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Deep learning model 
for the automatic classification 
of COVID‑19 pneumonia, 
non‑COVID‑19 pneumonia, 
and the healthy: a multi‑center 
retrospective study
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Koji Onoue2, Reiichi Ishikura2, Yuri Kitamura3, Eiro Sakai4, Masaru Tomita5, 
Akihiro Hamanaka6 & Takamichi Murakami1

This retrospective study aimed to develop and validate a deep learning model for the classification 
of coronavirus disease‑2019 (COVID‑19) pneumonia, non‑COVID‑19 pneumonia, and the healthy 
using chest X‑ray (CXR) images. One private and two public datasets of CXR images were included. 
The private dataset included CXR from six hospitals. A total of 14,258 and 11,253 CXR images were 
included in the 2 public datasets and 455 in the private dataset. A deep learning model based on 
EfficientNet with noisy student was constructed using the three datasets. The test set of 150 CXR 
images in the private dataset were evaluated by the deep learning model and six radiologists. Three‑
category classification accuracy and class‑wise area under the curve (AUC) for each of the COVID‑19 
pneumonia, non‑COVID‑19 pneumonia, and healthy were calculated. Consensus of the six radiologists 
was used for calculating class‑wise AUC. The three‑category classification accuracy of our model 
was 0.8667, and those of the six radiologists ranged from 0.5667 to 0.7733. For our model and the 
consensus of the six radiologists, the class‑wise AUC of the healthy, non‑COVID‑19 pneumonia, and 
COVID‑19 pneumonia were 0.9912, 0.9492, and 0.9752 and 0.9656, 0.8654, and 0.8740, respectively. 
Difference of the class‑wise AUC between our model and the consensus of the six radiologists was 
statistically significant for COVID‑19 pneumonia (p value = 0.001334). Thus, an accurate model of deep 
learning for the three‑category classification could be constructed; the diagnostic performance of our 
model was significantly better than that of the consensus interpretation by the six radiologists for 
COVID‑19 pneumonia.

Abbreviations
COVID-19  Novel coronavirus disease
RT-PCR  Real-time polymerase chain reaction
CXR  Chest X-ray imaging
DL  Deep learning
COVIDx  Public dataset used for COVID-Net
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COVIDBIMCV  Public dataset obtained from the PadChest dataset and the BIMCV-COVID19 + dataset
COVIDprivate  Private dataset collected from six hospitals
AUC   Area under the curve
ROC  Receiver operating characteristics
CI  Confidence interval

The novel coronavirus disease (COVID-19) outbreak  is  caused  by  a  strain  of  coronavirus  known 
as the severe acute respiratory syndrome coronavirus 2 that originated in Wuhan in the Hubei province in 
China at the end of  20191. The World Health Organization declared COVID-19 as a pandemic on March 11, 2020, 
then it had spread across the  world2. The website of the World Health Organization has listed the total number 
of reported patients with COVID-19 and the associated deaths. At the time of writing this paper, 163,869,893 
patients and 3,398,302 deaths were reported on the  website3.

COVID-19 is diagnosed using real-time polymerase chain reaction (RT-PCR) in many clinical situations. 
However, RT-PCR sensitivity is not very high in the detection of COVID-19; for example, one study reported that 
the sensitivity of RT-PCR (71%) was lower than that of chest computed tomography (98%)4. Owing to the low 
RT-PCR sensitivity, the effectiveness of chest X-Ray imaging (CXR) and computed tomography in the diagnosis 
of COVID-19 has been  investigated5. The combination of CXR and artificial intelligence, such as deep learning 
(DL)6, has been extensively examined for automatic diagnosis of COVID-197–14. Since CXR is widely available 
and its cost is relatively low, the combination of CXR and artificial intelligence could be employed for screening 
purposes of COVID-19 without the need for medical doctors.

