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Targeted metabolomics analysis 
of amino acids and acylcarnitines 
as risk markers for diabetes 
by LC–MS/MS technique
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Sahar Mohammadi Fateh4, Hojat Dehghanbanadaki5, Niloufar Najjar6, 
Sepideh Alavi‑Moghadam6, Robabeh Ghodssi‑Ghassemabadi7, Ensieh Nasli‑Esfahani1, 
Farshad Farzadfar4,8, Bagher Larijani8 & Farideh Razi1,6*

Diabetes is a common chronic disease affecting millions of people worldwide. It underlies various 
complications and imposes many costs on individuals and society. Discovering early diagnostic 
biomarkers takes excellent insight into preventive plans and the best use of interventions. Therefore, 
in the present study, we aimed to evaluate the association between the level of amino acids and 
acylcarnitines and diabetes to develop diabetes predictive models. Using the targeted LC–MS/MS 
technique, we analyzed fasting plasma samples of 206 cases and 206 controls that were matched by 
age, sex, and BMI. The association between metabolites and diabetes was evaluated using univariate 
and multivariate regression analysis with adjustment for systolic and diastolic blood pressure and 
lipid profile. To deal with multiple comparisons, factor analysis was used. Participants’ average age 
and BMI were 61.6 years, 28.9 kg/m2, and 55% were female. After adjustment, Factor 3 (tyrosine, 
valine, leucine, methionine, tryptophan, phenylalanine), 5 (C3DC, C5, C5OH, C5:1), 6 (C14OH, 
C16OH, C18OH, C18:1OH), 8 (C2, C4OH, C8:1), 10 (alanine, proline) and 11 (glutamic acid, C18:2OH) 
were positively associated with diabetes. Inline, factor 9 (C4DC, serine, glycine, threonine) and 12 
(citrulline, ornithine) showed a reverse trend. Some amino acids and acylcarnitines were found as 
potential risk markers for diabetes incidents that reflected the disturbances in the several metabolic 
pathways among the diabetic population and could be targeted to prevent, diagnose, and treat 
diabetes.
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FDR  False discovery rate
PCA  Principal component analysis
KMO  Kaiser–Meyer–Olkin
BCAA   Branched-chain amino acids
AAA   Aromatic amino acids
T2D  Type 2 diabetes
T1D  Type 1 diabetes
TCA   Tricarboxylic acid

Diabetes is a prevalent chronic disease affecting millions of people worldwide associated with the development 
of many microvascular and macrovascular complications and leads to reduced quality of life and increased eco-
nomic  burden1, 2. Conventional risk factors and diagnostic methods of diabetes play a significant role in screening; 
however, there is a need for novel biomarkers that are not dependent on common clinical risk  factors3. Diabetes 
does not have very apparent symptoms, especially in the early stage of the disease, and can exist many years before 
becoming clinically evident. In this regard, researchers have attempted to identify early diagnostic approaches 
for diabetes to develop strategies that could improve preventive plans and make the best use of  interventions4.

In the last decades, it has become clear that the high-throughput approaches represent a promising avenue of 
research to identify biomarkers related to disease occurrence. Metabolomics is an emerging field defined as the 
systematic analysis of metabolites in biological systems affected by genetic and environmental features. Therefore, 
it is essential to discriminate the molecular fluctuations that occur in the development of diabetes to progress 
the health of these patients and decrease the severe  consequences5, 6.

Several studies have been performed to assess the connection between a broad range of metabolites and dia-
betes  progression7, including hexoses, amino acids, phospholipids, triglycerides, and  acylcarnitine5, 8. However, 
as a result of the plentiful metabolites, different ethnicities, and study designs, outcomes vary from separate 
studies, and there is no comprehensive agreement concerning the application of metabolites as diabetes predic-
tive or diagnostic  biomarkers4, 9, 10.

Thus, we established a large case–control study to evaluate fasting plasma amino acid and acylcarnitine 
metabolites in diabetic patients, using targeted LC–MS/MS metabolomics.

