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Classification and reconstruction 
of spatially overlapping phase 
images using diffractive optical 
networks
Deniz Mengu1,2,3, Muhammed Veli1,2,3, Yair Rivenson1,2,3 & Aydogan Ozcan1,2,3,4*

Diffractive optical networks unify wave optics and deep learning to all-optically compute a given 
machine learning or computational imaging task as the light propagates from the input to the 
output plane. Here, we report the design of diffractive optical networks for the classification and 
reconstruction of spatially overlapping, phase-encoded objects. When two different phase-only 
objects spatially overlap, the individual object functions are perturbed since their phase patterns 
are summed up. The retrieval of the underlying phase images from solely the overlapping phase 
distribution presents a challenging problem, the solution of which is generally not unique. We show 
that through a task-specific training process, passive diffractive optical networks composed of 
successive transmissive layers can all-optically and simultaneously classify two different randomly-
selected, spatially overlapping phase images at the input. After trained with ~ 550 million unique 
combinations of phase-encoded handwritten digits from the MNIST dataset, our blind testing results 
reveal that the diffractive optical network achieves an accuracy of > 85.8% for all-optical classification 
of two overlapping phase images of new handwritten digits. In addition to all-optical classification of 
overlapping phase objects, we also demonstrate the reconstruction of these phase images based on 
a shallow electronic neural network that uses the highly compressed output of the diffractive optical 
network as its input (with e.g., ~ 20–65 times less number of pixels) to rapidly reconstruct both of the 
phase images, despite their spatial overlap and related phase ambiguity. The presented phase image 
classification and reconstruction framework might find applications in e.g., computational imaging, 
microscopy and quantitative phase imaging fields.

Diffractive Deep Neural Networks  (D2NN)1 have emerged as an optical machine learning framework that param-
eterizes a given inference or computational task as a function of the physical traits of a series of engineered 
surfaces/layers that are connected by diffraction of light. Based on a given task and the associated loss function, 
deep learning-based optimization is used to configure the transmission or reflection coefficients of the indi-
vidual pixels/neurons of the diffractive layers so that the desired function is approximated in the optical domain 
through the light propagation between the input and output planes of the diffractive optical  network1–24. Upon 
the convergence of this deep learning-based training phase using a computer, the resulting diffractive surfaces 
are fabricated using, e.g. 3D printing or lithography, to physically form the diffractive optical network which 
computes the desired task or inference, without the need for a power source, except for the illumination light.

A diffractive optical network can be considered as a coherent optical processor, where the input information 
can be encoded in the phase and/or amplitude channels of the sample/object field-of-view. Some of the previous 
demonstrations of diffractive optical networks utilized 3D printed diffracted layers operating at terahertz (THz) 
wavelengths to reveal that they can generalize to unseen data achieving > 98% and > 90% blind testing accuracies 
for amplitude-encoded handwritten digits (MNIST) and phase-encoded fashion products (Fashion-MNIST), 
respectively, using passive diffractive layers that collectively compute the all-optical inference at the output 
plane of the diffractive optical  network1,5,8. In a recent  work6, diffractive optical networks have been utilized to 
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all-optically infer the data classes of input objects that are illuminated by a broadband light source using only a 
single-pixel detector at the output plane. This work demonstrated that a broadband diffractive optical network 
can be trained to extract and encode the spatial features of input objects into the power spectrum of the diffracted 
light to all-optically reveal the object classes based on the spectrum of the incident light on a single-pixel detector. 
Deep learning-based training of diffractive optical networks have also been utilized in solving challenging inverse 
optical design problems e.g., ultra-short pulse shaping and spatially-controlled wavelength  demultiplexing3,4.

In general, coherent optical processing and the statistical inference capabilities of diffractive optical networks 
can be exploited to solve various inverse imaging and object classification problems through low-latency, low-
power systems composed of passive diffractive layers. One such inverse problem arises when different phase 
objects reside on top of each other within the sample field-of-view of a coherent imaging platform: the spatial 
overlap between phase-only thin samples inevitably causes loss of spatial information due to the summation of 
the overlapping phase distributions describing the individual objects, hence, creating spatial phase ambiguity 
at the input field-of-view.

Here, we present phase image classification diffractive optical networks that can solve this phase ambiguity 
problem and simultaneously classify two spatially overlapping images through the same trained diffractive optical 
network (see Fig. 1). In order to address this challenging optical inference problem, we devised four alternative 
diffractive optical network designs (Fig. 1b–e) to all-optically infer the data classes of spatially overlapping phase 
objects. We numerically demonstrated the efficacy of these diffractive optical network designs in revealing the 
individual classes of overlapping phase objects using training and testing datasets that are generated based on 
phase-encoded MNIST  digits25. Our diffractive optical networks were trained using ~ 550 million different input 

Figure 1.  Schematic of a diffractive optical network that can all-optically classify overlapping phase objects 
despite phase ambiguity at the input; this diffractive optical network also compresses the input spatial 
information at its output plane for simultaneous reconstruction of the individual phase images of the 
overlapping input objects using a back-end electronic neural network. (a) Optical layout of the presented 
5-layer diffractive optical networks that can all-optically classify overlapping phase objects, e.g., phase-encoded 
handwritten digits, despite the phase ambiguity at the input plane due to spatial overlap. The diffractive optical 
network processes the incoming object waves created by the spatially overlapping, phase-encoded digits e.g., 
‘6’ and ‘7’, to correctly reveal the classes of both input objects (green). A separately trained shallow electronic 
neural network (with 2 hidden layers) rapidly reconstructs the individual phase images of both input objects 
using the optical signals detected at the output plane of the diffractive optical network. (b–d) Different detector 
configurations and class encoding schemes at the output plane of a diffractive optical network, devised to 
represent all the possible data class combinations at the input field-of-view created by overlapping phase objects.
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phase images containing spatially overlapping MNIST digits (from the same class as well as different classes); 
blind testing of one of the resulting diffractive optical networks using 10,000 test images of overlapping phase 
objects revealed a classification accuracy of > 85.8%, optically matching the correct labels of both phase objects 
that were spatially overlapping within the input field-of-view.

In addition to all-optical classification of overlapping phase images using a diffractive optical network, we 
also combined our diffractive optical network models with separately trained, electronic image reconstruction 
networks to recover the individual phase images of the spatially overlapping input objects solely based on the 
optical class signals collected at the output of the corresponding diffractive optical network. We quantified the 
success of these digitally reconstructed phase images using the structural similarity index measure (SSIM) and 
the peak-signal-to-noise-ratio (PSNR) to reveal that a shallow electronic neural network with 2 hidden layers 
can simultaneously reconstruct both of the phase objects that are spatially overlapping at the input plane despite 
the fact that the number of detectors/pixels at the output plane of the diffractive optical network is e.g., ~ 20–65 
times smaller compared to an ideal diffraction-limited imaging system. This means the diffractive optical network 
encoded the spatial features of the overlapping phase objects into a much smaller number of pixels at its output 
plane, which was successfully decoded by the shallow electronic network to simultaneously perform two tasks: 
(1) image reconstruction of overlapping spatial features at the input field-of-view, and (2) image decompression.