Recent advances in DL have shown promising diagnostic performance for automatic classification of various 
diseases of the skin, retinal fundus, brain, and other  organs6,15–17. DL-based automatic diagnosis is reportedly 
accurate, and performed well in the classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and 
the healthy on CXR  images7–13. Elgendi et al. compared the performance of 17 DL models with and without 
different geometric augmentations and examined the influence of data augmentation with respect to automatic 
classification of COVID-19 pneumonia. Their results demonstrated that the removal of the geometrical augmen-
tation steps actually improved the performance of the DL  models13. Monshi et al. optimized the data augmenta-
tion and the DL hyperparameters for classifying COVID-19 pneumonia. Their proposed CovidXrayNet based 
on EfficientNet-B0 achieved state-of-the-art  accuracy18. Karakanis et al. proposed a new approach to classify 
COVID-19 pneumonia by exploiting a conditional generative adversarial network that generated synthetic 
images for augmenting the limited data amount. Their lightweight DL model (ResNet8-based) achieved competi-
tive  performance19. These technical advances of DL make the classification models of COVID-19 pneumonia 
more accurate and robust. However, the performance of DL models was mainly investigated using the public 
database of CXR, and the comparison of the diagnostic performance between DL models and radiologists was 
 limited14.

Our study aimed to develop and validate a DL model for the automatic diagnosis of COVID-19 pneumonia, 
non-COVID-19 pneumonia, and the healthy using CXR images. In order to develop and validate our DL model, 
two public datasets and one private dataset of CXR images were implemented in the current study; CXR images 
of the private dataset were collected from six hospitals. To compare the diagnostic performance, both our DL 
model and six radiologists evaluated the CXR images of the private dataset. In addition, code-available DL models 
for diagnosing COVID-19 were also compared with our DL model. The major contributions of this study were 
as follows. (i) The two large public datasets of CXR images were constructed, which can be available online. (ii) 
Our DL model was validated with CXR images of our private dataset of clinical cases. (iii) The comparison of 
diagnostic performance was performed between our DL model and six radiologists.

Methods
This retrospective study was approved by the institutional review boards of six hospitals (Kobe University Gradu-
ate School of Medicine, Kobe City Medical Center General Hospital, Kobe City Nishi-Kobe Medical Center, 
Hyogo Prefectural Kakogawa Medical Center, Kita Harima Medical Center, and Hyogo Prefectural Awaji Medi-
cal Center); the requirement for acquiring informed consent was waived owing to the retrospective nature of 
the stud. This study complied with the Declaration of Helsinki and Ethical Guidelines for Medical and Health 
Research Involving Human Subjects in Japan (https:// www. mhlw. go. jp/ file/ 06- Seisa kujou hou- 10600 000- Daiji 
nkanb oukou seika gakuka/ 00000 80278. pdf).

Proposed DL model. EfficientNet20 was used as our DL model. By use of the EfficientNet B5 pretrained 
with noisy  student21, transfer learning was performed for the automatic classification of CXR images of COVID-
19, non-COVID-19 pneumonia, and the healthy. The implementation of our DL model was based on the open-
source software (https:// github. com/ jurad er/ covid 19_ xp) of a prior  study10. While  VGG1622 was used as the 
pretrained model in the prior  study10, EfficientNet with noisy student was used in the current study. The outline 
of the DL model is shown in Fig. 1. The details of the DL model are described in the Supplementary information. 
Grad-CAM was used for visual explanation of the diagnosis by our DL  model23.

Datasets. CXR images with anterior–posterior or posterior-anterior views of two public datasets and 
one private dataset were implemented in the current study. One public dataset was the COVIDx  dataset12,24. 
The other public dataset was constructed from two public datasets: the PadChest  dataset25,26 and BIMCV-
COVID19 +  dataset27,28. Hereafter, we will refer to the second public dataset as  COVIDBIMCV. CXR images of 
the private dataset  (COVIDprivate) were retrospectively collected from the six hospitals. The details of the three 
obtained datasets are described in the Supplementary information.

https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
https://github.com/jurader/covid19_xp
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Table 1 shows the total number of CXR images and the number of CXR images of COVID-19 pneumo-
nia, non-COVID-19 pneumonia, and the healthy in the COVIDx,  COVIDBIMCV, and  COVIDprivate datasets, 
respectively. The total number of CXR images was 14,258, 11,253, and 455 in the COVIDx,  COVIDBIMCV, and 
 COVIDprivate datasets, respectively. The number of COVID-19 pneumonia cases were 617, 1475, and 177 in the 
COVIDx,  COVIDBIMCV, and  COVIDprivate datasets, respectively.

