying integrated models 
of group method of data handling
Amin Mahdavi‑Meymand1, Mohammad Zounemat‑Kermani2, Wojciech Sulisz1* & 
Rodolfo Silva3

Wave‑induced inundation in coastal zones is a serious problem for residents. Accurate prediction of 
wave run‑up height is a complex phenomenon in coastal engineering. In this study, several machine 
learning (ML) models are developed to simulate wave run‑up height. The developed methods are 
based on optimization techniques employing the group method of data handling (GMDH). The 
invasive weed optimization (IWO), firefly algorithm (FA), teaching–learning‑based optimization 
(TLBO), harmony search (HS), and differential evolution (DE) meta‑heuristic optimization algorithms 
are embedded with the GMDH to yield better feasible optimization. Preliminary results indicate 
that the developed ML models are robust tools for modeling the wave run‑up height. All ML models’ 
accuracies are higher than empirical relations. The obtained results show that employing heuristic 
methods enhances the accuracy of the standard GMDH model. As such, the FA, IWO, DE, TLBO, and 
HS improve the RMSE criterion of the standard GMDH by the rate of 47.5%, 44.7%, 24.1%, 41.1%, 
and 34.3%, respectively. The GMDH‑FA and GMDH‑IWO are recommended for applications in coastal 
engineering.

Wave-induced inundation in coastal zones is a very complex phenomenon of fundamental importance for many 
disciplines. The design of coastal areas and coastal zone management strongly depend on the storm and tide-
induced inundation studies. Moreover, wave-induced inundation is of fundamental importance for the erosion 
processes, the maintenance of beaches, and the biological processes in surges zones. Proper understanding of 
inundation and the prediction of flooding is crucial for hydraulic and coastal engineering and the sustainable 
development of coastal areas.

Coastal areas are very vulnerable zones to storm and tide-induced inundation. Wave-induced inundation 
may cause severe damage in these areas and the consequences of severe flooding are often fatal for the coastal 
zone population, which constitutes from 10 to 20% of the global population. In fact, presently about 40% of the 
world’s population lives within 100 km of the coast. One of the key elements describing storm and tide-induced 
inundation in coastal areas is a wave run-up height. Wave run-up is equal to the vertical distance of the water’s 
edge on a coastal structure or on the foreshore of the beach, which is varying with time. In Fig. 1, a schematic 
view of the run-up (R) process is shown.

In Fig. 1, a is the beach or structure slope, and SWL is the water level. Structure overtopping, dune erosion 
during storm  conditions1, and sediment transport in the coastal  zone2 are examples of some phenomena which 
the run-up processes may cause. In this respect, designing the protection structures in coastal areas cannot be 
made without considering the accurate prediction of the wave run-up parameters. Hence, the simulation of the 
general characteristics of the run-up is of great importance in coastal engineering.

In the past decades, numerous studies applied experimental  tests3–5 and numerical modeling for simulating 
and predicting the wave run-up in coastal regions. In recent years modeling complex and nonlinear problems 
in science and engineering using machine learning (ML) models have received widespread attention and, in 
general, the capability of these approaches has been confirmed. Selected recent applications of ML in coastal 
engineering are discussed below.

Chang and  Lin6 used an artificial neural network (ANN), harmonic model (HM), and global ocean tidal 
model (NAO.99b) to simulate tides at selected points. The comparisons of the results obtained by ANN with 
corresponding results obtained by applying HM and NAO.99b confirmed the superiority of the ANN model. 
Erdik and  Savci7 simulated wave run-up on armored rock slopes by applying Takagi–Sugeno (TS) fuzzy models. 
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The results showed that TS models provided better accuracy in simulating a run-up than the empirical methods 
of Van der Meer and  Stam8. Shiri et al.9 used an adaptive neuro-fuzzy inference system (ANFIS), ANN, linear 
regression, and autoregressive methods for modeling sea-level variations. The results confirmed the superiority of 
ML techniques in comparison with the regression methods. Bonakdar and Etemad-Shahidi10 used the M5 model 
tree, Takagi–Sugeno fuzzy model, and empirical formulae to simulate wave run-up on rubble-mound structures. 
The study showed that the M5 results were better than the corresponding results obtained by the application of 
the remaining methods.  Elbisy11 investigated the ability of multiple additive regression trees (MART) and ANN 
in the simulation of wave run-up. The results showed that MART is more accurate than ANN. Abolfathi et al.12 
used the M5 decision tree algorithm for predicting wave run-up. The study showed that the M5 method provides 
more accurate results than a regression-based model. Pourzangbar et al.13 simulated non-breaking wave-induced 
scour depth at breakwaters with genetic programming and ANN methods. The study indicated that ML methods 
provide better results than empirical relations. Zhang et al.14 predicted real-time tidal levels using an integrative 
grey-GMDH neural network. The results revealed that the applied method can predict real-time tidal levels with 
high accuracy. In another study, Wang et al.15 predicted seawater levels by developing a hybrid model of ANFIS 
and wavelet decomposition. The results showed that the integrated method improved the accuracy of ANFIS. Gao 
et al.16 developed a multi-blocks fuzzy cognitive map model for predicting the steady turning motion of ships. 
The results confirmed the high performance of the proposed algorithm. Zeinali et al.17 applied two recurrent 
ANNs for the prediction of shoreline changes at Narrabeen, Australia. The results confirmed a good accuracy 
of the applied recurrent ANNs. Rehman et al.18 applied ANN and the response surface methodology (RSM) for 
wave run-up prediction. The obtained results showed that both the ANN and RSM are appropriate methods for 
the prediction of wave run-up. Also, the study of Yao et al.19 conformed a good accuracy of ANN in simulating 
wave run-up.