We believe that the presented diffractive optical network training and design techniques for computational 
imaging of phase objects will enable memory-efficient, low-power and high frame-rate alternatives to existing 
phase imaging platforms that often rely on high-pixel count sensor arrays, and therefore might find applications 
in e.g. microscopy and quantitative phase imaging fields.

Results
Spatial overlap between phase objects within the input field-of-view of an optical imaging system obscures the 
information of samples due to the superposition of the individual phase channels, leading to loss of structural 
information. For thin phase-only objects (such as e.g., cultured cells or thin tissue sections), when two samples 
ejθ1(x,y) and ejθ2(x,y) overlap with each other in space, the resulting object function can be expressed as 
ej(θ1(x,y)+θ2(x,y)) , and therefore a coherent optical imaging system does not have direct access to θ1

(
x, y

)
 or 

θ2
(
x, y

)
 , except their summation (see Fig. 1a). In the context of diffractive optical networks and all-optical image 

classification tasks, another challenging aspect of dealing with spatially overlapping phase objects is that the 
effective number of data classes represented by different input images significantly increases compared to a single-
object classification task. Specifically, for a target dataset with M data classes represented through the phase 
channel of the input, the total number of data classes at the input (with two overlapping phase objects) becomes 

C

(
M
2

)
+M = M(M−1)

2 +M , where C refers to the combination operation . This means that if the diffractive 

optical network design assigns a single output detector to represent each one of these combinations, one would 
need M(M−1)

2 +M individual detectors. With the use of a differential detection  scheme5 that replaces each class 
detector with a pair of detectors (virtually representing the positive and negative signals), then the number of 
detectors at the output plane further increases to 2×

(
M(M−1)

2 +M
)
.

To mitigate this challenge, in this work we introduced different class encoding schemes that better handle the 
all-optical classification of these large number of possible class combinations at the input. The output detector 
layout, D-1, shown in Fig. 1b illustrates one alternative design strategy where the problem of classification of over-
lapping phase objects is solved by using only 2M individual detectors with a significant reduction in the number 
of output detectors when compared to M(M−1)

2 +M . The use of 2M single-pixel detectors at the output plane (see 
Fig. 1b), can handle all the combinations and classify the overlapping input phase objects even if they belong to 
the same data class or not. To achieve this, we have two different sets of detectors, 

{
Di
m,m = 0, 1, 2, . . . ,M − 1

}
 

and 
{
Dii
m,m = 0, 1, 2, . . . ,M − 1

}
 , which represent the classes of the individual overlapping phase images. The 

final class assignments in this scheme are given based on the largest two optical signals among all the 2M 
detectors, where the assigned indices (m) of the corresponding two winner detectors indicate the all-optical 
classification results for the overlapping phase images. This is a simple class decision rule with a look up table 
of detector-class assignments (as shown Fig. 1b), where the strongest two detector signals indicate the inferred 
classes based on their m . Stated mathematically, the all-optical estimation of the classes, ĉ =

[
ĉ1, ĉ2

]
 , of the over-

lapping phase images is given by,

where I denotes the optical signals detected by 2M individual detectors, i.e., [Di
m , Dii

m ]. With the mod(∗) operation 
in Eq. (1), it can be observed that when the ground truth object classes, c1 and c2 , are identical, a correct optical 
inference would result in ĉ1 = ĉ2 . On the other hand, when c1  = c2 , there are four different detector combina-
tions for the two largest optical signals that would result in the same ( ̂c1, ĉ2 ) pair according to our class decision 
rule. For example, in the case of the input transmittance shown in Fig. 1a, which is comprised of handwritten 
digits ‘6’ and ‘7’, the output object classes based on our decision rule would be the same if the two largest optical 
signals collected by the detectors correspond to: (1) Di

6 and Dii
7 , (2) Di

7 and Dii
6 , (3) Di

6 and Di
7 or (4) Dii

6 and Dii
7 ; 

all of these four combinations of winner detectors at the output plane would reveal the correct classes for the 
input phase objects in this example (digits ‘6’ and ‘7’).

Therefore, the training the diffractive optical networks according to this class decision rule requires subtle 
but vital changes in the ground truth labels representing the inputs and the loss function driving the evolution 
of the diffractive layers compared to a single-object classification system. If we denote the one-hot vector labels 
representing the classes of the input objects in a single-object classification system as, g1 and g2 , with an entry 

(1)ĉ = mod(argmax
2

(I),M)
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of 1 at their cth1  and cth2  entries, respectively, for the case of spatially overlapping two phase objects at the input 
field-of-view we can define new ground truth label vectors of length 2M using g1 and g2 . For the simplest case 
of c1 = c2 (i.e., g1 = g2 ), the 2M-vector ge is constructed as ge = 0.5×

[
g1, g2

]
 . The constant multiplicative factor 

of 0.5 ensures that the resulting vector ge defines a discrete probability density function satisfying 
2M∑
1
gem = 1 . It 

is important to note that since c1 = c2 , we have 
[
g1, g2

]
=

[
g1, g2

]
 . On the other hand, when the overlapping 

input phase objects are from different data classes i.e., c1  = c2 , we define four different label vectors 
{
ga, gb, gc , gd

}
 

representing all the four combinations. Among this set of label vectors, we set ga = 0.5×
[
g1, g2

]
 and 

gb = 0.5×
[
g2, g1

]
 . The label vectors gc and gd depict the cases, where the output detectors corresponding to 

the input object classes lie within Di
m and Dii

m , respectively. In other words, the cth1  and cth2  entries of gc are equal 
to 0.5, and similarly the (M + c1)

th and (M + c2)
th entries of gd are equal to 0.5, while all the rest of the entries 

are equal to zero.
Based on these definitions, the training loss function ( L ) of the associated forward model was selected to 

reflect all the possible input combinations at the sample field-of-view (input), therefore, it was defined as,

where La
c,L

b
c ,L

c
c , Ld

c  , and Le
c denote the penalty terms computed with respect to the ground truth label vectors 

ga , gb , gc , gd , and ge , respectively, and sgn(.) is the signum function. The classification errors, Lx
c , are computed 

using the cross-entropy  loss26

where x refers to one of a, b, c, d, or e,  Im denotes the normalized intensity collected by a given detector at the 
output plane (see the Methods section for further details). The term gxm in Eq. (3) denotes the mth entry of the 
ground truth data class vector, gx.

Based on this diffractive optical network design scheme and the output detector layout D-1, we trained a 
5-layer diffractive optical network (Fig. 1a,b) using the loss function depicted in Eq. (2) over ~ 550 million input 
training images containing various combinations of spatially overlapping, phase-encoded MNIST handwritten 
digits. Following the training phase, the resulting diffractive layers of this network, which we term as  D2NN-D1, 
are illustrated in Fig. 2a. To quantify the generalization performance of  D2NN-D1 for the classification of over-
lapping phase objects that were never seen by the network before, we created a test dataset,  T2, with 10 K phase 
images, where each image contains two spatially-overlapping phase-encoded test digits randomly selected from 
the standard MNIST test set,  T1. In this blind testing phase,  D2NN-D1 achieved 82.70% accuracy on  T2, meaning 
that in 8,270 cases out of 10,000 test inputs, the class estimates 

[
ĉ1, ĉ2

]
 at the diffractive optical network’s output 

plane were correct for both of the spatially overlapping handwritten digits. For the remaining 1730 test images, 
the classification decision of the diffractive optical network is incorrect for at least one of the phase objects 
within the field-of-view. Figure 2b–e depict some of the correctly classified phase image examples from the test 
dataset  T2 with phase encoded handwritten digits, along with the resulting class scores at the output detectors 
of the diffractive optical network.

