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Non‑volatile organic compounds 
in exhaled breath particles 
correspond to active tuberculosis
Dapeng Chen1*, Noella A. Bryden1, Wayne A. Bryden1, Michael McLoughlin1, 
Dexter Smith1, Alese P. Devin1, Emily R. Caton1, Caroline R. Haddaway1, Michele Tameris2, 
Thomas J. Scriba2, Mark Hatherill2, Sophia Gessner3, Digby F. Warner3 & Robin Wood4

Human breath contains trace amounts of non‑volatile organic compounds (NOCs) which might provide 
non‑invasive methods for evaluating individual health. In previous work, we demonstrated that lipids 
detected in exhaled breath aerosol (EBA) could be used as markers of active tuberculosis (TB). Here, 
we advanced our analytical platform for characterizing small metabolites and lipids in EBA samples 
collected from participants enrolled in clinical trials designed to identify molecular signatures of active 
TB. EBA samples from 26 participants with active TB and 73 healthy participants were processed using 
a dual‑phase extraction method, and metabolites and lipids were identified via mass spectrometry 
database matching. In total, 13 metabolite and 9 lipid markers were identified with statistically 
different optimized relative standard deviation values between individuals diagnosed with active 
TB and the healthy controls. Importantly, EBA lipid profiles can be used to separate the two sample 
types, indicating the diagnostic potential of the identified molecules. A feature ranking algorithm 
reduced this number to 10 molecules, with the membrane glycerophospholipid, phosphatidylinositol 
24:4, emerging as the top driver of segregation between the two groups. These results support the 
use of this approach to identify consistent NOC signatures from EBA samples in active TB cases. This 
suggests the potential to apply this method to other human diseases which alter respiratory NOC 
release.

Human exhaled air contains water vapor and trace amounts of organic materials including volatile organic 
compounds (VOCs), non-volatile organic compounds (NOCs), and particulate matter including  microbes1–5. 
Molecular characterization of these organic compounds provides a noninvasive method for the investigation of 
human  diseases5. Typically, human breath analysis uses a pre-concentration step to account for the low amounts 
of organic and biological molecules, usually in the parts per billion to parts per trillion  range1.

Since small gas molecules can be identified by relatively simple MS-based platforms, human breath analysis 
has focused on  VOCs6. For example, an MS with moderate resolution (R = 1000) has the capacity to resolve the 
molecular patterns of gas molecules. However, VOC analysis has a fundamental drawback as the endogenous 
metabolic origins of the molecules detected are poorly  understood6. Consequently, changes in VOC patterns 
might be caused by factors including internal gut and airway bacteria, host physiological state, or exogenous 
influences such as drinking, smoking, and  eating7. Changes in VOCs can also be caused by the inhalation of 
gases generated from environmental sources such as breath samplers and  bioaerosols6,7. As a result, changes 
in VOC fingerprints acquired from non-targeted sensors, such as MS and ion mobility spectrometry, do not 
necessarily represent individual phenotypes and could be falsely interpreted as disease biomarkers by pattern 
recognition tools, limiting their application in medical  diagnostics6,7. Therefore, there is a need for a compre-
hensive assessment of biomolecules in human breath for diagnostics, individual phenotyping, and respiratory 
disease monitoring.

NOCs in human exhaled air include metabolites, lipids, and proteins contained in exhaled water vapor 
(exhaled breath condensate, EBC) and exhaled breath aerosols (EBA)5. To date, the major setbacks to achieving 
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a better understanding of nonvolatile molecules have been instrument limitations and technical difficulties in 
the analysis of these large molecules. However, the introduction of high-frequency and ultrahigh-resolution MS 
has overcome these hurdles, creating exciting possibilities for the characterization of NOCs in human  breath8. 
Increase evidence suggests that particles contained in human exhaled air are associated with disease transmission, 
contributing to public health risks such as seasonal influenza, tuberculosis (TB), and the COVID-19  pandemic4,9. 
Given these findings, collection and characterization of NOCs are critical to establishing potential biomarkers 
for the detection of respiratory infection, medical diagnosis, disease screening, and performance  metrics5,10–12. In 
previous work, we demonstrated that detecting lipid markers using high-resolution MS could be used to identify 
active TB  cases5. Here, we applied advanced analytical approaches to 200 EBA samples acquired from clinical 
trials and evaluated the correlation between respiratory NOCs and TB  status13.