Recently, the applications of meta-heuristic algorithms integrated with ML methods have been reported in 
many studies. Masoumi Shahr-Babak et al.20 applied hybrid GMDH-HS to predict the uplift capacity of suction 
caisson in clay. They reported that the hybrid model can predict the suction caisson uplift capacity with accept-
able accuracy. Najafzadeh et al.21 predicted bridge pier scour depth by developing several integrative GMDH 
methods. The study showed that particle swarm optimization (PSO) provides more accurate results than a genetic 
algorithm (GA) and gravitational search algorithm (GSA). Mahdavi-Meymand et al.22 used several meta-heuristic 
optimization algorithms to optimize ANFIS parameters to estimate the spillway aerator air demand in dams. 
They showed that hybrid models provide more accurate results than corresponding ML models. Dodangeh et al.23 
applied GA and harmony search (HS) algorithm to optimize GMDH and support vector regression parameters 
for flood-susceptibility prediction. The results showed that both the GA and HS algorithms improved the accu-
racy of GMDH and SVR. Sharafati et al.24 confirmed the good accuracy of ANFIS-BBO in the prediction of long 
contraction scour depth. Sharafati et al.25 used teaching–learning-based optimization (TLBO), biogeography-
based optimization (BBO), and invasive weed optimization (IWO) algorithms to optimize ANFIS parameters for 
the prediction of scour depth downstream of weirs. The results showed that ANFIS-IWO is a reliable technique 
for the prediction of scour depth.

Qaderi et al.26 developed a shuffled complex evolutionary (SCE) algorithm integrated with GMDH to predict 
bridge pier scour depth. The results showed a good performance of GMDH-SCE. Alizadeh et al.27 compared the 
performance of PSO, GA, and imperialist competitive algorithm (ICA) integrated with a support vector machine 
(SVM) for the estimation of drilling fluid density. The results showed the high performance of PSO in estimating 
drilling fluid density. Milan et al.28 applied three optimization algorithms, comprising particle swarm optimiza-
tion (PSO), gray wolf optimization (GWO), and Harris hawk optimization (HHO) integrated with ANFIS for 
predicting optimal groundwater exploitation. The results indicated that all optimization algorithms increase the 
ANFIS accuracy. Haghbin et al.29 developed support vector regression (SVR) integrated with IWO for predicting 
channel sinuosity. The results showed that IWO significantly increases the accuracy of SVR.

In this study, invasive weed optimization (IWO), firefly algorithm (FA), teaching–learning-based optimiza-
tion (TLBO), harmony search (HS), and differential evolution (DE) optimization techniques are embedded with 
GMDH to predict a two percent wave run-up height in coastal regions. It is worth noting that the applications 
of GMDH integrated with novel meta-heuristic models are scarce. Indeed, to the best knowledge of the authors, 
no study has ever developed and presented the application of hybrid models of GMDH-IWO for modeling 
problems in any field of research.

Methods
In this section, a brief review of empirical relations for the prediction of wave run-up as well as the description 
of GMDH and optimization algorithms are presented.

Figure 1.  A schematic presentation of wave run-up on the foreshore.
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Empirical relations. In coastal engineering, several different wave run-up values can be investigated, such 
as the mean value (R), the 33 percent value of the wave run-up i.e. the significant run-up (Rs), the two percent 
value of the wave run-up (R2%), etc. The mean run-up (R) can be calculated as the average run-up of all observed 
waves. However, the mean value is of limited interest for engineers and scientists. In this respect, other param-
eters might be used e.g. Rs, R2% and R10%. Note that Ri% refers to the run-up level reached and exceeded by i% of 
the incoming  waves30–36. Numerous studies have been conducted on the regular wave run-up on smooth and 
rough beaches.  Miche31 presented an equation to predict wave run-up for non-breaking waves:

where Rmax is the maximum vertical run-up, H is the wave height, and α is the beach slope.
Hunt37 presented empirical relations to predict wave run-up on impermeable slopes based on breaking wave 

shape in the surf zone. The equation for standing waves on a steep slope was proposed in the following form:

where Rmax may be calculated from:

in which ξ0 is the surf similarity parameter or Iribarren  number38, L0 is the deep-water wavelength

g is the gravitational acceleration and T is the wave period.
One of the first equations presented for estimating irregular wave run-up on mild uniform slopes (tanα ≤ 1/3) 

was proposed by  Wassing39:

Ahrens40 studied irregular wave run-up on smooth-impermeable slopes (1/4 ≤ tanα ≤ 1.1) and suggested 
two equations for breaking and non-breaking waves. Coastal Engineering  Manual41 analyzed  Ahrens40 data 
and proposed two relations for predicting irregular wave run-up.  Mase42 performed laboratory experiments 
on the irregular run-up on mild slopes (2° ≤ α ≤ 11.4°) and proposed an equation for estimating run-up due to 
breaking waves.

Van der Meer and  Stam8 suggested the following relations for estimating wave run-up on smooth slopes for 
irregular waves:

where Hs is the significant wave height, γ is the reduction factor that depends on various parameters such as 
roughness, shallow water conditions, oblique wave attack, berms, and ξmax is known as the Iribarren number 
corresponding to the maximum wave period.

In another study, Van der Meer and  Stam8 applied the regression model proposed by Van der  Meer3 and 
derived the following relations for predicting irregular wave run-up on permeable and impermeable slopes:

where ξm is the Iribarren number corresponding to the average wave period.
Schimmels et al.5 proposed the following relations:

where Hmo is the wave height, γp is the porosity coefficient, ξm−1,0 is the Iribarren number.
In this study, the formulas derived by Van der Meer and  Stam8, and Schimmels et al.5 are applied to determine 

the two percent wave run-up height.

Group method of data handling. The group method of data handling (GMDH) is a machine learning 
model belonging to artificial neural networks (ANNs), which was introduced by  Ivakhnenko43 for modeling 
complex systems. This method has been successfully applied in different fields of science and engineering. Simi-
lar to ANNs, the GMDH consists of neurons connected in different layers. In the GMDH network, the neurons 
in the next layer are produced as a combination of two neurons from the previous layer. Then, the output of each 
neuron is calculated by quadratic polynomial expressions, and the most effective neurons are selected to be con-
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nected to neurons in the next layer. In other words, the GMDH algorithm generates the structure of the network 
through successive generations of quadratic regression polynomials with two input variables or neurons. In 
Fig. 2, a schematic plan of a five-layer GMDH with effective and ignored neurons is shown.

The GMDH network is created and trained layer-by-layer and neuron-by-neuron. This strategy allows users 
to have access to the neurons’ information during the network training process. As can be seen in Fig. 2, in the 
second, third, and fourth layers, there are some ignored neurons. The ignoring of neurons and the selection of 
appropriate ones prevent the immense growth of the network. The number of ignored neurons in each middle 
layer is affected by the error evaluation criteria e.g. MSE criterion:

where N is the number of data, yp is the predicted output of neurons in each layer, and ym is the observed value. 
In the GMDH structure, contrary to conventional matrix structure, a number of mathematical equations are 
applied to speed up calculation  process44. The output of each neuron is calculated according to Volterra–Kol-
mogorov–Gabor (VKG) polynomial. The second-order polynomial is incorporated in the structure of  GMDH43 
and is used in this study as the transfer functions in each neuron. The second-order polynomial may be written 
in the following form:

where y is the output, (x1, x2) is the input vector, and c is the weighting coefficient. The intricacy of the neurons 
will be increased layer by layer, which causes that the final network is becoming  complex67. The weighting coef-
ficients are calculated using regression techniques:

where c represents the weighting coefficient vector, A denotes the following matrix:

and Y is the matrix of outputs:

in which m is the number of samples.
In this study, the number of layers is equal to 5. The maximum number of neurons in the next layer ( Ni+1

np  ) 
can be calculated by applying the following equation:
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Figure 2.  A schematic plot of GMDH structure with three hidden layers.
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where Ni
np is the number of neurons in the i layer. Substituting Ni

np equal to eight i.e. the same as the number of 
input variables in Eq. (14), Ni+1

np  results in 28. In this study, the maximum number of neurons in each layer was 
determined to be 10.

In summary, the following seven steps are taken to build the GMDH network (1) determining the GMDH 
structure-in this study 5 layers are considered for the network with a maximum of 10 neurons in each layer; (2) 
standardization of the data; (3) entering the data to the neurons of the next layer; (4) allocating the polynomial-
based fit to each neuron in layers based on the values of two neurons of the previous layer; (5) calculating weights 
for a polynomial—Eq. 11; (6) calculating the output of the neurons and selected appropriateness of them—Eq. 9; 
(7) move to the next layer and repeat the steps of 3 to 6 to create the entire GMDH network.