This blind inference accuracy of the diffractive optical network shown in Fig. 2a, i.e.,  D2NN-D1, can be further 
improved by combining the above outlined training strategy with a differential detection scheme, where each 
output detector in D1 (Fig. 1b) is replaced with a differential pair of detectors (i.e., a total of 2 × 2 M detectors 
are located at the output plane, see Fig. 1c). The differential signal between a pair of detectors shown in Fig. 1c 
encodes a total of 2xM differential optical signals and similar to the previous approach of D1, the final class 
assignments in this scheme are given based on the two largest signals among all the differential optical signals. 
With the incorporation of this differential detection scheme, the vector I in Eq. (1) is replaced with the differential 
 signal5, �I = I+ − I−, where I+ and I− denote the optical signals collected by the 2M detector pairs, virtually 
representing the positive and negative parts, respectively.

Using this differential diffractive optical network design, which we termed as  D2NN-D1d (see Fig. 1c), 
we achieved a blind testing accuracy of 85.82% on the test dataset  T2. The diffractive layers comprising the 
 D2NN-D1d network are shown in Fig. 3a, which were trained using ~ 550 million input phase images of spatially 
overlapping MNIST handwritten digits, similar to  D2NN-D1. Compared to the classification accuracy attained 
by  D2NN-D1, the inference accuracy of its differential counterpart,  D2NN-D1d, is improved by > 3.1% at the 
expense of using 2M additional detectors at the output plane of the optical network. Figure 3b–e illustrate some 
examples of the correctly classified phase images from the test dataset  T2 with phase encoded handwritten digits, 
along with the resulting differential class scores at the output detectors of the diffractive optical network.

The blind inference accuracies achieved by  D2NN-D1 and  D2NN-D1d (82.70% and 85.82%, respectively) on 
the test dataset  T2, demonstrate the success of the underlying detector layout designs and the associated training 
strategy for solving the phase ambiguity problem to all-optically classify overlapping phase images using dif-
fractive optical networks. When these two diffractive optical networks  (D2NN-D1 and  D2NN-D1d) are blindly 
tested over  T1 that provides input images containing a single phase-encoded handwritten digit (without the 
second overlapping phase object), they attain better classification accuracies of 90.59% and 93.30%, respectively 
(see the Methods section). As a reference point, a 5-layer diffractive optical network design with an identical 
layout to the one shown in Fig. 1a, can achieve a blind classification accuracy of ~ 98%5,8 on test set  T1, provided 
that it is trained to classify only one phase-encoded handwritten digit per input image (without any spatial 

(2)L =
(
1−

∣∣sgn(c1 − c2)
∣∣)× L

e
c +

∣∣sgn(c1 − c2)
∣∣×min

{
L
a
c ,L

b
c ,L

c
c ,L

d
c

}

(3)L
x
c = −

2M∑

m=1

gxm log

(
eIm

∑2M
k=1 e

Ik

)



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8446  | https://doi.org/10.1038/s41598-022-12020-y

www.nature.com/scientificreports/

overlap with other objects). This reduced classification accuracy of  D2NN-D1 and  D2NN-D1d on test set  T1 
(when compared to ~ 98%) indicates that their forward training model, driven by the loss functions depicted 
in Eqs. (2) and (3), guided the evolution of the corresponding diffractive layers to recognize the spatial features 

Figure 2.  All-optical classification of spatially-overlapping phase objects using the diffractive optical 
network  D2NN-D1, based on the detector layout scheme (D-1) shown in Fig. 1b. (a) The thickness profiles 
of the diffractive layers constituting the diffractive optical network  D2NN-D1 at the end of its training. This 
network achieves 82.70% blind inference accuracy on the test image set  T2. (b–e) Top: Individual phase objects 
(examples) and the resulting input phase distribution created by their spatial overlap at the input field-of-view. 
Bottom: The normalized optical signals, I , synthesized by  D2NN-D1 at its output detectors. The output detectors 
with the largest 2 signals correctly reveal the classes of the overlapping input phase objects (indicated with the 
green rectangular frames).
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Figure 3.  All-optical classification of spatially-overlapping phase objects using the diffractive optical network 
 D2NN-D1d, based on the detector layout scheme D-1d shown in Fig. 1c. (a) The thickness profiles of the 
diffractive layers constituting the diffractive optical network  D2NN-D1d at the end of its training. This network 
achieves 85.82% blind inference accuracy on the test image set  T2. (b–e), Left: Individual phase objects 
(examples) and the resulting input phase distribution created by their spatial overlap at the input field-of-view. 
Middle: The normalized optical signals, I+ and I− , synthesized by  D2NN-D1d at its output detectors. Right: The 
resulting differential signal, �I = I+ − I− . The largest two differential optical signals correctly reveal the classes 
of the overlapping input phase objects (indicated with the green rectangular frames).
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created by the overlapping handwritten digits, as opposed to focusing solely on the actual features describing 
the individual handwritten digits.

To further reduce the required number of optical detectors at the output plane of a diffractive optical network, 
we considered an alternative design (D-2) shown in Fig. 1d. In this alternative design scheme D-2, there are two 
extra detectors 

{
D+
Q ,D

−
Q

}
 (shown with blue in Fig. 1d), in addition to M class detectors {Dm,m = 1, 2, . . . ,M} 

(shown with gray in Fig. 1d). The sole function of the additional pair of detectors 
{
D+
Q ,D

−
Q

}
 is to decide whether 

the spatially-overlapping input phase objects belong to the same or different data classes. If the difference signal 
of this differential detector pair (Fig. 1d) is non-negative (i.e., ID+

Q
≥ ID−

Q
 ), the diffractive optical network will 

infer that the overlapping input objects are from the same data class, hence there is only one class assignment to 
be made by simply determining the maximum signal at the output class detectors: {Dm,m = 1, 2, . . . ,M} . A 
negative signal difference between 

{
D+
Q ,D

−
Q

}
 , on the other hand, indicates that the two overlapping phase objects 

are from different data classes/digits, and the final class assignments in this case of ID+
Q
< ID−

Q
 are given based on 

the largest two optical signals among all the remaining M detectors at the network output, {Dm,m = 1, 2, . . . ,M} . 
Refer to the Methods section for further details on the training of diffractive optical networks that employ D-2 
(Fig. 1d).