The patient characteristics of the  COVIDprivate dataset are shown in Table 2. The number of CXR images of 
the healthy, non-COVID-19 pneumonia, and COVID-19 pneumonia in the  COVIDprivate dataset was 139, 139, 
and 177, respectively. The  COVIDprivate dataset included 198 males and 257 females, aged 61.0 ± 18.6 years. The 
examination date of CXR in the  COVIDprivate dataset ranged from January 13th, 2015 to December 22th, 2020.

Dataset splitting and model training. Since the development set and test set were defined for the COV-
IDx dataset, they were used in the current study. A total of 100 and 50 CXR images were randomly selected as test 
sets for each of the COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy, in the  COVIDBIMCV 
and  COVIDprivate datasets, respectively. The other CXR images were used as development sets in the  COVIDBIMCV 
and  COVIDprivate datasets. Thus, the number of CXR images of the development set was 13,958, 10,953, and 305 
in the COVIDx,  COVIDBIMCV, and  COVIDprivate datasets, respectively. The test set size was 300 in the COVIDx 
and  COVIDBIMCV datasets, and 150 in the  COVIDprivate dataset.

Figure 1.  Our DL model. Abbreviation: DL, deep learning.

Table 1.  Numbers of CXR images in the COVIDx,  COVIDBIMCV, and  COVIDprivate datasets. All cases of non-
COVID-19 pneumonia are bacterial pneumonia in  COVIDprivate. CXR chest X-Ray imaging; COVIDx public 
dataset used for COVID-Net; COVIDBIMCV public dataset obtained from the PadChest dataset and the BIMCV-
COVID19 + dataset; COVIDprivate private dataset collected from six hospitals.

Dataset Total number of CXR images Number of CXR images of the healthy
Number of CXR images of non-
COVID-19 pneumonia

Number of CXR images of COVID-19 
pneumonia

COVIDx 14,258 8066 5575 617

COVIDBIMCV 11,253 8799 979 1475

COVIDprivate 455 139 139 177

Table 2.  Patients’ characteristics in the  COVIDprivate dataset. COVIDprivate private dataset collected from six 
hospitals.

Hospital Number of patients Male Female Age (y) (mean ± standard deviation)

Hospital 1 6 4 2 68.0 ± 9.78

Hospital 2 20 15 5 61.7 ± 14.8

Hospital 3 7 5 2 73.1 ± 12.1

Hospital 4 173 104 69 58.3 ± 19.3

Hospital 5 186 99 87 61.2 ± 18.5

Hospital 6 63 30 33 65.3 ± 17.7

Total 455 198 257 61.0 ± 18.6
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The development set was further divided into a training and validation set for each dataset. The validation set 
size was 300 in the COVIDx and  COVIDBIMCV datasets, and 90 in the  COVIDprivate dataset. The combined training 
set was constructed from the training sets of the three datasets for training the DL model. For the development 
set, five different random divisions of training and validation sets were performed for each dataset. Based on 
the five random divisions, model training with transfer learning and performance validation were performed. 
Therefore, five different trained models were obtained. In order to predict the diagnosis from the CXR image 
of the test set, an ensemble of the five trained models was used. Schematic illustration of the dataset splitting, 
model training, and prediction using our DL model is shown in Fig. 2.