Results
NOC analysis of EBA samples from CORTIS participants. In total, 99 CORTIS trial participants, 
classified as either GeneXpert (GXP)-negative or GXP-positive, were included in this study. 200 EBA samples 
(including revisits for some participants) were collected at different clinical visits (Table 1, Fig. 1, and Supple-
mentary Table 1). Age, gender, and smoking status did not significantly correlate with TB status. All the study 
subjects were HIV negative. On the 1st visit, there were 26 GXP-negative participants and 20 GXP-positive 
participants; on the 2nd visit, there were 63 GXP-negative participants and 11 GXP-positive participants; and 
on the 3rd visit, there were 53 GXP-negative and 11 GXP-positive participants. All EBA samples were processed 
through 0.2 µm membrane filtration (see methods) in which the bioaerosol pellet was separated from the super-
natant. The concept of using dual-mobile phase extraction was based on the hydrophobicity of molecules. Since 
lipids are non-polar molecules, 70% isopropyl alcohol (IPA) is used for  elution14. The dual-mobile phase method 
enables us to extract both small metabolites (using 50% acetonitrile (ACN) solvent) and lipids (using 70% IPA 
solvent) from the same EBA sample, deepening the molecular identification and analysis in LC–MS/MS (Fig. 1).

Validation of the dual‑mobile phase extraction method. In our previous work, lipids were extracted 
using a classic Folch solvent separation  method5. Since the EBA samples were collected in ~ 10 mL of buffer 
solution, they required overnight lyophilization and centrifugation for extraction (Fig.  2A). These steps are 

Table 1.  Study participant information.

TB status Subjects Gender Age

HIV status Smoking status

Positive Negative Smoker Non-smoker

Negative 73
Female 47 (64%)

29.1 ± 10.3
0 45 16 29

Male 26 (36%) 0 26 22 4

Positive 26
Female 7 (27%)

33.7 ± 10.6
0 7 2 5

Male 19 (73%) 0 19 15 4

p value 0.92 NA 0.89

Figure 1.  CORTIS participant information and workflow for identification of NOCs from EBA samples. The 
total number of CORTIS study participants who tested negative (GXP-negative) or positive (GXP-positive) 
with GeneXpert MTB/RIF are shown. EBA samples were collected as previously  described5. A dual-mobile 
phase extraction method, utilizing 50% ACN and then 70% IPA, enabled extraction of small metabolites and 
lipids from the EBA samples. Extracted molecules were processed with LC–MS/MS and identified via database 
matching. Relative standard deviation (RSD) of each identified molecule was calculated for each group. 
Molecules with < 30% RSD were used for t-test between GXP negative and positive of each visit. Molecules 
showing statistical differences in all visits were used to generate receiver operating characteristic (ROC) curve 
and area under the curve (AUC) calculation. A feature ranking algorithm was used to show the importance of 
identified molecules.
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resource-intensive and difficult to manage at scale; therefore, in the current study, we applied our newly devel-
oped solid-phase extraction (SPE) approach, which uses a C18 resin column as the capture matrix. For the sam-
ple preparation, EBA samples were loaded directly into the column. After washing, small metabolite molecules 
and proteins, which are polar, were eluted using ACN (1st elution). Lipids, which are nonpolar, were eluted 
with 2-propyl alcohol (2nd elution, Fig. 2A). Three representative molecules—methadone, dilauroyl-sn-glycero-
3-phosphorylcholine (DLPC), and insulin—were used for method validation (Fig. 2B). Methadone and insulin 
were only detected in the 1st elution sample, not in the washed sample (Fig. 2C, red and green dots). DLPC sig-
nals were detected in the 2nd elution sample, which suggests efficient capture of lipid molecules by the C18 resin. 
The SPE-based sample preparation was rapid, with the separation process taking ~ 3 min per sample, and the use 
of a C18 resin column makes it adaptable to automation. Notably, dual mobile phases for polar and nonpolar 
molecule separation have been used by others, reinforcing the reliability and reproducibility of this  approach15.