Similar to earlier diffractive optical network designs, we used ~ 550 million input phase images of spatially 
overlapping MNIST handwritten digits to train 5 diffractive layers constituting the  D2NN-D2 network (see 
Fig. 4a). Figure 4b–d illustrate sample input phase images that contain objects from different data classes, along 
with the output detector signals that correctly predict the classes/digits of these overlapping phase objects; notice 
that in each one of these cases, we have at the output plane ID+

Q
< ID−

Q
 indicating the success of the network’s 

inference. As another example of blind testing, Fig. 4e reports the diffractive optical network’s inference for two 
input phase objects that are from the same data class, i.e., digit ‘3’. At the network’s output, this time we have 
ID+

Q
> ID−

Q
 , correctly predicting that the two overlapping phase images are of the same class; the maximum output 

signal of the remaining output detectors {Dm,m = 1, 2, . . . ,M} also correctly reveals that the handwritten phase 
images belong to digit ‘3’ with a maximum signal at D3 . This  D2NN-D2 design provides 82.61% inference accu-
racy on the test set  T2 with 10 K test images, closely matching the inference performance of  D2NN-D1 (82.70%) 
reported in Fig. 2. In fact, an advantage of this  D2NN-D2 design lies in its inference performance and blind 
testing accuracy on test set  T1, achieving 93.38% for classification of input phase images of single digits (without 
any spatial overlap at the input field-of-view).

We also implemented the differential counterpart of the detector layout D-2, which we term as D-2d (see 
Fig. 1e), where the M class detectors in D-2 are replaced with M differential pairs of output detectors. In this 
configuration D-2d, the total number of detectors at the output plane of the diffractive optical network becomes 
2M + 2 and the all-optical inference rules remain the same as in D-2: for ID+

Q
≥ ID−

Q
 , the class inference is made 

by simply determining the maximum differential signal at the output class detectors, and for the case of ID+
Q
< ID−

Q
 

the inference of the classes of input phase images is determined based on the largest two differential optical 
signals at the network output. Figure 5a shows the diffractive layers of the resulting  D2NN-D2d that is trained 
based on the detector layout, D-2d (Fig. 1e) using the same training dataset as before: ~ 550 million input phase 
images of spatially overlapping, phase-encoded MNIST handwritten digits. This new differential diffractive 
optical network design,  D2NN-D2d, provides significantly higher blind inference accuracies compared to its 
non-differential counterpart  D2NN-D2, achieving 85.22% and 94.20% on  T2 and  T1 datasets, respectively. Fig-
ure 5b–d demonstrate some examples of the input phase images from test set  T2 that are correctly classified by 
 D2NN-D2d along with the corresponding optical signals collected by the output detectors representing the posi-
tive and negative parts, IM+ and IM− , of the associated differential class signals, �IM = IM+ − IM− . As another 
example, the input phase image depicted in Fig. 5e has two overlapping phase-encoded digits from the same data 
class, handwritten digit ‘4’, and the diffractive optical network correctly outputs ID+

Q
> ID−

Q
 with the maximum 

differential class score strongly revealing an optical inference of digit ‘4’.
Table 1 summarizes the optical blind classification accuracies achieved by different diffractive optical net-

work designs,  D2NN-D1,  D2NN-D1d,  D2NN-D2 and  D2NN-D2d on test image sets  T2 and  T1. Even though 
 D2NN-D1d achieves the highest inference accuracy for the classification of spatially overlapping phase objects, 
 D2NN-D2d offers a balanced optical inference system achieving very good accuracy on both  T1 and  T2. These 
two differential diffractive optical network models outperform their non-differential counterparts with superior 
inference performance on both  T2 and  T1. The confusion matrices demonstrating the class-specific inference 
performances of the presented diffractive optical networks,  D2NN-D1,  D2NN-D1d,  D2NN-D2 and  D2NN-D2d, 
are also reported in Supplementary Figs. 1–4, respectively.

Next, we aimed to reconstruct the individual images of the overlapping phase objects (handwritten digits) 
using the detector signals at the output of a diffractive optical network; stated differently our goal here is to 
resolve the phase ambiguity at the input plane and reconstruct both of the input phase images, despite their 
spatial overlap and the loss of phase information. For this aim, we combined each one of our diffractive optical 
networks,  D2NN-D1,  D2NN-D1d,  D2NN-D2 and  D2NN-D2d, one by one, with a shallow, fully-connected (FC) 
electronic network with two hidden layers, forming a task-specific imaging system as shown in Fig. 6. In these 
hybrid machine vision systems, the optical signals synthesized by a given diffractive optical network (front-
end encoder) are interpreted as encoded representations of the spatial information content at the input plane. 
Accordingly, the electronic back-end neural network is trained to process the encoded optical signals collected 
by the output detectors of the diffractive optical network to decode and reconstruct the individual phase images 
describing each object function at the input plane, resolving the phase ambiguity due to the spatial overlap of the 
two phase objects. Figure 6a–d illustrate 3 different input images taken from the test set  T2 for each diffractive 
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Figure 4.  All-optical classification of spatially-overlapping phase objects using the diffractive optical network 
 D2NN-D2, based on the detector layout scheme D-2 shown in Fig. 1d. (a) The thickness profiles of the 
diffractive layers constituting the diffractive optical network  D2NN-D2 at the end of its training. This network 
achieves 82.61% blind inference accuracy on the test image set  T2. (b–e), Top: Individual phase objects 
(examples) and the resulting input phase distribution created by their spatial overlap at the input field-of-view. 
Bottom: The normalized optical signals, I , synthesized by  D2NN-D2 at its output detectors. For ID+

Q
< ID−

Q
 , the 

largest two optical signals correctly reveal the classes of the overlapping input phase objects (indicated with the 
green rectangular frames in (b–d). For ID+

Q
≥ ID−

Q
 , the largest optical signal correctly reveals the class of the 

overlapping input phase objects (indicated with the green rectangular frame in (e)).
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Figure 5.  All-optical classification of spatially-overlapping phase objects using the diffractive optical network  D2NN-D2d, based on 
the detector layout scheme D-2d shown in Fig. 1e. (a) The thickness profiles of the diffractive layers constituting the diffractive optical 
network  D2NN-D2d at the end of its training. This network achieves 85.22% blind inference accuracy on the test image set  T2. (b–e) 
Left: Individual phase objects (examples) and the resulting input phase distribution created by their spatial overlap at the input 
field-of-view. Middle: The normalized optical signals, I+ and I− , synthesized by  D2NN-D2d at its output detectors. Right: The 
differential optical signal, �I = I+ − I− (purple). For ID+

Q
< ID−

Q
 , the largest two differential optical signals correctly reveal the 

classes of the overlapping input phase objects (indicated with the green rectangular frames in (b–d). For ID+
Q
≥ ID−