Hybrid technique. Instead of using the least-squares technique of GMDH, meta-heuristic optimization 
algorithms can be embedded with the GMDH model. This technique can be applied to optimize either the 
weighting coefficients in Eq. 10 or the structure of the network. In this study, meta-heuristic optimization algo-
rithms are used to optimize the weighting coefficients. The main difference between the general execution pro-
cedure of the standard GMDH and hybrid GMDH is the calculation process of the fifth step of the GMDH 
network mentioned in the previous section. In hybrid GMDHs, the meta-heuristic optimization approaches 
will be employed to optimize the weights of the polynomial. At the first step, a number of candidate solutions 
are distributed in the search space. Each member of this population represents a solution to Eq. 10. The fitness 
of members is calculated by applying RMSE, and the population is ranked. At the next step, the new values of 
the members will be calculated by meta-heuristic algorithms. Henceforth, the fitness of the population will be 
calculated and the members will be ranked. This process will be repeated until the final iteration. In the end, the 
best member represents the optimized values of Eq. 10. In Fig. 3, the general flowchart for setting up the hybrid 
GMDH models is shown.

The applied algorithms comprise new swarm intelligent-based models including invasive weed optimization, 
IWO, firefly algorithm, FA, and teaching–learning-based optimization, TLBO, as well as evolutionary-based 
models including harmony search, HS, and differential evolution, DE. The integration of the GMDH model 
and IWO has been developed and executed for the first time in this study. In Table 1, descriptions of the applied 
algorithms are presented, and a brief description of these algorithms is provided in the following sections.

Invasive weed optimization. The invasive weed optimization (IWO) algorithm is inspired by weed colo-
nization and was first proposed by Mehrabian and  Lucas54. In this algorithm, a population of initial solutions 
(weeds) dispreads randomly in the entire search space. The fitness of weeds is evaluated and produces a number 
of seeds-the population with better fitness produces more seeds. Produced seeds are randomly distributed in 
search space by normally distributed random numbers with a mean equal to zero, but with a varying variance. 
The IWO applies the standard deviation (σ) of the random function which is defined between the ranges of the 
pre-defined initial value (σinitial) to a final value (σfinal) and is calculated in each step from the following  equation54:

where σ iter is the standard deviation of the present iteration, itermax is the maximum number of iterations, and n 
is the nonlinear modulation index usually set as  255.

After some iterations, the number of produced plants reaches a maximum value. At this stage, competitive 
exclusion eliminates undesirable plants based on the fitness function. Consequently, those with better fitness 
would survive and are allowed to replicate. This process might be continued either reaching the maximum epoch 
or achieving the exact solution.

Firefly algorithm. This algorithm was inspired by the flashing and illuminating behavior of the fireflies and 
was proposed by  Yang56. This algorithm is based on three general rules, (1) all fireflies in the search space are 
considered to be unisex so they can be attracted to the others; (2) the attractiveness of a firefly is proportional to 
its light intensity. Hence, the brighter fireflies attract the less bright ones. In the case of fireflies of similar bright-
ness, their movements are assumed to be random; (3) the brightness of a firefly is determined by the objective 
function. In FA, the new position of agents ( Xt+1

i  ) is calculated according to the following equation:

where a is a randomized parameter (mutation coefficient), εi is the random vector, β0 is the attractiveness at 
distance r = 0, and γ is the absorption coefficient of light. More information about the FA algorithm can be found 
in the original work of  Yang56.

Differential evolution. The differential evolution (DE) is a stochastic and population-based algorithm 
proposed by Storn and  Price57 applied in global optimization problems. The main structure of DE is based on 
extracting individual differences from a current population to build a new population. In other words, it is one of 
the optimization algorithms which has both evolutionary and swarm intelligence  features58. Mutation, crossover, 
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and selection are evolutionary operators, while distance and direction of the population can be considered as 
swarm intelligence features.