Molecular profiles of EBA samples with liquid chromatogram and MS. The total ion chromato-
gram of extracted small metabolites and lipids in EBA samples showed that molecular signals were acquired 
in EBA samples when compared to blank samples (Fig. 3A, blue, green, and orange lines). Representative total 
ion chromatograms of small metabolites in EBA samples from GXP-positive and GXP-negative participants 
revealed no obvious differences between the two groups, suggesting a deeper analysis was required (Fig. 3B). In 
total, ~ 500 features were extracted from small metabolite analysis and ~ 330 features were extracted from lipid 
analysis (Fig. 3C,D). No statistical difference was observed between the two groups based on the feature num-
bers. Both small metabolite and lipid analyses with MS achieved outstanding dynamic range: ~ 5 magnitudes 
in small metabolite profiles and ~ 4 magnitudes in lipid profiles (Fig. 3E,F). The high similarity among LC–MS 
profiles and the identified molecule numbers suggested decent technical repeatability of our method.

Selection of definitive molecules in each study group. A global correlation heat map demonstrates 
that molecular profiles could be used to segregate the two groups of study participants with GXP-negative and 
GXP-positive participants exhibiting clear correlations by Pearson correlation coefficient analysis (Fig.  4A). 
The relative standard deviation of each feature of either GXP-negative or GXP-positive samples was calculated 

Figure 2.  Method development for the separation of small molecules and lipids from one sample using duel 
mobile phase solvents. (A) Comparison between the classic Folch method and the solid-phase extraction (SPE)-
based method developed in this work, which incorporates dual-mobile phase extraction. (B) Mass spectra of 
three representative molecules were used to validate the dual-mobile phase extraction method. (C) Recorded 
ion intensities of three representative molecules in either washing or eluting solutions.
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(Fig. 4B–E). A 30% threshold was used to select features in each group for statistical analysis (Fig. 4B–E, red 
line), resulting in 347 small metabolites and 217 lipids in the GXP-negative group, and 325 small metabolites and 
198 lipids in the GXP-positive group (Fig. 5A). The distributions of ion intensity for 10 representative molecules 
in each participant group were identified as proline, all-trans-retinoic acid (RA), chalcone (CC), 5-hydroxyin-
dole-3-acetic acid (HIAA), D-2-Aminobutyric acid (D2AA), uridine, cholesteryl ester (CE) 16:4, ceramide (Cer) 
8:0, diacylglycerol (DG) 21:1, phosphatidylethanolamine (PE) 24:2, phosphatidylinositol (PI) 20:3, and phos-
phatidylserine (PS) 5:3 (Fig. 5 B,C).

Identification of 22 metabolite and lipid molecules associated with active TB status. Metabo-
lites and lipids that were statistically significant by t-test are identified in the volcano plots (Fig. 6A,B, Supplemen-
tal Table 2). The molecules that were statistically significant at all three visits are marked red dots (Fig. 6A,B). In 
summary, 22 molecules—including 13 metabolites and 9 lipids—were identified that were statistically significant 
in 2-tailed t-test between the two groups at all three visits (Figs. 6A,B and 7). The data normal distribution of 22 
molecules was confirmed with Shapiro–Wilk test (Supplemental Table 3). The threshold in p values for selecting 
these 22 molecules in the volcano plots was defined as p < 0.05 (− Log10 = 1.3). We did not define the threshold 

Figure 3.  Overview of molecular profiles of EBA samples with liquid chromatography and high-resolution MS. 
(A) Total ion chromatograms of control samples and EBA samples. (B) Representative total ion chromatograms 
of small metabolites from GXP-positive and GXP-negative participants. (C) Feature distributions of small 
metabolites from three visits of GXP-positive and GXP-negative participants. (D) Feature distributions of lipids 
in three visits of GXP-positive and GXP-negative participants. (E) Dynamic range of small metabolites detected 
across all study participants. (F) Dynamic range of lipids detected across all study participants.

Figure 4.  Overview of study participant correlation and individual feature deviations. (A) Global correlation 
heatmap of study participants. Distribution of relative standard deviation values of metabolites and lipids in 
(B, C) GXP-negative and (D, E) GXP-positive study participants. The red dashed lines indicate 30% relative 
standard deviation threshold.
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for the fold changes. If the threshold is defined as fold change larger than ± 1.5 (log2 = 0.58), fewer molecules will 
meet this criterion (Supplemental Table 2).