Q
 , the largest 

differential optical signal correctly reveals the class of the overlapping input phase objects (indicated with the green rectangular frame 
in (e)).
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optical network design  (D2NN-D1,  D2NN-D1d,  D2NN-D2 and  D2NN-D2d) along with the corresponding image 
reconstructions at the output of each one of the electronic networks that are separately trained to work with the 
diffractive optical network (front-end). As depicted in Fig. 6, the electronic image reconstruction networks only 
have 2 hidden layers with 100 and 400 neurons, and the final output layers of these networks have 28 × 28 × 2 
neurons, revealing the images of the individual phase objects, resolving the phase ambiguity due to the spatial 
overlap of the input phase images. The quality of these image reconstructions is quantified using (1) the struc-
tural similarity index measure (SSIM) and (2) the peak signal-to-noise ratio (PSNR). Table 2 shows the mean 
SSIM and PSNR values achieved by these hybrid machine vision systems along with the corresponding standard 
deviations computed over the entire 10 K test images  (T2). For these presented image reconstructions, we should 
emphasize that the dimensionality reduction (i.e., the image data compression) between the input and output 
planes of the diffractive optical networks  (D2NN-D1,  D2NN-D1d,  D2NN-D2 and  D2NN-D2d) is 39.2 × , 19.6 × , 
65.33 × and 35.63 × , respectively, meaning that the spatial information of the overlapping phase images at the 
input field-of-view is significantly compressed (in terms of the number of pixels) at the output plane of the dif-
fractive optical network. This large compression sets another significant challenge for the image reconstruction 
task in addition to the phase ambiguity and spatial overlap of the target images. With these large compression 
ratios, the presented diffractive optical network-based machine vision systems managed to faithfully recover the 
phase images of each input object despite their spatial overlap and phase information loss, demonstrating the 
coherent processing power of diffractive optical networks as well as the unique design opportunities enabled by 
their collaboration with electronic neural networks that form task-specific back-end processors.

Discussion
The optical classification of overlapping phase images using diffractive optical networks presents a challenging 
problem due to the spatial overlap of the input images and the associated loss of phase information at the input 
plane. Interestingly, different combinations of handwritten digits at the input present different amounts of spatial 
overlap, which is a function of the class of the selected input digits as well as the style of the handwriting of the 
person. To shed more light on this, we quantified the all-optical blind inference accuracies of the presented dif-
fractive optical networks as a function of the spatial overlap percentage, ξ , at the input field-of-view; see Fig. 7. 
In the first group of examples shown in Fig. 7a, the input fields-of-view contain digits from different data classes 
( c1  = c2 ) and in the second group of examples shown in Fig. 7b, the spatially overlapping objects are from the 
same data class, c1 = c2 . The input phase images in  T2 exhibit spatial overlap percentages varying between ~ 20% 
and ~ 100%. Figure 7c,d illustrate the change in the optical blind inference accuracy of the diffractive optical net-
work,  D2NN-D1, as a function of the spatial overlap percentage, ξ , for the first ( c1  = c2 ) and the second ( c1 = c2 ) 
group of test input images, respectively. When c1  = c2 as in Fig. 7c, the optical inference accuracy is hindered by 
the increasing amount of spatial overlap between the two input phase objects, as in this case, the spatial features 
of the effective input transmittance function significantly deviate from the features defining the individual data 
classes. In the other case shown in Fig. 7d, i.e., c1 = c2 , the relationship between the spatial overlap ratio ξ and the 
blind inference accuracy is reversed, since, with c1 = c2 , increasing ξ means that the effective phase distribution 
at the input plane resembles more closely to a single object/digit. The same behavior can also be observed for the 
other diffractive optical networks,  D2NN-D1d,  D2NN-D2 and  D2NN-D2d, reported in Fig. 7e–j, respectively.

Although our forward model during the training assumes that the input field-of-view contains two overlap-
ping phase objects, we further tested the behavior of our diffractive models,  D2NN-D1d and  D2NN-D2d, for a 
hypothetical case, where more than two objects are present simultaneously at the input field-of-view as illustrated 
in Supplementary Fig. 5. Specifically, we conducted two different types of tests. In the first one, we created input 
objects with N = 3 , N = 4 and N = 5 spatially-overlapping phase-encoded handwritten digits from different 
classes and quantified the accuracy of the diffractive optical networks in determining the classes of the input 
objects correctly based on argmaxn, where n = 2, 3, ..,N . As shown in Supplementary Fig. 5, with N = 5 phase 
objects spatially-overlapping within the same input field-of-view,  D2NN-D1d can still correctly classify at least 
two of the overlapping objects, i.e., n = 2 , with an accuracy of 84.06% despite the severe contamination of the 

Table 1.  The summary of the optical blind inference accuracies achieved by the presented diffractive optical 
networks on test sets  T2 and  T1 along with some input examples from these datasets.

Test set

  

Diffractive network Accuracy (%) Accuracy (%)

D2NN-D1 82.70 90.59

D2NN-D1d 85.82 93.30

D2NN-D2 82.61 93.38

D2NN-D2d 85.22 94.20
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spatial information due to the presence of the additional input objects. On the other hand, the classification per-
formance of the diffractive network decreases to 48.27%, 15.17% and 2.01% when it is asked to correctly classify 
n = 3 , n = 4 and n = N = 5 of the input objects that are simultaneously present at the input (see Supplementary 

Figure 6.  Reconstruction of spatially overlapping phase images using a diffractive optical front-end (encoder) 
and a separately trained, shallow electronic neural network (decoder) with 2 hidden layers. The front-end 
diffractive optical networks are (a)  D2NN-D1, (b)  D2NN-D1d, (c)  D2NN-D2, and (d)  D2NN-D2d, shown in 
Figs. 2a, 3a, 4a and 5a, respectively. The detector layouts at the output plane of these diffractive optical networks 
are (a) D-1, (b) D-1d, (c) D-2, and (d) D-2d with 2M , 4M , M + 2 and 2M + 2 single pixel detectors as shown in 
Fig. 1b-d, respectively; for handwritten digits M = 10 . These four designs create a compression ratio of 39.2 × , 
19.6 × , 65.33 × and 35.63 × between the input and output fields-of-view of the corresponding diffractive optical 
network, respectively. The mean SSIM and PSNR values achieved by these phase image reconstruction networks 
are depicted in Table 2 along with the corresponding standard deviation values computed over the 10 K test 
input images  (T2).



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8446  | https://doi.org/10.1038/s41598-022-12020-y

www.nature.com/scientificreports/

Fig. 5a). This performance degradation is mainly because the diffractive optical network has never seen more than 
two objects overlapping at the input field-of-view during its training phase. To further explore the impact of the 
number of overlapping phase objects used during the training phase on the blind testing accuracy, we extended 
the detector configuration depicted in Fig. 1c, D-1d, to accommodate 2 × 5 M = 100 single-pixel detectors and 
trained from scratch a new diffractive optical network that was tasked to classify 5 overlapping handwritten digits. 
Compared to the classification performance of the  D2NN-D1d shown in Fig. 3 with N = 5 spatially-overlapping 
phase objects, this new diffractive network achieved much higher classification accuracies, reaching 99.66%, 
93.37%, 55.63% and 12.62% for n = 2 , n = 3 , n = 4 and n = N = 5 , respectively (see Supplementary Fig. 6).

In the second testing scheme, we created input phase objects with N = 4, 6, 8, 10 and 12 spatially-overlapping 
digits from the same data class and quantified the performance of the diffractive networks in understanding that 
the objects inside the field-of-view represent only one data class/digit. The classification accuracies attained by 
 D2NN-D1d and  D2NN-D2d, in this case, stay above > 92% up to 4 overlapping samples from the same data class, 
with the former and the latter diffractive optical network achieving 92.81% and 92.88%, respectively. On the 
other hand, if more than 5 objects are overlapping within the input field-of-view, the classification accuracies of 
both of the diffractive models decrease below 80%, hinting at a significant spatial information loss caused by the 
superposition of a large number of input phase objects (see Supplementary Figs. 5b and 5d).