Results
Baseline characteristics. The study population was composed of diabetic (n = 206) and non-diabetic 
(n = 206) individuals with 45–90 years age range and mostly (31%) aged 50–59 years. The majority of the par-
ticipants were overweight (BMI = 25–29.9, ~ 40%) or obese (BMI ≥ 30, ~ 39%). About 55% of participants were 
female. Baseline characteristics are presented in Table 1. FPG, HbA1c, HDL-C, non-HDL-C, and triglyceride 
concentrations in the analysis groups were found to be significantly different. FPG, HbA1c, and triglyceride 
levels were higher in cases than in controls. HDL-C and non-HDL-C were lower in cases.

Metabolites with different concentrations in diabetes compared to non‑diabetes. As shown 
in Supplementary Table 1, many short- (C2, C3, C3DC, C4OH, C4DC, C5:1, C5OH) and long-chain (C14OH, 
C16OH, C18OH) acylcarnitines were increased, and only C18:1 acylcarnitine levels were decreased in diabetes 
compared to controls. Alanine, leucine, and valine had an increasing trend, while arginine, citrulline, glycine, 
ornithine, threonine, serine, and histidine had decreased significantly in diabetes. Mainly changed metabolites 
have been depicted by the volcano plot and represented in Fig. 1.

After adjusting for covariates (Supplementary Table 2), C3DC, C4OH, C4DC, C5:1, C5OH, C16OH, C18OH, 
alanine, leucine, valine, glycine, threonine, serine, and histidine alteration among study groups were independent 
of blood pressure and lipid profile. The effect of age, BMI, and sex, as pair-matching participants had eliminated 
covariates.

According to sex differences, C5, C5DC, C8:1 acylcarnitines, glutamic acid, leucine, methionine, valine, 
glycine, proline, and tryptophan amino acids were different between non-diabetes men and women. For diabe-
tes, C3, C5, C5DC, C8:1 acylcarnitines along with leucine, methionine, phenylalanine, citrulline, glycine, and 
tryptophan amino acids were different between the two sexes (Supplementary Table 3).

Extracted factors. Metabolite patterns were extracted using PCA with eigenvalues more than one from 
the scree plot (Supplementary Fig. 1). The factor-loading matrix is presented in Supplementary Table 4. As pre-
sented in Table 2, the 13 factors explained 75.5% of the total variation. The first three factors accounted for most 
of the overall variability; they described 22.9%, 12.5%, and 6.8%, respectively. Results of the factor analysis were 
acceptable as suggested by a high KMO coefficient of 0.84 and a highly significant P value of Bartlett sphericity 
test of < 0.001.

Identification of the relationship between metabolite patterns and diabetes incidence. Fac-
tor 3, 5, 6, 8, 10, and 11 were positively associated with diabetes. Inline, factors 9 and 12 showed a reverse trend. 
Extracted factors were still associated with diabetes after adjustment for systolic and diastolic blood pressure 
and lipid profile, except factor 11. Results were reported in Table 3. Contrary to our expectation, the association 
between the first two extracted factors and diabetes incidence was insignificant.

Pathway analysis. Based on differential metabolites, the disturbed pathways were determined and shown 
in Fig. 2, and a detailed pathway analysis table is presented in Supplementary Table 5.
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Table 1.  Baseline characteristics of study participants. Continuous variables were presented as mean ± SD, 
and categorical variables were presented as numbers (column percentage). BMI: body mass index, WC/ HC: 
waist circumference to hip circumference ratio, FPG: fasting plasma glucose, HDL-C: high-density lipoprotein 
cholesterol. Significant values are in bold.