We then evaluated the utility of the identified metabolites and/or lipids to distinguish GXP-negative from 
GXP-positive participants by generating ROC curves and calculating AUC values (Fig. 8A). The AUC for metabo-
lites was ~ 87% (95% confidence interval: 0.832–0.919) and 93% (95% confidence interval: 0.889–0.971) for lipids 
to differentiate between GXP-negative and GXP-positive study participants. When combined with metabolites 
and lipids, the AUC was slightly higher than using lipids only, ~ 97% (95% confidence interval: 0.926–0.986) 
for the differentiating between GXP-negative and GXP-positive participants (Fig. 8A). The correlation between 
the identified molecules was investigated by Pearson correlation coefficient analysis (Fig. 8C), with the heatmap 
identifying seven molecules (Cer 8:0, uridine, PS 24:4, DG O-8:0, NAM, PI 20:4, PI 18:4) with the highest cor-
relation. In our previous work, we used significance analysis of microarrays (SAM) to identify those features 
with the most separation  power5. Applying SAM analysis to the current dataset revealed 10 molecules (Fig. 8B) 
that were significantly different between GXP-positive and GXP-negative samples, with PS 24:4 emerging as the 
top driver of segregation between the two groups.

Discussion
Investigations of the molecular composition of human breath have predominantly focused on  VOCs6. This bias 
is driven largely by the availability of analytical tools to extract and evaluate VOCs in a comprehensive manner, 
such as gas absorption tubes, electronic chemical sensors, and low-resolution  MS6,7. As a result, thousands of gas 
molecular signatures can be acquired and used for pattern recognition and fingerprint  analysis1. However, there 
is a critical need for improved tools for NOC analysis given their biological relevance, including both host and 
pathogen proteins, lipids, metabolites, and nucleic  acids2–5,16,17. In this study, we advanced the analytical approach 
to extract NOCs from EBA samples that were collected from well-defined study  groups13. Coupling our dual 

Figure 5.  Identification of definitive features in GXP-negative and GXP-positive groups. (A) Numbers of 
metabolites and lipids identified in each study group at each visit. (B) The five most abundant metabolites and 
lipids identified in (B) GXP-negative and (C) GXP-positive study participants. Blue, green, and orange circles 
indicate the numbers of identified molecules at each visit.
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mobile phase extraction methodology with high-resolution MS, rich molecular signatures were acquired. This 
methodology allows for identification of individual molecules providing high separation power. We demonstrate 
here the potential use of metabolite and lipid profiles to differentiate active TB cases from other study subjects.

The presence of polar metabolites and non-polar lipids in NOCs poses a challenge in applying a universal 
extraction method for the comprehensive characterization of molecules in EBA. Phase extraction methods based 

Figure 6.  Statistical differences in molecular profiles for GXP-negative and GXP-positive groups at each 
visit. Volcano plots of GXP-positive/GXP-negative fold change and t-test p values for (A) metabolites and (B) 
lipids at each visit. Red dots indicate that the identified molecules were statistically different between the two 
groups in all three visits. The blue dashed lines indicate p-value of 0.05, which is log-transferred in the y-axis: 
−  Log10(0.05) = 1.3.

Figure 7.  Standard error distribution of metabolites and lipids that were significantly different in GXP-
negative and GXP-positive groups across all three visits. Red crosses indicate the mean values. G6P: 
d-glucosamine-6-phosphate; AMP: adenosine monophosphate; BA: butanoic acid; PA: palmitic acid; NAM: 
n-acetylmuramic acid; PHE: phenylalanine; HA: hyocholic acid; GLN: glutamine; iPEN: isopentenyladenine; PS: 
phosphatidylserine; Cer: ceramides; PI: phosphatidylinositol; DG: diacylglycerol; PC: phosphatidylcholine; TG: 
triglycerides.
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on organic solvents, such as Folch extraction, can be used, but are resource-intensive and time-consuming as sev-
eral organic solvents and drying procedures are  required5. While improvements have been made, solvent-based 
molecule extraction methods are not useful for sample processing at scale. Inspired by absorption materials used 
in conventional liquid chromatography and solid-phase extraction, we developed a dual-mobile phase extrac-
tion method, using a self-packed C18 column to separately capture both polar and non-polar molecules from 
the same  sample14. The method is based on the different affinity of metabolites and lipids to the C18 functional 
group. Conventional acetonitrile can be used to elute metabolites, while the harsher solvent, IPA, is required 
to elute non-polar  lipids14. In fact, switching the solvent system to achieve a more comprehensive analysis has 
been done previously in liquid  chromatography15. We validated our approach using three different representative 
molecules: methadone for metabolites; DLPC, a lung surfactant, for lipids; and insulin for small peptides and 
proteins. Our results indicate that the dual-phase extraction method is rapid and with high recovery rate. Using 
this approach, we extracted hundreds of molecular features from individual EBA samples. Although proteins 
are of great interest for biological analysis given that their origin (host versus pathogen) can be easily ascribed, 
our initial analysis yielded minimal to no protein content in EBA samples. Consequently, our extraction and 
analysis focused on metabolites and lipids—though it is likely that an additional filter cutoff may be applied to 
separate small metabolites and large protein molecules.