 Next, to test the generalization of the presented diffractive optical framework over different datasets, we 
trained two new separate diffractive optical networks (each with 5 diffractive layers) that were tasked with 
the classification of spatially-overlapping, phase-encoded objects from a more challenging image dataset, i.e., 
Fashion-MNIST. In these two diffractive optical networks, the detector designs were identical to D1d and D2d 
shown in Fig. 1c,e, respectively. While the  D2NN-D1d shown in Fig. 3 can achieve 85.82% accuracy for the 
classification of overlapping handwritten digits, its equivalent (see Supplementary Fig. 7) that is trained and 
tested on Fashion-MNIST dataset can attain 73.28% bling testing accuracy for the classification of overlapping, 
phase-encoded fashion products. The same comparison also reveals a similar classification accuracy for the 
 D2NN-D2d model, which can classify the phase-encoded, spatially-overlapping fashion products within the 
input field-of-view with a classification accuracy of 72.21% (see Supplementary Fig. 8). In addition, we combined 
these two diffractive optical networks classifying overlapping fashion products with shallow, electronic image 
reconstruction networks, each having only 2 hidden layers. The structural quality of the images reconstructed 
by these subsequent shallow electronic networks using only the all-optical classification signals synthesized by 
the corresponding diffractive optical networks is still very good as shown in Supplementary Fig. 9. In summary, 
to the best of our knowledge, this manuscript reports the first all-optical multi-object classification designs 
based on diffractive optical networks demonstrating their potential in solving challenging classification and 
computational imaging tasks in a resource-efficient manner using only a handful detectors at the output plane. 
In the context of optical classification and reconstruction of overlapping phase objects, also resolving the phase 
ambiguity due to the spatial overlap of input images, this study exclusively focuses on a setting where the thin 
input objects are only modulating the phase of the incoming waves, and absorption is negligible. Without loss 
of generality, the presented diffractive design schemes with the associated loss functions and training methods 
can also be extended to applications, where the input objects partially absorb the incoming light.

Methods
Optical forward model of diffractive optical networks. D2NN framework formulates a given 
machine learning e.g., object classification or inverse design task as an optical function approximation problem 
and parameterizes that function over the physical features of the materials inside a diffractive black-box. As is 
the case in this study, this optical black-box is often modeled through a series of thin modulation layers con-
nected by the diffraction of light waves. Here, we focused our efforts on 5-layer diffractive optical networks as 
shown in Fig. 1a, each occupying an area of  106 �× 106 � on the lateral space with � denoting the wavelength 
of the illumination light. The modulation function of each diffractive layer was sampled and represented over a 
2D regular grid with a period of 0.53 � resulting in N = 200× 200 different transmittance coefficients, i.e., the 
diffractive ‘neurons’. Based on the 0.53 � diffractive feature size, we set the layer-to-layer axial distance to be 40 � 
to ensure connectivity between all the neurons on two successive layers.

Following the same framework used in earlier demonstrations of diffractive optical networks with 3D printed 
 layers4,6,8, we selected the diffractive layer thickness, h , as a trainable physical parameter dictating the transmit-
tance of each neuron together with the refractive index of the material. To limit the material thickness range 

Table 2.  The comparison of the presented diffractive optical networks, in terms of (1) all-optical overlapping 
object classification accuracies on  T2 and (2) the quality of the image reconstruction achieved through 
separately-trained, shallow, electronic networks (decoder). The mean SSIM and PSNR values and their 
standard deviations were computed over the entire 10 K blind test inputs  (T2).

Optical classification Image reconstruction

Diffractive network Number of detectors ( M = 10) Accuracy on  T2 (%) SSIM PSNR (dB)

D2NN-D1 2 M 82.70 0.52 ± 0.12 15.09 ± 2.32

D2NN-D1d 4 M 85.82 0.57 ± 0.10 16.02 ± 2.21

D2NN-D2 M + 2 82.61 0.49 ± 0.10 14.55 ± 2.17

D2NN-D2d 2 M + 2 85.22 0.57 ± 0.12 15.60 ± 2.37
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Figure 7.  The variation in the optical blind inference accuracies of the presented diffractive optical networks as a function of 
the spatial overlap percentage (ξ) between the two input phase objects. (a) Sample input images from the test set  T2 containing 
overlapping phase objects from different data classes along with the corresponding overlap percentages, ξ . (b) Same as (a), except the 
overlapping objects are from the same data class. (c) The blind inference accuracy of the diffractive optical network,  D2NN-D1, as a 
function of the overlap percentage, ξ , and the histogram of ξ , for test inputs in  T2 that contain phase objects from two different data 
classes. (d), Same as (c), except that the test inputs contain phase objects from the same data class. (e,f), Same as (c,d), except, the 
diffractive optical network design is  D2NN-D1d. (g,h), Same as (c,d), except, the diffractive optical network design is  D2NN-D2. (i,j), 
Same as (c,d), except, the diffractive optical network design is  D2NN-D2d.
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during the deep learning-based training, h is defined as a function of an auxiliary, learnable variable, ha , and a 
constant base thickness, hb,

where the function, Q∗(.) represents the *-bit quantization operator and hm is the maximum allowed material 
thickness. If the material thickness over the ith diffractive neuron located at 

(
xi , yi , zi

)
 is denoted by h

(
xi , yi , zi

)
 , 

then the resulting transmittance coefficient of that neuron, t
(
xi , yi , zi

)
 , is given by,

where n(�) and κ(�) are the real and imaginary parts of complex-valued refractive index of the diffractive mate-
rial at wavelength, � . Following the earlier experimental demonstrations of diffractive optical networks, in this 
work we set the n(�) and κ(�) values to be 1.7227 and 0.031,  respectively8. The parameter ns in Eq. (5) refers to 
the refractive index of the medium, surrounding the diffractive layers; without loss of generality, we assumed 
ns = 1 (air). Based on the outlined material properties, the hm and hb in Eq. (4) were selected as 2λ and 0.66λ, 
respectively, ensuring that the phase modulation term in Eq. (5), (n(�)− ns)

2πh(xi ,yi ,zi)
�

 , can cover the entire 
[0-2π] phase modulation range per diffractive feature/neuron.