Assuming three agents of the population as Xi1, Xi2, and Xi3, the mutation scheme can be expressed as a trial 
vector ( vti  ) which will be developed for each member of the population by applying the following equation:

where t is the iteration index and F is the scale factor that controls the amount of differential variation.
In the crossover scheme, offspring ( uti1 ) will be generated as:

(17)uti = Xt
i1 + F ×

(

Xt
i2 − Xt

i3

)

Figure 3.  The general flowchart of the constructed hybrid GMDH models.
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where Cr is the crossover controller assuming values between 0 to 1 and jrandi  is a random integer number between 
1 and the dimension of the problem, D. In the end, the selection operator is applied and the new position is 
calculated from:

Teaching–learning‑based optimization. The teaching–learning-based optimization (TLBO) is inspired 
by the philosophy of the teaching and learning process and was proposed by Rao et al.49 The algorithm is based 
on the evaluation of the influence of a teacher on the performance of students. The TLBO consists of two main 
phases: Teaching and Learning Phases. Among all the designated populations in the search space, the best solu-
tion (base on fitness) is assigned to the teacher, and the learners would learn and update their knowledge from 
the teacher according to the teaching operation:

where xnewi  is the new positions of the ith learner, xoldi  is the old positions of the ith learner, randi is a random 
number between 0 to1, xbest is the position of the teacher, xmean is the mean individual position of the current 
class, and TF is the teaching factor that is applied to change the mean value.

After this stage, learners increase their knowledge by interacting randomly with other learners in class as 
the equation below:

where xj is a member of the population that is selected randomly.

Harmony search. The harmony search (HS) is a meta-heuristic optimization method inspired by musicians 
which simulate the improvisation process of the group of  musicians59. To create the HS structure, some param-
eters, including the harmony memory consideration rate (HMCR), pitch adjusting rate (PAR), fret width (FW), 
and harmony memory size (HMS) have to be set at the initialization stage. The harmony memory is a matrix of 
candidate solutions. The HMCR varies between 0 and 1 and controls the balance between exploration and 
exploitation. The PAR and FW are useful parameters in adjusting the convergence rate of the algorithm. The 
quantity Xj =

[

x
j
1, x

j
2, ... , x

j
D

]

 represents the jth harmony vector. The HM is filled with the HMS harmony vec-
tors:

At the first iteration, HM is filled with random solution vectors. In the next iterations, the HM must be 
updated with a new solution. If the new solution vector is better than the worst vector, then it is stored and 
replaces the worst vector.

Experimental data and model setup. Datasets. In this study, eight parameters are used as the input 
vector to build and train the GMDH models for estimating the wave run-up (Ru2%). The input vector includes 
spectral peak period (TP), mean wave period (Tm), significant wave height (Hs), beach slope (cotα), the relative 
size of bed material (D85/D15), the surf similarity parameter corresponding to the mean wave period ( ξm ), the 
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Table 1.  Presentation of the meta-heuristic algorithms.

Category Algorithms Inspired by Reason for the selection

Swarm intelligence

IWO Plants and animals High performance in combination with ANFIS and ANN  models45,46

FA Insects movement A robust and efficient algorithm in optimization  problems47,48

TLBO Teaching–learning process A simple and reliable algorithm that does not need any initial 
 parameters49,50

Evolutionary
HS Harmony in music Successful application of hybrid GMDH-HS in modeling nonlinear 

 problems20,51

DE Biological insights Popular, simple,  effective52 and successful applications of GMDH-DE53
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surf similarity parameter corresponding to the peak period ( ξp ), and the bed permeability (Sp). The Sp character-
izes bed material especially particle grading and permeability. Figure 4 shows the range of Sp for different types 
of coastal slopes. The Sp data covers both impermeable and permeable slopes (see Table 2).

The 256 data set was extracted from Van der Meer and  Stam8 report. All tests were conducted in a wave flume 
of 1 m wide, 1.2 m deep, and 50 m long. Data were measured for two types of particle grading including uniform 
rock and riprap, and different values of Sp. In this study, all available parameters that have a direct effect on the 
wave run-up height were selected as input parameters for the predictive models. Information about the statistical 
properties of the dataset is presented in Table 2.

Evaluation criteria. In the present study, the statistical assessment of the training data set was conducted for 
checking the reliability of the developed GMDH models. A similar assessment of the testing data set was con-
ducted for the evaluation of the performance of GMDH models and empirical relations. This was done by apply-
ing different statistical parameters including root mean square error (RMSE), determination coefficient (R2), 
mean absolute error (MAE), and the index of agreement (IA).

The RMSE determines the root mean square error between the observed and predicted values, while the MAE 
describes the distance between the observed and predicted values. The R2 indicates how well the predicted values 
fit the regression model. The IA is the measure of the agreement between the predicted and observed values. 
These parameters are calculated as follow:
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Figure 4.  Bed permeability parameter for different types of bed materials.

Table 2.  Statistical summary of the data used in this study.

Parameter Type Data range Average Standard deviation (SD) Correlation coefficient (Ru2%)

Ru2% (m) Output [0.043,1.6] 0.237 0.211 1

TP (s) Input [1.33,5.1] 2.542 0.884 0.351

Tm (s) Input [1.24,4.4] 2.181 0.707 0.403

Hs (m) Input [0.461,1.18] 0.139 0.138 0.938

cotα Input [1.5,4] 2.709 0.783 0.0003

D85/D15 Input 1.25,2.25 1.641 0.485 0.028

Sp Input 0.1,0.5,0.6 0.276 0.205 0.009

ξm Input [0.991,7.584] 3.202 1.367 0.0154

ξp Input [1.047,8.869] 3.740 1.681 0.0129
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where N is the number of data, xmi  denotes the predicted value, xoi  is the observed value, and bar stands for the 
average of the variables. The best fitting between models and observed data is for RMSE and MAE equal to 0, 
and R2 and IA equal to 1.