MS generates thousands of signals suggesting feature pre-selection is required to achieve a confident analysis. 
In our study, we aimed to select the molecules most definitively associated with disease status by identifying 
precise and repeatable individual molecules in GXP-negative and GXP-positive study groups. To start, back-
ground ion signals and signals contributing to non-biological information were first excluded by the control 
blank samples. In addition, to improve data repeatability, a desired relative standard deviation cutoff was applied 
to identified molecules in each group, resulting in a list of features that showed the least variation. The advantage 
of this approach is that molecules of statistical significance will be more reproducible as more study subjects are 
available. However, the main drawback for this feature-reducing approach, especially in studies with small sub-
ject numbers, is the potential to eliminate important  features5. However, the limitations of this approach should 
be recognize. The main drawback is the possibility of eliminating important features, a real risk in studies with 
small numbers of  subjects5. An alternative solution is to assign the false-discovery rate (FDR) to each feature 
and include only significant features in data analysis.

TB molecular diagnosis relies heavily on nucleic acid amplification technologies (NAATs) such as GeneXpert 
MTB/RIF  assay18. An acknowledged limitation of this assay is its dependence on the production of high-quality 
sputum  specimen18. Therefore, there is interest in the development of a non-sputum specimen collection method 
and molecular diagnositic assay that does not require expensive  reagents5. Considering MS has been used in the 
clinical labs for microorganism identification, we evaluated molecular signatures revealed by MS acquired in 
EBA samples for potential biomarkers in active TB cases.

Our approach identified 22 molecules that were statistically different between GXP-negative and GXP-positive 
cases. For biomarker discovery using metabolomics and lipidomics, it is expected that a prediction model can 
be developed that groups molecules to predict a diagnosis. However, to avoid over-fitting, the prediction model 
needs to include the simplest combination of features that provide the most precise prediction. Several artificial 
intelligence/machine learning (AI/ML) programs, such as neural networks and decision trees, can be used for 
this  purpose5,19. Nevertheless, in this study we investigated the correlation of metabolites and lipids and the 

Figure 8.  Significance analysis of metabolites and lipids differentiating GXP-negative and GXP-positive groups. 
(A) AUC values for logistic regression models using identified molecules. (B) Feature ranking analysis of 
metabolites and lipids based on significance analysis of microarrays (SAM) algorithm. (C) Correlation heatmap 
of metabolites and lipids based on Pearson correlation coefficient analysis. Red dots indicate increasing and 
green dots indicate decreasing in GXP-positive.
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importance of each molecule via Pearson’s and SAM. The results indicated lipid molecules offered better separa-
tion power than metabolites. More specifically, lipid molecules showed a stronger correlation as well as ranked 
higher in the feature importance evaluation. This notion is further supported by the ROC curves and AUC 
calculation as lipids alone contributed to ~ 93% segregation with only a slight improvement in the score with the 
addition of metabolite markers. Our results need to be carefully interpreted for diagnostic applications. More 
analysis, such as multiple comparison correlations, including training/validating sets, evaluating over/under-
fitting, and sample size estimation, should be added to address the potential clinical implications.

We previously demonstrated that molecules identified from human exhaled air samples overlap with mol-
ecules present in blood. In the current work, we identified molecules which have been reported in other studies 
that used blood specimens for biomarker discovery in active  TB20–22. For example, Feng and coauthors investi-
gated serum metabolic profiles of 271 participants using LC–MS and reported that 12 metabolites contributed to 
the segregation between active TB and control groups with multiple logistic regression  analysis21. Among those 
metabolites, palmitic acid was found to be lower in the active TB group, which is consistent with our observation 
that palmitic acid was decreased in EBA samples collected from active TB cases. In another study, Weiner and 
coauthors reported a serum metabolic panel that could be used to distinguish between TB patients and healthy 
 individuals22. That panel consisted of 20 metabolites, including phenylalanine which was slightly elevated in active 
TB patients, consistent with our findings. Using non-targeted metabolic analysis of plasma samples, Frediani and 
coauthors reported over 23,000 metabolites, of which 61 were found to be associated with pulmonary  TB21; this 
included phosphatidylinositol, which was identified from one of 3 patients with multidrug-resistant tuberculo-
sis (MDR-TB) and only one of 17 smear-negative adults, suggesting that this molecule was upregulated in TB 
subjects. In our study, two phosphatidylinositol species, PS 18:4 and PS 20:4, were prominent in active TB cases, 
with PS 24:4 showing the most separation power. Since this molecule is present commonly in both humans and 
M. tuberculosis, its source in active TB cases is unclear. On the other hand, it was noted that NAM, a common 
precursor of bacterial cell wall peptidoglycan, was much higher in GXP-positive cases.