In this work, the light propagation between the diffractive layers was modeled using the Rayleigh-Sommer-
feld diffraction integral, which assumes that the propagating light can be expressed as a scalar field. The exact 
modeling and computation of the light field diffracted by subwavelength features, in general, require the use 
of vector diffraction  theory27,28. On the other hand, since we assume that (1) the diffractive layers are axially 
separated from each other by several tens of wavelengths, without carrying forward any evanescent fields, and 
(2) the smallest feature size on a diffractive layer is approximately half a wavelength, the use of scalar fields to 
represent the spatial information flow within a diffractive optical network is an acceptable approximation, just 
like employed in the simulation/modeling of diffraction-limited holographic imaging or display systems. In fact, 
various experimental demonstrations of 3D-fabricated diffractive optical networks designed using the same 
scalar field theory were reported in the  literature1,4,6,8,12,29, confirming the validity of this assumption. According 
to the Rayleigh-Sommerfeld theory of diffraction, a neuron located at 

(
xi , yi , zi

)
 can be viewed as the source of 

a secondary wave,

where r denotes the radial distance 
√
(x − xi)

2 +
(
y − yi

)2
+ (z − zi)

2 . Based on this, the output wave emanat-
ing from the ith neuron on the kth layer, uki

(
x, y, z

)
 can be written as,

The term 
N∑
q=1

uk−1
q

(
xi , yi , zi

)
 in Eq. (9) represents the wave incident on the ith neuron on the kth layer, generated 

by the neurons on the previous, (k − 1)th diffractive layer.
In this study we also assumed that the transmittance function inside the input field-of-view, Tin

(
x, y

)
 , covers 

an area of 53 � × 53 � and without loss of generality, it is illuminated with a uniform plane wave. At the output 
plane, the width of each single-pixel detector was set to be 6.36 � on both x and y directions for all four output 
detector configurations shown in Fig. 1b–d. Based on the outlined optical forward model, the diffractive opti-
cal networks process the incoming waves generated by the complex-valued transmittance function, Tin

(
x, y

)
 , 

formed by the overlapping thin phase objects and synthesize a 2D intensity distribution at the output plane for 
all-optical inference of the classes of the overlapping objects. The optical intensity distribution within the active 
area of each output detector is integrated to form elements of the vector, I in Eq. (1). The number of elements 
in this optical signal vector, I , is equal to the number of output detectors, thus its length is 2M , 4M, M + 2 and 
2M + 2 for  D2NN-D1,  D2NN-D1d,  D2NN-D2 and  D2NN-D2d, respectively. As part of our forward training 
model, I is normalized to form, I ,

where the coefficient c in Eq. (8) serves as the temperature parameter of the softmax function depicted in Eq. (3), 
and it was empirically set to be 0.1 for training of all the diffractive optical networks. It is important to note that 
this normalization step in Eq. (8) is only used during the training stage, and once the training is finished, the 
forward inference directly uses the detected intensities to decide on the object classes based on the corresponding 
decision rules. While the vector I  is directly used in Eq. (3) for the  D2NN-D1 network, in the case of  D2NN-D1d, I  
is split into two vectors of length 2M , i.e., I+ and I− , representing the signals collected by the positive and negative 
detectors, and the associated differential signal is computed as �I = I+ − I− . Accordingly, during the training 
of  D2NN-D1d, the loss function depicted in Eq. (3), were computed using �I instead of I .

(4)h = Q4

(
sin (ha)+ 1

2
(hm − hb

)
)+ hb,

(5)t
(
xi , yi , zi

)
= exp

(
−
2πκ(�)h

(
xi , yi , zi

)

�

)
exp

(
j(n(�)− ns)

2πh
(
xi , yi , zi

)

�

)
,

(6)wi

(
x, y, z

)
=

z − zi

r2

(
1

2πr
+

ns

j�

)
exp

(
j2πnsr

�

)
,

(7)uki
(
x, y, z

)
= wi

(
x, y, z

)
t
(
xi , yi , zi

) N∑

q=1

uk−1
q

(
xi , yi , zi

)
.

(8)I =
I

cmax {I}
.
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For the diffractive optical network  D2NN-D2, the output of the normalization defined in Eq. (8) was split 
into two: IM and IQ . The first part, IM , represents the optical signals coming from the M class specific detectors 
in the detector layout D-2 (the gray detectors Fig. 1d). The latter, IQ , contains two entries describing the positive 
and the negative parts of the indicator signals, ID+

Q
 and ID−

Q
 (see the blue detectors Fig. 1d). These two extra detec-

tors, 
{
D+
Q ,D

−
Q

}
 , form a differential pair that controls the functional form of the class decision rule based on the 

sign of the difference between the optical signals collected by these detectors. We accordingly determine the class 
assignments as follows,

To enable the training of diffractive optical networks according to the class assignment rule in Eq. (9), we 
defined a loss function, L = LQ + Lc , that corresponds to the superposition of two different penalty terms, LQ 
and Lc . Here, LQ represents the error computed with respect to the binary ground truth indicator signal, gQ,

Accordingly, LQ was defined as,

where σ(·) denotes the sigmoid function. The classification loss, Lc , on the other hand, is identical to the cross-
entropy loss depicted in Eq. (3), except that the vector I is replaced with IM . Unlike the previous diffractive optical 
networks  (D2NN-D1 and  D2NN-D1d), the forward model of the diffractive optical networks trained based on 
the output detector layout D-2 do not require multiple ground truth vector labels. Simply the ground truth label 

vector of a given input field-of-view is defined as g =
g1+g2

2  satisfying the condition, 
M∑
1
gm = 1.

In the case of  D2NN-D2d, the vector I  contains 3 main parts, IM+ , IM− and IQ where IM+ and IM− are length 
M vectors containing the normalized optical signals collected by the detectors representing the positive and 
negative parts of the final differential class scores �IM = IM+ − IM− . Accordingly, in the associated forward 
training model, the intensity vector IM in Eq. (9) is replaced with the differential signal, �IM .

Testing of diffractive optical networks on the dataset  T1. During the blind testing of the presented 
diffractive optical networks on the test set  T1, the class estimation solely uses the argmax operation, searching 
for the highest class-score synthesized by the diffractive optical networks, based on the associated output plane 
detector layouts shown in Fig. 1. The purpose of this performance quantification using  T1 is to reveal whether 
the diffractive optical networks trained based on overlapping input phase objects can learn and automatically 
recognize the characteristic spatial features of the individual handwritten digits (without any spatial overlap). 
For this goal, in the case of  D2NN-D1 and  D2NN-D1d, the class estimation rule in Eq. (1) was replaced with, 
mod

(
argmax (I),M

)
 and mod

(
argmax (�I),M

)
 , respectively. Since the input images in the test set  T1 con-

tain single, phase-encoded handwritten digits without the second overlapping phase object, the optical signals 
collected by the detectors, 

{
D+
Q ,D

−
Q

}
 , at the output plane of the diffractive optical networks  D2NN-D2 and 

 D2NN-D2d become irrelevant for the classification of the images in  T1. Therefore, the decision rule in Eq. (9) is 
simplified to argmax (IM) and argmax (�IM) for the all-optical classification of the input test images in  T1 based 
on the diffractive optical networks  D2NN-D2 and  D2NN-D2d, respectively.

Architecture and training of the phase image reconstruction network. The phase image recon-
struction electronic neural networks (back-end) following each of the presented diffractive optical networks 
(front-end) include 4 neural layers. The number of neurons on their first layer is equal to the number of detectors 
at the output plane of the preceding diffractive optical network (D-1, D-1d, D-2 or D-2d, see Fig. 1a–d). The 
number of neurons, on the subsequent 3 layers are 100, 400, 1568, respectively. Note that the output layer of each 
image reconstruction electronic neural network has 2 × 28 × 28 neurons as it simultaneously reconstructs both of 
the overlapping phase objects, resolving the phase ambiguity due to the spatial overlap at the input plane. Each 
fully-connected (FC) layer constituting these image reconstruction networks applies the following operations:

where ρl+1 and ρl denote the output and input values of the lth layer of the electronic network, respectively. The 
operator LReLU stands for the leaky rectified linear unit:

The batch normalization, BN, normalizes the activations at the output of LReLU to zero mean and a standard 
deviation of 1, and then shifts the mean to a new center, β(l) , and re-scales it with a multiplicative factor, γ (l) , 
where β(l) and γ (l) are learnable parameters, i.e.,

(9)ĉ =

{ [
argmax (IM), argmax (IM)

]
, if ID+

Q
≥ ID−

Q

argmax2 (IM), otherwise.