Models setup and structure. To begin with the model development process and implementation of data, the 
data set was divided randomly into a training set comprising 80% of the available data set and a testing set cover-
ing 20% of the data set. The general structure of the GMDH models is presented in Table 3. The allocated values 
of parameters are based on their values from the previous  studies60–64. For all the developed models, 300 epochs 
were considered. It is worth noting that this iteration number was reached based on the convergence criteria of 
GMDH models.

Results
In this study, the GMDH model and the five hybrid GMDH models described in the previous section were used 
to estimate the wave run-up. Results obtained for the training stage are presented in Table 4.

The results in Table 4 show that the applied GMDH models are capable of modeling wave run-up, which 
confirm low values of RMSE and MAE, and the close to one values of R2 and IA. Among all methods developed 
in this study GMDH-TLBO, with the lowest RMSE and MAE (RMSE = 0.0254 m and MAE = 0.0195 m) and the 
highest R2 and IA (R2 = 0.9863 and IA = 0.9965) provide the best results at the training stage. However, the results 

(26)IA =
∑N

i=1

(

xmi − xoi
)2

∑N
i=1

(∣

∣xmi − xo
∣

∣+
∣

∣xoi − xo
∣

∣

)2

Table 3.  Structure of models and initial parameters of meta-heuristic algorithms. *The TLBO algorithm can 
be applied without allocating any specific primary or adjusting parameter.

Model

Structure Meta-heuristic parameters

Number of middle layers Maximum neurons in each layer Parameter Value Epoch

GMDH 5 10 – – 300

GMDH-IWO 5 10

Maximum no of seeds 10

300

Minimum no of seeds 1

Initial Standard deviation (σinitial) 0.5

Final Standard deviation (σ final) 0.001

Search Space Range [−10,10]

GMDH-FA 5 10

Mutation Coefficient (a) 0.2

300
Attraction Coefficient (β0) 2

Light Absorption Coefficient (γ) 1

Search Space Range [−10,10]

GMDH-DE 5 10

Lower bound of scaling factor 0.2

300
Upper bound of scaling factor 0.8

Crossover controller (Cr) 0.9

Search space range [−10,10]

GMDH-HS 5 10

Fret width damp ratio 0.995

300
Pitch adjustment rate (PAR) 0.1

Harmony memory consideration 
rate (HMCR) 0.9

Search space range [−10,10]

GMDH-TLBO* 5 10 Search space range [−10,10] 300

Table 4.  Statistical parameters for the evaluation of the performance of derived models at a training stage.

Method

Statistics

RMSE (m) R2 MAE (m) IA

GMDH-TLBO 0.0250 0.9863 0.0184 0.9965

GMDH 0.0254 0.9853 0.0195 0.9963

GMDH-DE 0.0274 0.9829 0.0209 0.9956

GMDH-FA 0.028 0.9823 0.0188 0.9955

GMDH-IWO 0.0355 0.9759 0.0198 0.9932

GMDH-HS 0.0359 0.9730 0.0219 0.9928



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8279  | https://doi.org/10.1038/s41598-022-12038-2

www.nature.com/scientificreports/

show that HS, FA, DE, and IWO, decrease the performance of the standard GMDH. Nevertheless, the decision 
on the superiority of the derived models can be conducted by the evaluation of the results at the testing stage. 
In this respect, Table 5 summarizes the statistical parameters derived for the evaluation of the performance of 
developed models at a testing stage.

The results in Table 5 show that the standard and hybrid GMDH models provide more accurate results than 
the empirical relations. However, the development of the derived models is a time consuming process and their 
execution requires more time in comparison to the empirical models. The average values of RMSE, MAE, R2, and 
IA for the GMDH models are 0.027 m, 0.0209 m, 0.9847, and 0.9959, respectively, whereas for empirical relations 
are 0.0993 m, 0.0692 m, 0.886, and 0.9490, respectively. The developed GMDH models improve the prediction 
of wave run-up by about 72.81% in comparison to the empirical methods. Among the developed GMDH mod-
els, the GMDH-FA with the lowest values of RMSE and MAE (RMSE = 0.0209, MAE = 0.0172) and the highest 
R2 and IA (R2 = 0.9908, IA = 0.9977) can be considered as the most precise predictive model. The application of 
meta-heuristic optimization algorithms improves the performance of the standard GMDH model by 39.70%. 
The performance of most hybrid GMDH models is lower at the training stage than the standard GMDH. The 
results confirm a relatively good performance of the derived models at the testing stage. The standard GMDH 
model may trap into the local solutions, which causes the over-fitting problem. Figure 5 presents the scatter 
plots for the testing stage. Scatter points of the hybrid GMDH models are closer to 1:1 line than corresponding 
points obtained by applying the standard GMDH technique, which indicates that the meta-heuristic algorithms 
increase the performance of GMDH.