Comparison with other DL models. Three code-available DL models were used for comparison. The 
first model was the COVID-Net model trained with the COVIDx  dataset12. Its pretrained model is available 
at https:// github. com/ linda wangg/ COVID- Net (COVIDNet-CXR4-A). The second model was the DL model 
of Sharma A et  al.11, whose pretrained model is available at https:// github. com/ aruns harma 8osdd/ covid pred 
(Combined model 3 [101 epochs]). The final model was the  DarkCovidNet9, which is available at https:// github. 
com/ muham medta lo/ COVID- 19. Since the pretrained model of DarkCovidNet was unavailable, its model 
training was performed from scratch by the authors.

Observer study by the radiologists. In order to compare our DL model with the radiologists’ diag-
nostic ability, an observer study was performed including six radiologists (experience of the six radiologists 
ranged from 10 months to 15 years). The radiologists visually evaluated the CXR images of the test set of the 
 COVIDprivate dataset and determined the diagnosis for the three-category classification of COVID-19 pneumo-
nia, non-COVID-19 pneumonia, and the healthy. With the exception of the CXR images, the radiologists were 
blinded to any clinical information of the test set of the  COVIDprivate dataset. Since the combined training set 
used for our DL model was too large for the radiologists, the development set of the  COVIDprivate dataset were 
provided for the radiologists’ training before the observer study. The training and interpretation time were not 
limited.

Performance evaluation. For our DL model, performance evaluation was conducted using the classifica-
tion metrics of the three-category classification (class-wise precision, recall, F1-score, and three-category clas-
sification accuracy) in the three test  sets29. For radiologists and the code-available DL models, the same perfor-
mance evaluation was conducted in the test set of the  COVIDprivate dataset with 150 CXR images. In addition, the 
class-wise area under the curve (AUC) of the receiver operating characteristics (ROC) analysis was calculated for 
COVID-19 pneumonia, non-COVID-19 pneumonia, and the  healthy29. For the ROC analysis of the radiologists, 
a consensus interpretation score for the six radiologists was determined by majority voting of the individual 
 interpretations14; the score ranged from 0 to 6.

Statistical analysis. The 95% confidence intervals (CI) of the classification metrics were calculated using 
2000 bootstrap  samples14. In addition, the class-wise AUC was compared using DeLong’s test between our DL 
model and the consensus interpretation of the radiologists. In order to control the family-wise error rate, Bonfer-

Figure 2.  Schematic illustration of dataset splitting, model training, and prediction with our DL model. 
Abbreviations: COVIDx, Public dataset used for COVID-Net; COVIDBIMCV, Public dataset obtained from 
the PadChest dataset and the BIMCV-COVID19 + dataset; COVIDprivate, Private dataset collected from six 
hospitals.

https://github.com/lindawangg/COVID-Net
https://github.com/arunsharma8osdd/covidpred
https://github.com/muhammedtalo/COVID-19
https://github.com/muhammedtalo/COVID-19
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roni correction was used; a p value less than 0.01666 was considered statistically significant. Statistical analyses 
were performed using scikit-learn  package30 of Python and pROC  package31 of R (version 4.0.4, https:// www.r- 
proje ct. org/).