}

(10)gQ =

{
1, if c1 = c2
0, otherwise

}
.

(11)LQ = −gQ log
(
σ

(
ID+

Q
− ID−

Q

))
−

(
1− gQ

)
log

(
1− σ

(
ID+

Q
− ID−

Q

))

(12)ρl+1 = BN{LReLU[FC{ρl}]}

(13)LReLU[x] =

{
x, if x ≥ 0
0.1x, otherwise

}
.
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The hyperparameter ε is a small constant that avoids division by 0 and it was taken as 10−3.
The training of the phase image reconstruction networks was driven by the reversed Huber (or “BerHu”) loss, 

which computes the error between two images, a
(
x, y

)
 and b

(
x, y

)
 , as follows:

The hyperparameter ϕ in Eq. (15) is a threshold for the transition between mean-absolute-error and mean-
squared-error, and it was set to be 20% of the standard deviation of the ground truth image.

If we let φp
(
x, y

)
 and φq

(
x, y

)
 denote the first and second output of each image reconstruction electronic 

network (i.e., 28 × 28 pixels per phase object), the image reconstruction loss, Lr , was defined as the minimum of 
two error terms, L′

r and L′′
r  , i.e.,

where φ1
(
x, y

)
 and φ2

(
x, y

)
 denote the ground truth phase images of the first and second objects, respectively, 

which overlap at the input plane of the diffractive optical network. As there is no hierarchy or priority difference 
between the input objects φ1

(
x, y

)
 and φ2

(
x, y

)
 , Eq. (16) lets the image reconstruction network to choose their 

order regarding its output activations.

Other details of diffractive optical network training. With the 0.53 � lateral sampling rate in our for-
ward optical model, the transmittance function inside the field-of-view, Tin

(
x, y

)
 , was represented as a 100× 100 

discrete signal. In our diffractive optical network training, the 8-bit grayscale values of the MNIST digits were 
first converted to 32-bit double format, normalized to the range [0,1] and then resized to 100× 100 using bilin-
ear interpolation. If we denote these normalized and resized grayscale values of the two input objects/digits that 
overlap at the input plane as θ1

(
x, y

)
 and θ2

(
x, y

)
 then the transmittance function within the input field-of-view, 

Tin

(
x, y

)
 , is defined as,

During the training of the presented diffractive optical networks, θ1
(
x, y

)
 and θ2

(
x, y

)
 are randomly selected 

from the standard 55 K training samples of MNIST dataset without replacement, meaning that, an already 
selected training digit was not selected again until all 55 K samples are depleted constituting an epoch of the 
training phase. In this manner, we trained the diffractive optical networks for 20,000 epochs, showing each optical 
network approximately 550 million different Tin

(
x, y

)
 during the training phase. Supplementary Fig. 10 illustrates 

the convergence curves of our best performing diffractive optical networks models  (D2NN-D1d and  D2NN-D2d) 
over the course of these 20,000 epochs. Similarly, to generate the input fields in test dataset  T2, we randomly 
selected θ1

(
x, y

)
 and θ2

(
x, y

)
 among the standard 10 K test samples of MNIST dataset, without replacement, and 

this was repeated two times providing us the 10 K unique phase input images of overlapping handwritten digits 
constituting  T2. In our  T2 test set, 8998 inputs contain overlapping digits from different data classes, while the 
remaining 1002 inputs have overlapping samples from the same data class/digit. The validation image set (Sup-
plementary Fig. 10), on the other hand, contains 5 K unique phase input images created by randomly selecting 
θ1
(
x, y

)
 and θ2

(
x, y

)
 among the standard 10 K test samples of MNIST dataset without replacement. Note that 

the θ1
(
x, y

)
 and θ2

(
x, y

)
 combinations used in the validation set of Supplementary Fig. 10 are not included in  T2 

to achieve true blind testing without any data contamination.
The overlap percentage, ξ , between any given pair of samples, θ1

(
x, y

)
 and θ2

(
x, y

)
 (see Fig. 7), is quantified by,

(14a)BN[x] = γ (l) ·
x − µ

(l)
B√

σ
(l)2
B + ε

+ β(l)

(14b)µB =
1

m

m∑

i=1

xi , σ 2
B =

1

m

m∑

i=1

(xi − µB)
2

(15)

BerHu(a, b) =
∑

x, y∣∣a
(
x, y

)
− b

(
x, y

)∣∣ ≤ ϕ

∣∣a
(
x, y

)
− b

(
x, y

)∣∣+
∑

x, y∣∣a
(
x, y

)
− b

(
x, y

)∣∣ > ϕ

[
a
(
x, y

)
− b

(
x, y

)]2
+ ϕ2

2ϕ

(16a)Lr = min
{
L
′
r ,L

′′
r

}
,

(16b)L
′

r =

[
BerHu

(
φp

(
x, y

)
,φ1

(
x, y

))
+ BerHu

(
φq

(
x, y

)
,φ2

(
x, y

))]

2
,

(16c)L
′′
r =

[
BerHu

(
φp

(
x, y

)
,φ2

(
x, y

))
+ BerHu

(
φq

(
x, y

)
,φ1

(
x, y

))]

2
,

(17)Tin

(
x, y

)
= ejπθ1(x,y)ejπθ2(x,y).

(18a)ξ1 =

∑
q

∑
p

∣∣sgn
(
θ2
(
xq, yp

))∣∣θ1
(
xq, yp

)
∑

q′
∑

p′ θ1
(
xq′ , yp′

) × 100,
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In Eqs. (18a) and ( 18b), ξ1 and ξ2 quantify the percentage of the input pixels that contain the spatial overlap 
with respect to θ1

(
x, y

)
 and θ2

(
x, y

)
 , respectively, and the final ξ is taken as the max of these two values.

For the digital implementation of the diffractive optical network training outlined above, we developed a 
custom-written code in Python (v3.6.5) and TensorFlow (v1.15.0, Google Inc.). The backpropagation updates 
were calculated using the  Adam30 optimizer with its parameters set to be the default values as defined by Tensor-
Flow and kept identical in each model. The learning rate was set to be 0.001 for all the diffractive optical network 
models presented here. The training batch size was taken as 75 during the deep learning-based training of the 
presented diffractive optical networks. The training of a 5-layer diffractive optical network with 40 K diffractive 
neurons per layer for 20,000 epochs takes approximately 24 days using a computer with a GeForce GTX 1080 
Ti Graphical Processing Unit (GPU, Nvidia Inc.) and Intel® Core ™ i7-8700 Central Processing Unit (CPU, Intel 
Inc.) with 64 GB of RAM, running Windows 10 operating system (Microsoft).
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