Several limitations in data analysis should be acknowledged in our study. This study separated samples into 
sub-datasets based on study subjects’ clinical visits to reduce features. We were able to reduce the features from 
thousands to hundreds. However, the major drawback is that the 2-tailed t-test was conducted on a much smaller 
sample size that would identify less significant features. Therefore, we suggest that different feature reduction 
approaches should be conducted to optimize the results. We reported raw p values in the 2-tailed t-test. How-
ever, since the statistics were applied to the datasets containing more features than samples, the false discovery 
rate (FDR) needs to be considered, and the adjusted p values must be calculated. FDR adjustment should be 
a routine for metabolomic and lipidomic studies. However, they are not always reported by researchers. We 
reported adjusted p values using FDR thresholds between 0.05 and 0.2 (Supplemental Table 4). The metabolomic 
datasets showed that some features are no longer significant after an FDR of 0.05 was applied. The same trend 
is also observed when an FDR of 0.1 was applied. However, all features show significance when an FDR of 0.2 
was applied. In the lipidomic datasets, all features still show significance after an FDR of 0.05 was applied, which 
agrees with the ROC curves in Fig. 8, from which we saw that lipids showed a stronger separation power than 
metabolites. Therefore, we suggest that the 22 molecules need to be further evaluated in another independent 
cohort study for diagnostic and therapeutic purposes.

Conclusions
In this study, we demonstrated that rich NOCs can be extracted from human exhaled breath using an advanced 
analytical approach and the analysis could provide an attractive solution for human disease diagnosis. We 
advanced NOC analysis in human breath in several aspects. Using a comprehensive molecule extraction method, 
we have shown that hundreds of metabolites and lipids can be collected from human breath. Most importantly, 
the extraction method is rapid and has the potential to be used for high-volume sample processing in a clinical 
setting. By integrating MS-based non-targeted omics and sophisticated data analysis, we demonstrated that 
identified molecule signatures can differentiate active TB cases from healthy individuals based on the assigned 
importance of each molecule.

Materials and methods
Ethics statement and patient information. Written informed consent was acquired from all study 
participants and the study was approved by the University of Cape Town Human Research Ethics Committee 
(Reference number HREC680/2013). All experiments conducted in this study were performed in accordance 
with the relevant guidelines and regulations. In this study, we included 99 study participants. Since some study 
participants made multiple clinical visits and EBA samples were collected from each visit, the total sample size 
was 200. The study participants’ gender, age, HIV status, smoking status, and clinical visit times are included 
in Table 1 and Supplementary Table 1. Generally, exhaled breath aerosols and particles were collected in 10 mL 
of phosphate-buffered saline solution (PBS) using a wetted-wall cyclone air sampler (Coriolis µ Biological Air 
Sampler, Bertin Instruments, Montigny-le-Bretonneux, France) located in the respiratory aerosol sample cham-
ber (RASC)5,16,17. For each study participant, collection was conducted for 60 min with an air flow rate of 240 L 
per minute. After collection, the liquid samples were processed with 0.2 µm polycarbonate filters (Sterlitech 
Corporation, WA, USA) to collect the bioaerosol pellets. The state of TB in the study participants was based on 
analysis of the bioaerosol pellet using GeneXpert PCR. The participants were identified as GeneXpert MTB/RIF 
(GXP-positive) or GXP-negative (control group). The supernatant from the filtration step was processed by dual 
phase extraction and analyzed by mass spectrometry (LC–MS/MS) as described in the following.
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Dual‑phase extraction of metabolites and lipids in EBA samples. Chemicals and reagents were 
used in this study are either HPLC or MS-grade and commercially acquired from Fisher Scientific Chemical 
(Thermo Fisher Scientific, MA, USA). ( ±)-Methadone solution and insulin from bovine pancreas were pur-
chased from MilliporeSigma (Burlington, MA). 1,2-Dilauroyl-sn-glycero-3-phosphorylcholine (DLPC) was 
purchased from Matreya, LLC (State College, PA). Filters and columns were purchased from Boca Scientific 
(Dedham, MA). 20 µm C18 beads were purchased from Hamilton (Reno, NV). C18 column packing methods 
were described  previously2. For molecule extraction, each EBA sample (~ 10 mL) was loaded into a column and 
the liquid was pushed through using a syringe pump. The column was washed with 400 µL of 0.1% formic acid 
(FA) in water three times for cleaning and desalting. After desalting, two elution steps were performed. First, 
metabolites were eluted using 400 µL of 50% acetonitrile (ACN) in water. Next, lipids were eluted from the same 
column using 400 µL of 70% isopropyl alcohol (IPA). Both metabolite and lipid samples were lyophilized over-
night. For metabolite analysis with MS, dried samples were resuspended in 0.05% trifluoroacetic acid (TFA) in 
water. For lipid analysis with MS, dried samples were suspended in 50% ACN. Samples containing MS-grade 
water were used as negative control samples. For quality control, a mixture of short peptides was used to monitor 
retention time, mass resolution, and accuracy (Thermo Fisher Scientific).