Results
Table 3 shows the results of the diagnostic performance of the four DL models, including our DL model, and the 
six radiologists in the test set of the  COVIDprivate dataset. The three-category classification accuracy of our DL 
model was 0.8667 (130/150), and those of the six radiologists ranged from 0.5667 (85/150) to 0.7733 (116/150). 
The 95% CI of the three-category classification accuracies were 0.8067–0.9200 and 0.7067–0.8400 for our DL 
model and the radiologist with best accuracy (Radiologist 3), respectively. The three-category classification accu-
racy of our DL model was better than that of the six radiologists. For our DL model, the class-wise F1-scores of 
the healthy and COVID-19 pneumonia were higher than that of the non-COVID-19 pneumonia. This indicates 
that for our DL model, the diagnostic performance of the healthy and COVID-19 pneumonia was better than 
that of the non-COVID-19 pneumonia. On the other hand, for the six radiologists, the class-wise F1-scores of 
the healthy were higher than those of the COVID-19 pneumonia and non-COVID-19 pneumonia; hence, the 
diagnostic performance of the healthy was higher than that for COVID-19 and non-COVID-19 pneumonia. 
The three-category classification accuracies of the three code-available DL models were 0.6467 (97/150), 0.4267 
(64/150), and 0.4000 (60/150), and COVID-Net12 achieved the highest accuracy in the three-category classifica-
tion among the three code-available DL models. Although the three-category classification accuracy of COVID-
Net (0.6467) was comparable to those of the six radiologists, those of the other code-available DL models (0.4267 
and 0.4000) were worse than those of the six radiologists. The class-wise F1-scores of the three code-available 
DL models for COVID-19 pneumonia were 0.3636, 0.5684, and 0.4160, and the DL model of Sharma et al.11 
achieved the highest class-wise F1-score for COVID-19 pneumonia among them; the class-wise F1-score of the 
DL model of Sharma et al. (0.5684) was higher than those of two radiologists (Radiologist 5 and Radiologist 6). 
However, the class-wise F1-score of the DL model of Sharma et al. for the healthy was 0.0000. Table S1 of the 
Supplementary information shows the results of the diagnostic performance in our DL model in the test sets of 
the COVIDx and  COVIDBIMCV datasets.

Table 4 shows the results of class-wise AUC and its 95% CI of our DL model in the test sets of the COVIDx, 
 COVIDBIMCV, and  COVIDprivate datasets. Table 4 also shows the results of the consensus of the six radiologists 
in the test set of the  COVIDprivate dataset. Figure 3 shows the class-wise ROC curves of our DL model and 
consensus of the six radiologists in the test set of the  COVIDprivate dataset. The class-wise AUC and its 95% CI 
of our DL model were as follows: 0.9914 and 0.9837–0.9990 for the healthy, 0.9772 and 0.9601–0.9942 for non-
COVID-19 pneumonia, and 0.9934 and 0.9871–0.9996 for COVID-19 pneumonia. The class-wise AUC and its 
95% CI of consensus of the six radiologists were as follows: 0.9656 and 0.9401–0.9911 for the healthy, 0.8654 and 
0.8022–0.9286 for non-COVID-19 pneumonia, and 0.8740 and 0.8164–0.9316 for COVID-19 pneumonia. The 
difference of the class-wise AUC between our DL model and consensus of the six radiologists was statistically 
significant for COVID-19 pneumonia (p value = 0.001334). The differences were not statistically significant for 

Table 3.  Class-wise precision, recall, F1-score, and three-category classification accuracy of four DL models 
and six radiologists in the  COVIDprivate dataset. Each cell includes classification metric and its 95% CI (lower 
and upper bounds of CI). * indicates 3-category classification accuracy. The experience of the six radiologists 
were 10 months, and 4, 7, 10, 10, and 15 years. The underlined values represent the best values for each 
column. DL deep learning; CI confidence interval; COVIDprivate private dataset collected from six hospitals.