Variable Non-Diabetes (n = 206) Diabetes (n = 206) P value

Gender, n (%) 0.921

 Female 113 (54.85) 113 (54.85)

 Male 93 (45.15) 93 (45.15)

Age (year) 61.54 ± 11.93 61.7 ± 11.51 0.890

 < 50 34 (16.51) 34 (16.51)

 50–59 64 (31.07) 64 (31.07)

 60–69 53 (25.73) 53 (25.73)

 70–79 39 (18.93) 39 (18.93)

 ≥ 80 16 (7.77) 16 (7.77)

BMI (Kg/m2) 28.73 ± 5.06 29.00 ± 4.9 0.582

 < 18.5 1 (0.49) 1 (0.49)

 18.5–24.9 43 (20.87) 42 (20.39)

 25.0–29.9 83 (40.29) 82 (39.8)

 ≥ 30 79 (38.35) 81 (39.32)

WC/HC (cm) 0.94 ± 0.08 0.95 ± 0.13 0.380

Blood pressure (mmHg)

 Systolic 138.09 ± 21.88 140.88 ± 22.39 0.202

 Diastolic 82.02 ± 12.12 82.33 ± 13.08 0.803

 FPG (mg/dL) 95.1 ± 12.0 153.27 ± 62.74  < 0.001

 HbA1c (%) 5.58 ± 0.4 7.68 ± 1.75  < 0.001

 HDL-C (mg/dL) 42.27 ± 11.83 38.43 ± 11.42 0.001

 Non-HDL Cholesterol (mg/dL) 100.37 ± 25.44 92.32 ± 34.32 0.008

 Cholesterol (mg/dL) 167.92 ± 31.84 163.95 ± 43.58 0.294

 Triglycerides (mg/dL) 128.98 ± 67.80 170.69 ± 157.88  < 0.001

 Hyperlipidemia medication 16 (7.77) 53 (25.73)  < 0.001

Figure 1.  Volcano plot mainly displaying changed amino acids and acylcarnitines in diabetes compared to 
control group (Metaboanalyst software version 5.0).
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For diabetes versus non-diabetes, valine, leucine, and isoleucine biosynthesis had the most enrichment ratio. 
Enrichment Ratio is computed by Hits/Expected, where Hits, refer to observed hits, and Expected, refers to 
expected hits. After that, aminoacyl-tRNA biosynthesis, serine, glycine and threonine metabolism, leucine, 
isoleucine, and valine degradation had the most enrichment ratio.

Discussion
An emerging assumption is that the combinations of known biomarkers in a further personalized approach are 
required to give more effectiveness in terms of evaluating the degree or progress of diabetes and prove the most 
reliable preventive or diagnostic  plans11, 12.

By a short review of the published articles about metabolomics analysis (comprising amino acids or acylcar-
nitines) in blood samples of diabetic patients in the PubMed database (Table 4), we found that studies mainly 
had cohort design, and most of the others had used part of cohort data and designed as nested case–control or 
cross-sectional. In most of them, the number of diabetic patients was close to 200–300 people but the number 
of controls varied within studies. Some were matched 1:1, such as our study and some others had no limitation 
in the number of controls.

Table 2.  Principal Component Analysis (PCA). The table lists of factors identified by PCA and the associated 
individual components, description, eigenvalue and variance. BCAA: Branched-chain amino acids, AAA: 
Aromatic amino acids. Significant values are in bold.