Table 5.  Statistical parameters for the evaluation of the performance of derived models at a testing stage.

Method

Statistics Enhancement ( +) or deterioration (−) of the RMSE in 
performance (%) Establishment Execution timeRMSE (m) R2 MAE (m) IA

GMDH-FA 0.0209 0.9908 0.0172 0.9977  + 47.49 Difficult High

GMDH-IWO 0.0220 0.9908 0.0170 0.9975  + 44.74 Difficult High

GMDH-TLBO 0.0235 0.9888 0.0180 0.997  + 41.08 Difficult High

GMDH-HS 0.0262 0.9864 0.0211 0.9964  + 34.26 Difficult High

GMDH-DE 0.0302 0.984 0.0240 0.9953  + 24.12 Difficult Medium

GMDH 0.0398 0.9674 0.028 0.9916 Base Not Simple Low

Schimmels et al.5 0.0763 0.9549 0.0638 0.9711 −91.52 Simple Low

Van der Meer and  Stam8 0.1224 0.8178 0.0747 0.927 −207.22 Simple Low

Figure 5.  Scatter plots obtained for the testing stage.
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To provide further insight into the outcomes of the derived models, the results of the models are plotted in 
the Taylor  diagram65. The purpose of the Taylor diagram is to present on a single plot three statistical indices 
including the standard deviation, centered RMSE, and correlation. In Fig. 6, the values on the vertical and 
horizontal axes represent the standard deviation, the values on the dashed lines represent the correlation, and 
the values on the dash-curved lines represent the centered RMSE. Figure 6 shows that the dots representing the 
GMDH models are closer to the observation points than corresponding dots obtained by the application of the 
empirical relations. The results of the standard and hybrid GMDH models are magnified in a separate box. The 
plots show the superiority of the GMDH-FA over the remaining GMDH models.

Further discussion. An important factor in the analysis of the performance of machine learning meth-
ods and meta-heuristic techniques is the speed of the derived algorithms. Based on the observed CPU time 
presented in Table 6, it is becoming clear that the standard GMDH model is more efficient in terms of compu-
tational cost than the derived hybrid GMDH models. It is worth mentioning that the application of empirical 
equations in practical projects is easier than the ML models. However, nowadays, with tremendous progress that 
has been made in technology and minicomputers, the applications of ML- trained models to determine wave 
run-up, is straightforward.

In the previous section, the analyses of the performance of the GMDH models versus the empirical relations 
showed the superiority of the developed GMDH models. But in spate of that, the question may arise whether the 
differences between the results obtained by applying the developed models are statistically significant. Thus, the 
Kruskal–Wallis tests were carried out and the results are presented in Table 7. The non-parametric Kruskal–Wal-
lis test is a technique often applied in statistical analyses. Mahdavi-Meymand et al.18 used the Kruskal–Wallis 
test to compare several machine learning (ML) techniques and empirical equations applied to predict spillways 

Figure 6.  Taylor diagram for the tested data set.

Table 6.  The CPU time for 300 epochs of the applied GMDH models. *Core i7; RAM: 8 GB.

Model
Empirical relations and standard 
GMDH GMDH-IWO GMDH-FA GMDH-DE GMDH-HS GMDH-TLBO

CPU* time (min)  < 1 116 405 11 43 116

Table 7.  The results of the Kruskal–Wallis test for assessing the significant statistical differences between the 
applied models.

Methods p-value Significantly different (95%) Significantly different (99%)

Schimmels et al.5, Van der Meer and  Stam8 0.7251 NO NO

GMDH, GMDH-FA, GMDH-DE, GMDH-IWO, GMDH-TLBO, GMDH-HS, Schimmels et al.5, Van der 
Meer and  Stam8 ˂.0006 YES YES

GMDH, GMDH-FA, GMDH-DE, GMDH-IWO, GMDH-TLBO, GMDH-HS 0.994 NO NO
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air demand and reported that there is no significant difference at the 99% confidence level between the applied 
ML approaches.