Model or 
Radiologist

The healthy Non-COVID-19 pneumonia COVID-19 pneumonia

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Accuracy*

Our DL model 0.8475, 0.7458, 
0.9348

1.0000, 1.0000, 
1.0000

0.9174, 0.8544, 
0.9663

0.8974, 0.7949, 
0.9767

0.7000, 0.5652, 
0.8302

0.7865, 0.6829, 
0.8736

0.8654, 0.7609, 
0.9512

0.9000, 0.8095, 
0.9783

0.8824, 0.8049, 
0.9412

0.8667, 0.8067, 
0.9200

COVID-Net 0.6173, 0.5067, 
0.7229

1.0000, 1.0000, 
1.0000

0.7634, 0.6726, 
0.8392

0.6604, 0.5254, 
0.7827

0.7000, 0.5714, 
0.8182

0.6796, 0.5656, 
0.7708

0.7500, 0.5000, 
0.9412

0.2400, 0.1250, 
0.3636

0.3636, 0.2089, 
0.5079

0.6467, 0.5667, 
0.7200

Sharma et al 0.0000, 0.0000, 
0.0000

0.0000, 0.0000, 
0.0000

0.0000, 0.0000, 
0.0000

0.3627, 0.2687, 
0.4592

0.7400, 0.6121, 
0.8605

0.4868, 0.3803, 
0.5806

0.6000, 0.4524, 
0.7500

0.5400, 0.3958, 
0.6793

0.5684, 0.4337, 
0.6813

0.4267, 0.3400, 
0.5067

DarkCovidNet 0.2500, 0.0000, 
1.0000

0.0200, 0.0000, 
0.0638

0.0370, 0.0000, 
0.1132

0.4648, 0.3478, 
0.5882

0.6600, 0.5227, 
0.7869

0.5455, 0.4301, 
0.6462

0.3467, 0.2429, 
0.4588

0.5200, 0.3799, 
0.6591

0.4160, 0.3051, 
0.5206

0.4000, 0.3267, 
0.4800

Radiologist1 0.8039, 0.6862, 
0.9038

0.8200, 0.7111, 
0.9167

0.8119, 0.7209, 
0.8837

0.6327, 0.4902, 
0.7619

0.6200, 0.4878, 
0.7547

0.6263, 0.5055, 
0.7333

0.6400, 0.5088, 
0.7727

0.6400, 0.5000, 
0.7647

0.6400, 0.5238, 
0.7358

0.6933, 0.6200, 
0.7600

Radiologist2 0.8333, 0.7222, 
0.9318

0.8000, 0.6779, 
0.9038

0.8163, 0.7209, 
0.8932

0.7000, 0.5714, 
0.8197

0.7000, 0.5745, 
0.8182

0.7000, 0.5895, 
0.7959

0.7115, 0.5818, 
0.8302

0.7400, 0.6111, 
0.8519

0.7255, 0.6200, 
0.8148

0.7467, 0.6800, 
0.8133

Radiologist3 0.8600, 0.7547, 
0.9512

0.8600, 0.7556, 
0.9500

0.8600, 0.7755, 
0.9250

0.7200, 0.5957, 
0.8400

0.7200, 0.5882, 
0.8409

0.7200, 0.6118, 
0.8142

0.7400, 0.6154, 
0.8667

0.7400, 0.6122, 
0.8537

0.7400, 0.6316, 
0.8367

0.7733, 0.7067, 
0.8400

Radiologist4 0.6154, 0.5051, 
0.7215

0.9600, 0.8965, 
1.0000

0.7500, 0.6560, 
0.8244

0.8276, 0.6786, 
0.9615

0.4800, 0.3404, 
0.6200

0.6076, 0.4706, 
0.7246

0.6279, 0.4736, 
0.7778

0.5400, 0.3921, 
0.6724

0.5806, 0.4444, 
0.6903

0.6600, 0.5865, 
0.7333

Radiologist5 0.7358, 0.6122, 
0.8511

0.7800, 0.6596, 
0.8913

0.7573, 0.6531, 
0.8432

0.5417, 0.4000, 
0.6793

0.5200, 0.3846, 
0.6563

0.5306, 0.4051, 
0.6400

0.5102, 0.3725, 
0.6471

0.5000, 0.3673, 
0.6316

0.5051, 0.3789, 
0.6154

0.6000, 0.5267, 
0.6800

Radiologist6 0.5385, 0.4375, 
0.6429

0.9800, 0.9362, 
1.0000

0.6950, 0.6031, 
0.7792

0.6667, 0.4783, 
0.8519

0.3600, 0.2249, 
0.5000

0.4675, 0.3158, 
0.6001

0.5625, 0.3793, 
0.7419

0.3600, 0.2222, 
0.4894

0.4390, 0.2899, 
0.5618

0.5667, 0.4867, 
0.6467

https://www.r-project.org/
https://www.r-project.org/
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the healthy and non-COVID-19 pneumonia (p values = 0.07252 and 0.02617, respectively). Table S2 of the Sup-
plementary information presents the confusion matrix of the three-category classification for our DL model in 
the test set of the  COVIDprivate dataset. Table S3 of the Supplementary information shows the class-wise AUC and 
its 95% CI for our DL model when changing the data splitting between the test and development sets. Figures S1 
and S2 of the Supplementary information show the class-wise ROC curves of our DL model in the test sets of 
the COVIDx and  COVIDBIMCV datasets, respectively.