Factor Description Components Eigenvalue % of Variance Cumulative %

1 Medium-chain acylcarnitines C5DC, C6, C8, C10, C10:1, C12, C14, 
C14:1, C14:2 11.438 22.876 22.876

2 Long-chain acylcarnitines C14, C16, C16:1, C16:1OH, C18, 
C18:1 6.271 12.543 35.418

3 BCAA and AAA Tyrosine, Leucine, Valine, Methio-
nine, Tryptophan, Phenylalanine 3.388 6.776 42.194

4 Polar amino acids Lysine, Glutamine, Asparagine, Histi-
dine, Aspartic Acid 3.17 6.341 48.535

5 Short-chain acylcarnitines C3DC, C5, C5:1, C5OH 2.526 5.053 53.588

6 Hydroxylated long-chain acylcar-
nitines C14OH, C16OH, C18OH, C18:1OH 1.888 3.776 57.364

7 Short-chain acylcarnitines C0, C3, C4 1.707 3.414 60.778

8 Short-chain acylcarnitines C2, C4OH, C8:1 1.529 3.059 63.837

9 Other amino acids Serine, Glycine, Threonine, C4DC 1.378 2.757 66.594

10 Non-polar amino acids Alanine, Proline 1.21 2.42 69.014

11 Other amino acids C18:2OH, Glutamic Acid 1.119 2.238 71.252

12 Uria cycle amino acids Citrulline, Ornithine 1.092 2.184 73.436

13 Other amino acids Arginine 1.012 2.023 75.459

Table 3.  Crude and adjusted odds ratios (OR) and their 95% confidence intervals (CI) of the extracted factors 
analyzed the relationship between metabolite patterns and diabetes incidence. P value, crude model (Model 1). 
P  value†, adjusted by blood pressure (Model 2). P  value††, adjusted by blood pressure and lipid profile (HDL-C, 
cholesterol, triglyceride) (Model 3). Significant values are in bold.

Factor

Model 1 Model 2 Model 3

OR 95% CI P value OR 95% CI P  value† OR 95% CI P  value††

1 0.997 (0.964–1.03) 0.875 0.996 (0.962–1.03) 0.814 1.003 (0.968–1.04) 0.871

2 0.973 (0.916–1.03) 0.366 0.967 (0.91–1.03) 0.286 0.971 (0.91–1.036) 0.377

3 1.096 (1.03–1.17) 0.005 1.1 (1.0311.17) 0.004 1.069 (1.02–1.14) 0.047

4 0.968 (0.909–1.03) 0.322 0.968 (0.908–1.03) 0.312 0.978 (0.915–1.05) 0.507

5 1.284 (1.15–1.43)  < 0.001 1.277 (1.15–1.42)  < 0.001 1.275 (1.14–1.42) 0.001

6 1.17 (1.06–1.29)  < 0.001 1.162 (1.05–1.29)  < 0.001 1.164 (1.05–1.29) 0.005

7 1.064 (0.93–1.22) 0.367 1.063 (0.929–1.22) 0.373 0.992 (0.857–1.15) 0.91

8 1.237 (1.09–1.41)  < 0.001 1.231 (1.08–1.40) 0.002 1.243 (1.09–1.43) 0.002

9 0.625 (0.537–0.73)  < 0.001 0.617 (0.529–0.72)  < 0.001 0.618 (0.526–0.727)  < 0.001

10 1.457 (1.22–1.74)  < 0.001 1.46 (1.22–1.74)  < 0.001 1.335 (1.11–1.61) 0.002

11 1.292 (1.05–1.58) 0.014 1.297 (1.058–1.59) 0.012 1.182 (0.962–1.45) 0.112

12 0.767 (0.647–0.908)  < 0.001 0.767 (0.647–0.91) 0.002 0.795 (0.666–0.949) 0.011

13 0.793 (0.626–1.01) 0.056 0.8 (0.631–1.01) 0.065 0.783 (0.611–1.00) 0.058
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Regarding ethnicity, a few publications are available on the middle east population. We could not find another 
metabolomics study in blood samples of Iranian or middle east populations of diabetes. As reviewed by Sonia 
Liggi et al. in 2017, there was no cohort study assessing metabolites that have been conducted on the middle 
east population until that  time13.

For average age and BMI, most of the studies were age-matched or had study groups in a similar range of age 
and were mostly conducted in 40–60 decades of life. Diabetic participants usually had higher BMI than controls 
and took part in the obese category.

Evaluated metabolites varied, but the number of studies on acylcarnitines was small.
In this regard, we investigated the metabolic perturbations of amino acids and acylcarnitines among diabetes 

and non-diabetic individuals.
By factor analysis, 13 factors were extracted by PCA method, each of them mostly comprised of chemically 

and functionally correlated metabolites (Table 2). Factors 1 (medium-chain acylcarnitines), factor 2 (long-chain 
acylcarnitines), factor 4 (polar uncharged (glutamine and asparagine), positively charged (histidine and lysine), 
and negatively charged (aspartic acid) amino acids), factor 7 (C0, C3, C4 acylcarnitines), factor 11 (C18:2OH 
and glutamic acid), and factor 13 (arginine) were not significant after adjustment by blood pressure and lipid 
profile. Factor 3 (Branched-chain amino acids (BCAA) and aromatic amino acids (AAA), factor 5 and 8 (short-
chain acylcarnitines), factor 6 (hydroxylated long-chain acylcarnitines), factor 9 and 10 (other amino acids), 
and factor 12 (Urea cycle amino acids) were associated with the diabetes incidence independent of confounders 
and have been discussed.