Nano‑liquid chromatography and MS. Metabolite and lipid samples were centrifuged at 10,000g for 
10 min before being processed using an autosampler in an EASY-nLC 1000 system and characterized using a 
LTQ orbitrap system (Thermo Fisher Scientific). Chromatograms were generated using an Acclaim PepMap 100 
C18 trap column (0.2 mm × 20 mm, 5 µL/min) and an analytical column (75 µm × 150 mm, 300 nL/min). The 
mobile phase used for metabolites was 80% ACN prepared in 0.1% FA in water from 5 to 70% in 60 min. The 
mobile phase used for lipids was 90% IPA and 10% ACN from 5 to 90% in 60 min. For accurate mass measure-
ment, the resolution for MS was set to 30,000. Data collection was conducted using positive ion mode for both 
metabolites and lipids. High energy collision-induced disassociation was used for ion fragmentation with 35% 
total energy.

Identification of metabolites and lipids using database matching. Mass spectra raw data files 
were converted to .abf format using an open-source software (reifycs.com/AbfConverter). Raw spectra were 
processed with MS-DIAL software for molecule identification following the standard operation procedures pro-
vided by the  developers23. Additional methods for using MS-DIAL software for metabolomics and lipidomics 
were included in the supplementary information. The database for metabolites was extracted from MassBank, 
which includes 8068 records (as of August 9, 2021). The database for lipids was extracted from LipidBlast library, 
which contains 81 classes, 377,313 molecules, and 554,041 spectra (as of August 9, 2021)24.

Data analysis and statistics. Metabolites and lipids identified using the software were extracted into 
Microsoft Excel. Since molecule identification generated features with different lengths, feature alignment and 
gap filling were conducted in MATLAB. Additional details were described in the supplementary information. 
An ion exclusion list was constructed using negative control samples. Total ion intensity was used for data nor-
malization. For statistical analysis, ion intensity was log-transformed. For each patient visit, relative standard 
deviation (%) of each identified molecule was calculated and subsequently ranked in the GXP-negative and 
GXP-positive groups. Molecules with the lowest relative standard deviation values (30% cutoff) were processed 
with a t-test between GXP-negative and GXP-positive.

Statistically significant features calculated via a t-test from all 3 clinical visits were used for generating ROC 
curves. The area under the ROC curve (A.U.C) was calculated using the logistic regression model of identi-
fied molecules. In our previous study, a feature ranking algorithm, significance analysis of microarrays (SAM), 
was used to select the most powerful feature that separates the two  groups5. In this study, SAM was applied to 
statistically significant features in all 3 clinical visits and the scores calculated from SAM analysis were used to 
determine the significance of each feature. RStudio was used to generate ROC curves and SAM and the methods 
are included in the supplementary information. To evaluate the data normality, Shapiro–Wilk test was conducted 
in the dataset of each visit and the results are included in the supplementary information.

Data availability
The data that support the findings of this study are available on request from the corresponding author. The 
datasets generated and/or analyzed during the current study are not publicly available due to their containing 
information that could compromise the privacy of research participants.
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