Figure 4 shows the CXR images and the results of Grad-CAM for the healthy, non-COVID-19 pneumonia, 
and COVID-19 pneumonia. The result of Grad-CAM of Fig. 4A illustrates that our DL model focused on the 
non-specific areas for diagnosis of the healthy. Figure 4B shows that our DL model focused on the infiltration 
shadow of the right lung field for diagnosis of non-COVID-19 pneumonia. Figure 4C shows that our DL model 
focused on the ground glass shadow of the peripheral area of both the lung fields for the diagnosis of COVID-
19 pneumonia.

Discussion
The results of this study indicate that it is possible to construct an accurate DL model using the two public data-
sets (COVIDx and  COVIDBIMCV) and one private dataset  (COVIDprivate). Our deep learning model based on 
EfficientNet with noisy student could achieve an accurate diagnosis of COVID-19 pneumonia, non-COVID-19 
pneumonia, and the healthy. The three-category classification accuracy of our model was 0.8667, and those of 

Table 4.  Class-wise AUC and its 95% CI of our DL model and consensus of six radiologists. DL deep learning; 
CI confidence interval; AUC  area under the curve; COVIDx public dataset used for COVID-Net; COVIDBIMCV 
public dataset obtained from the PadChest dataset and the BIMCV-COVID19 + dataset; COVIDprivate private 
dataset collected from six hospitals.

Model or Radiologist Dataset

The healthy
Non-COVID-19 
pneumonia COVID-19 pneumonia

AUC 95% CI AUC 95% CI AUC 95% CI

Our DL model COVIDx 0.9914 0.9837, 0.9990 0.9772 0.9601, 0.9942 0.9934 0.9871, 0.9996

Our DL model COVIDBIMCV 0.9712 0.9548, 0.9877 0.9568 0.9355, 0.9781 0.9856 0.9702, 1

Our DL model COVIDprivate 0.9912 0.9801, 1.0000 0.9492 0.9118, 0.9866 0.9752 0.9555, 0.9949

COVID-Net COVIDprivate 0.8917 0.8405, 0.9429 0.8500 0.7909, 0.9091 0.7167 0.6347, 0.7987

Sharma et al COVIDprivate 0.6074 0.5111, 0.7037 0.5017 0.4089, 0.5945 0.7564 0.6768, 0.8360

DarkCovidNet COVIDprivate 0.4315 0.3350, 0.5280 0.7226 0.6420, 0.8032 0.5589 0.4630, 0.6548

Consensus of radiologists COVIDprivate 0.9656 0.9401, 0.9911 0.8654 0.8022, 0.9286 0.8740 0.8164, 0.9316

Figure 3.  Class-wise ROC curves in  COVIDprivate dataset. Note: (A) consensus of radiologists and (B) our DL 
model. Abbreviation: DL, deep learning;  COVIDprivate, private dataset collected from six hospitals; AUC, area 
under the curve; ROC, receiver operating characteristics.
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the six radiologists ranged from 0.5667 to 0.7733. Difference of class-wise AUC between our model and the 
consensus of the six radiologists was statistically significant for COVID-19 pneumonia (p value = 0.001334).