Amino acids. Branched‑chain amino acids (BCAA) and aromatic amino acids (AAA). As the main finding 
of this study, Factor 3 comprised of tyrosine, valine, leucine, methionine, tryptophan, and phenylalanine was 
positively associated with diabetes which is consistent with other findings that have previously been published.

According to the earlier studies that evaluating the relation between metabolites and type 2 diabetes (T2D) 
using high-throughput metabolomics techniques, a sum of or individual BCAAs comprised of isoleucine, 
leucine, valine, and AAA, including tyrosine, phenylalanine, and tryptophan, were related to a higher risk of 
 T2D8, 10, 12, 14–16, 32. Previous reports have associated the AAAs with an escalated risk of developing type 1 diabetes 
(T1D). Additional investigations have demonstrated that BCAAs elevate insulin action and signaling procedures, 
while others have reported that they get worse insulin resistance in individuals with  T1D1. Nevertheless, further 
investigations are needed to elaborate that these amino acid levels are only markers of diabetes or be part of the 
cause of insulin resistance and etiology of  diabetes16, particularly in T1D.

As stated by Libert et al.15, these analytes and ratios increase significantly in T2D and obesity as though 
about 80% of our study participants were overweight or obese. Observational studies have revealed BMI to be 
associated with the risk of  diabetes17. In this respect, significant alterations in BMI and HbA1c between differ-
ent ethnic groups have been  found18. Furthermore, analyses have identified the differences in AAA and BCAA 

Figure 2.  Pathway analysis. Enrichment overview (Metaboanalyst software version 5.0).
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Refs.

First 
author, 
year

Study 
design

Ethnicity/
Country

Study population Average age Average BMI Metabolites

Controls 
(M/F)

Patients 
(M/F) Controls Patients Controls Patients

Amino 
acid Acylcarnitine

Other 
metabolites

44
Kwang 
Seob Lee, 
2021

Nested 
case–con-
trol

Korea 500 
(210/290)

204 
(85/119)

54.0 (47.0–
61.0)**

57.0 (50.5–
63.5) **

26.7 (25.6–
27.8)**

27.25 (25.75–
28.75)** Yes Yes Yes

45
Yishuang 
Duan, 
2021

Case–con-
trol China 60 (33/27) 60 (33/27) 56 ± 7 56 ± 7 25.0 ± 2.7 25.0 ± 2.7 Yes No Yes

46
Lichao 
Wang, 
2020

Cohort (3 
cohorts) China

Set-1 76 
(40/36)
Set-2 64 
(29/35)
Set-3 40 
(18/22)

174 
(82/92)
108 
(52/56)
77 (38/39)

49.09 ± 13.08
41.20 ± 16.29
40.50 ± 16.16

50.70 ± 10.75
52.81 ± 11.80
51.17 ± 11.95

23.97 ± 3.53
22.97 ± 4.25
23.89 ± 3.66

24.81 ± 3.58
25.18 ± 3.24
24.93 ± 3.74

Yes Yes Yes

14
Samuel H 
Gunther, 
2020

Prospec-
tive Study Singapore 2999

(1366/1633)
314
(152/162) 47.0 ± 11.6 53.5 ± 11.2 23.1 ± 3.8 26.3 ± 4.8 Yes Yes No

8 Xin Li, 
2020 Cohort China 54 (38/16)

Simple 
diabetes
21 (10/11)

54.22 ± 13.33 50.82 ± 9.73 22.86 ± 3.21 25.15 ± 2.53

Yes Yes NoDiabetic 
complica-
tion
103 
(60/43)