The results in Table 7 show that the probability value of the Kruskal–Wallis test for the empirical relations is 
0.7251, which is higher than 0.05 and 0.01. This shows that there are no significant statistical differences between 
the results obtained by applying two empirical relations at both 95% and 99% confidence levels. However, sig-
nificant differences exist between the results obtained by applying the GMDH models and empirical relations 
(p-value ˂0.0006). Thus, the GMDH models may be recommended to be applied instead of empirical relations 
to predict wave run-up. Moreover, although the statistical criteria confirmed that meta-heuristic algorithms 
increase the efficiency of the GMDH, the results in Table 7 show that there is no significant statistical difference 
between the outcome of different GMDH models. Hence, it is recommended to use the standard GMDH in situ-
ations where computational time is an important factor for users. More insight into the results obtained in the 
modelling of wave run-up in coastal regions is provided in Table 8.

Based on the findings of this study following potential subjects are proposed for future studies:

Due to literature restrictions, it is recommended to take into consideration other possible future data resources 
to further evaluate predictive models developed in the present study.
There is not a robust formula or procedure to select the best architecture of the GMDH model. More studies 
should be conducted to facilitate the construction of GMDH models.
Based on the data used in this study and related calculated values of the correlation coefficient between the 
input and output variables, it was found that the beach slope has a limited effect on wave run-up height. Future 
laboratory studies should take into account a wider range of beach slopes.
It is recommended to consider other non-parametric statistical tests such as Mann–Whitney test and evaluate 
the results of different methods.

Conclusion
The ability to accurately estimate the maximum wave run-up is vital for the maintenance and development of 
coastal areas and the safety of the coastal zone population. In this study, hybrid swarm and evolutionary intel-
ligent GMDH models as well as the standard GMDH technique were developed and applied to predict the two 
percent value of the wave run-up (R2%). The invasive weed optimization (IWO), firefly algorithm (FA), differ-
ential evolution (DE), teaching–learning-based optimization (TLBO), and harmony search (HS) optimization 
algorithms were used as the meta-heuristic optimization methods to train the GMDH. The results show that the 
GMDH models have better performance than the empirical relations. The Kruskal–Wallis tests show significant 
statistical differences between the results of the empirical relations and GMDH models.

The results show that the application of meta-heuristic optimization algorithms improves the performance 
of the standard GMDH model by 39.70% at the testing stage. However, the performance of most hybrid GMDH 
models is lower than the standard GMDH at the training stage. Among all developed models, the GMDH-FA 

Table 8.  Summary of the studies conducted to predict wave run-up in coastal regions. *Multiple additive 
regression trees.

Authors Methods Type of the machine learning model Calculated R2 Remarks

Abolfathi et al.12 M5’ Decision tree Decision tree 0.970 The results show the general ability of M5’ to 
simulate wave run-up

Bakhtyar et al.66
ANFIS Hybrid intelligent systems 0.960 The comparison of results confirms the 

high accuracy of ANFIS in predicting wave 
run-upEmpirical formulas – 0.890

Erdik and  Savci7
ANFIS Hybrid intelligent systems 0.621 TS Fuzzy is a capable tool for modeling wave 

run-upEmpirical formulas – 0.559

Bonakdar and Etemad-Shahidi10

M5 model tree Decision tree 0.920
M5 results are better than TS Fuzzy and 
empirical formulasTS Fuzzy Hybrid intelligent systems –

Empirical formulas – 0.902

Elbisy11
MART* Decision tree 0.974 The MART model is more accurate than 

the ANNANN Neural computing 0.837

Rehman et al.18
ANN Neural computing 0.995 Both ANN and RSM are robust methods for 

the prediction of wave run-upResponse surface methodology (RSM) – 0.999

Yao et al.19 ANN Neural computing 0.987 The ANN performance in predicting wave 
run-up was confirmed

The current study

GMDH Neural computing 0.985 The results show that the GMDH models 
provide more accurate results than empirical 
relations.
Applications of optimization algorithms 
increases the accuracy of standard models.
The Kruskal–Wallis test shows that there are 
no significant statistical differences between 
the classical and hybrid GMDH models

GMDH-TLBO
GMDH-FA
GMDH-DE
GMDH-HS
GMDH-IWO

Hybrid intelligent systems

0.986
0.991
0.984
0.973
0.976

Van der Meer and  Stam8

Schimmels et al.5 – 0.818
0.955
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provides the best results in the testing stage with RMSE = 0.0209 m and IA = 0.9977. Moreover, the results 
show that among all methods developed in this study GMDH-TLBO, with the lowest RMSE = 0.0254 m and 
MAE = 0.0195 m, and the highest R2 = 0.9863 and IA = 0.9965.

The computational costs indicate that the standard GMDH model and empirical equations are significantly 
faster than the embedded meta-heuristic GMDH techniques. Moreover, the results show that there are no sig-
nificant statistical differences between the GMDH models and meta-heuristic algorithms. Hence, the application 
of time-consuming models such as GMDH-FA is not recommended in situations where computational cost is 
a decisive factor.
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