Using the two public datasets and one private dataset, our DL model could achieve a higher diagnostic perfor-
mance than the three code-available DL models and the six radiologists. Especially, for COVID-19 pneumonia, 
the class-wise AUC of our DL model was significantly higher than that of the consensus of the six radiologists. In 
DL, a large number of datasets is necessary for accurate classification. While COVID-Net used more than 10,000 
CXR images to develop and evaluate its  model12, we used more than 20,000 CXR images for our DL model. We 
believe that the dataset size was a major factor in the diagnostic performance of our DL model. Another reason 
for the superiority of our DL model could be attributed to the use of a pretrained model constructed using noisy 
 student21. Noisy student is a relatively new method for increasing the robustness of the DL model; the pretrained 
model of  EfficientNet20 with noisy student could be useful in improving our DL model.

The results of the three code-available DL models demonstrate that their classification metrics are not sat-
isfactory. Although the three-category classification accuracy of COVID-Net was the highest in the three DL 
models, the F1-score of COVID-Net was the worst for COVID-19 pneumonia. In the other two models, the 
three-category classification accuracy was lower than those of the six radiologists. Many studies have used DL 
models for automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy 
using CXR  images7–14,18,19. Table 5 summarizes these previous studies. While most of them were developed and 

Figure 4.  Results of Grad-CAM for our DL model. Note: (A) the healthy, (B) non-COVID-19 pneumonia, (C) 
COVID-19 pneumonia. Each image part consists of CXR image and result of Grad-CAM. One trained model of 
our DL model was used for Grad-CAM. Abbreviation: DL, deep learning; CXR, chest X-Ray imaging.
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validated using CXR images of public datasets, they were not validated with those of clinical cases. Our results 
indicate that most of the DL models of COVID-19 pneumonia in previously published papers may not be useful 
in clinical situations.

The three-category classification accuracy of the six radiologists ranged from 0.5667 to 0.7733. There was 
large variability in the diagnostic performance of the radiologists in the classification of COVID-19 pneumonia, 
non-COVID-19 pneumonia, and the healthy using CXR images. Inversely, this indicates that the radiologists’ 
diagnostic performance could be improved using our DL model. The effectiveness of our DL model for computer-
aided diagnosis system should be evaluated in future studies.

There are certain limitations to our study. First, although our DL model was developed and validated using 
two public datasets and one private dataset, it was not evaluated using external validation. Clinical usefulness of 
our DL model should be further evaluated by external  validation32. Second, our DL model focused on the three-
category classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy. The DL model 
ignored lung cancer and other diseases, which are considered important for detection on CXR images. This three-
category classification may be considered unnatural from a clinical viewpoint. However, we speculate that this 
was justified owing to the higher priority of the three-category classification in the COVID-19 pandemic. Third, 
our observer study was conducted on the CXR image obtained from relatively large-sized hospitals. However, 
since CXR can be performed in various hospitals and clinics, further studies are warranted to determine whether 
our DL model is effective in small hospitals and clinics. Thus, the outputs of our DL model should be adjusted 
based on the circumstances in which our DL model is used. Fourth, we focused on the automatic classification 
of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy using CXR images and the diagnostic 
performance of radiologists with our DL model was not evaluated. Thus, we did not evaluate the usefulness of 
our DL model as a computer-aided system. If radiologists doubt the results of our DL model, the diagnostic per-
formance of radiologists may not be improved using our DL model. Therefore, in the future, it is crucial to build 
trust between the radiologists and the DL model for its implementation in clinical  practice33. Fifth, although the 
results of Grad-CAM (for example, Fig. 4) could be useful to radiologists for comprehending the classification 
results of our DL model, the effectiveness of the results of Grad-CAM was not validated in the current study.

In conclusion, it is feasible to create an accurate model of DL for three-category classification of COVID-
19 pneumonia, non-COVID-19 pneumonia, and the healthy. The diagnostic performance of our model was 
significantly better than that of the consensus interpretation by the six radiologists for COVID-19 pneumonia.

Data availability
The  private  dataset  cannot  be disclosed because of privacy protection and regulation. Source code of our DL 
model and the two public datasets are available from the following URL: https:// github. com/ jurad er/ covid 19_ 
xp_ effic ientn et.
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