55.78 ± 9.23 24.35 ± 2.69

47
Jumana Y 
Al-Aama, 
2019

Case–con-
trol

Saudi 
Arabia 
(middle 
east popu-
lation)

33 34 37.65 52.94 – – Yes No Yes

48

Marta 
Guasch-
Ferre, 
2019

Case-
cohort

Mediter-
ranean 
population

641 
(233/408)

251 
(113/138) 66.5 ± 5.7 66.4 ± 5.7 29.7 ± 3.5 30.8 ± 3.4 No Yes No

49 Yonghai 
Lu, 2019

Nested 
case–con-
trol

China

Prevalent 
diabetes
144 (62/82)

144 
(62/82) 62.7 ± 5.9 62.7 ± 6.1 23.1 ± 3.3 24.6 ± 3.6

Yes No No
Incident 
diabetes 160 
(79/81)

160 
(79/81) 61.9 ± 6.0 61.6 ± 5.6 22.6 ± 3.5 24.6 ± 3.4

50
Casey M. 
Rebholz, 
2018

Subset of a 
cohort USA 1813 

(732/1081)
1126 
(479/674) 53.6 ± 5.8 52.8 ± 5.5 27.2 ± 5.1 30.0 ± 6.0 Yes No Yes

51
Jordi 
Merino, 
2018

Prospec-
tive study USA 1055 

(419/636) 95 (52/43) 53 ± 10 54 ± 9 26.18 ± 4.28 29.66 ± 5.18 Yes No Yes

12 Lin Shi, 
2018

Nested 
case–con-
trol

Swedish 
popula-
tion

503 
(224/279)

503 
(224/279) 50.1 ± 8.0 50.2 ± 7.9 25.5 ± 3.8 29.5 ± 4.9 Yes No Yes

52
Gopal 
Peddinti, 
2017

Nested 
case–con-
trol

Finland 397 
(200/197)

146 
(74/72) 48.22 ± 0.72* 52.34 ± 0.99* 25.91 ± 0.19* 28.46 ± 0.37* Yes No Yes

53 Jun Liu, 
2017 Cohort Nether-

lands

2564
(1132/1432)

212
(108/104) 48.2 ± 14.3 59.8 ± 11.8 26.7 ± 4.6 30.0 ± 5.9

Yes No Yes
1434 
(595/839)

137 
(78/59) 47.7 ± 13.9 57 ± 10.7 26.6 ± 4.4 30.1 ± 5.1

54
Birgit 
Knebel, 
2016

Cohort Germany

129 (46/83)
T1D
127 
(79/48)

58 ± 11 35 ± 13 26.3 ± 4.4 24.6 ± 4.3 Yes Yes Yes

T2D
244 
(155/89)

53 ± 11 31.7 ± 5.9

55 Gaokun 
Qiu, 2016

Nested 
case–con-
trol 2cohorts

China

1039 
(464/575)

1039 
(464/575) 62.93 ± 7.32 62.82 ± 7.23 23.64 ± 3.07 25.73 ± 3.34

Yes Yes Yes
520 
(181/339)

520 
(181/339) 53.74 ± 10.18 53.82 ± 10.25 23.70 ± 3.22 25.53 ± 3.42

56 Yonghai 
Lu, 2016

Nested 
case–con-
trol

Chinese 
men and 
women in 
Singapore

197 (80/117) 197 
(80/117) 55.1 ± 2.7 55.2 ± 2.9 22.7 ± 3.1 25.5 ± 3.8 Yes Yes Yes

20 Therese 
Tillin, 2015

cross-
sectional

European 
and South 
Asian men

2286 
(2286/-)

1444 
(1444/-) 51.75 ± 7.15 51.6 ± 7.1

25.56
(23.59–
27.75)**

25.46
(23.5–27.5)** Yes No No

Continued
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concentrations between the different ethnic  groups14, 19, 20 and suggest the requirement for multiethnic studies 
to consider these ethnic differences, especially in the Middle East.

Any other way, BCAAs and AAAs (except tyrosine) are essential and dependent on diet. Interestingly, these 
amino acid patterns are related to the overall dietary pattern rather than the dietary  intake21. A suggested bio-
logical mechanism concerning increased BCAAs concentration along with insulin resistance and diabetes is 
an inadequate response of muscle tissue to the anti-catabolic function of insulin. Subsequently, proteolysis of 
skeletal muscle increases and causes increased BCAAs concentration as the dominant amino acids in this tissue. 
In another explanation, during a series of enzymatic reactions, BCAAs metabolize to branched-chain keto acids 
and then oxidize to be used as substrates in the tricarboxylic acid (TCA) cycle. High BCAAs may arise from the 
defect of these reactions and the accumulation of intermediate compounds involved in diabetes  development22.

For the AAAs, phenylalanine is converted into tyrosine in its catabolic pathway. Accordingly, alterations in one 
of them will possibly affect the other one. It has been suggested that increased levels of phenylalanine and tyros-
ine may result from decreased tyrosine aminotransferase activity that converts tyrosine to other intermediary 
 compounds22. It has been proposed that tyrosine can inhibit insulin signaling pathways and glucose  transport23.

Urea cycle amino acids. More specifically, citrulline and ornithine as components of Factor 12 were reversely 
associated with the incidence of diabetes. The trend of ornithine in diabetes development was in line with Cao 
et al.24, which can be referred to as inflammatory conditions. Meanwhile, it can stem from increased depletion 
of ornithine as a precursor for  proline25. Contrary to these findings, in Gunther SH et al.’s  study16, the ornithine 
was positively associated with the risk of diabetes which can be resulted from upregulated arginase activity, an 
enzyme that takes part in ornithine production.

Other amino acids. We also confirmed several previously reported associations of diabetes and some amino 
acids, including in Factor 10 (alanine, proline) and Factor 9 (C4DC, serine, glycine, threonine). Taken together, 
our findings support other reports as higher concentrations of proline and alanine were detected in diabetes 
than non-diabetes which were associated with a higher risk of T2D. The levels of glycine and serine were lower 
in  diabetes4, 9, 14, 16, 26.

In this class, glycine has the most robust involvement in the pathophysiology of diabetes. Glycine is mainly 
synthesized from threonine and serine. It is an insulin secretagogue; therefore, a low glycine concentration may 
decline pancreatic insulin secretion. This decrease of glycine may be due to the increased glycine consumption 
for the generation of glutathione or related to its role as a neurotransmitter, increased absorption of glycine in 
insulin-resistant tissues for gluconeogenesis, or the opposite link between glycine and visceral-subcutaneous 
adipose tissue  mass22, 27, 28.

Acylcarnitines. We perceived three factors that were positively associated with diabetes as follows: Factor 5 
(C3DC, C5, C5OH, C5:1), factor 8 (C2, C4OH, C8:1), which is mainly composed of short-chain acylcarnitines, 
and factor 6 (C14OH, C16OH, C18OH, C18:1OH) contains hydroxylated long- chains acylcarnitines.

Acylcarnitines are a form of fatty acids needed to transport into mitochondria and peroxisomes for beta-
oxidation, and changes in their abundance may point to a deficiency in fatty acid oxidation, glycolysis, and BCAA 
metabolism. It is conceivable that the accumulation of these pathways intermediates in the blood may play a key 
role in insulin action and progression of  diabetes29, 30.

Short‑chain acylcarnitines. Our study confirmed that levels of various acylcarnitines in patients with T2D had 
been  increased26, 31. An increasing trend of short-chain acylcarnitines has been detected in obesity and  T2D15. 
In a cohort study, the baseline C3DC, C5, C5OH, and C8:1 were related to a higher risk of  T2D32. Notably, the 
short-chain acylcarnitines C3, C4-DC, and C5 derive from different energy sources as well as the  BCAAs29. 
Also, C3-DC is another elevated amino acid—derived acylcarnitine that emphasizes evaluating the association 
between amino acids and acylcarnitines in disease  development33. In contrast to the presented results, Muilwijk 
et al. demonstrated a negative association between most acylcarnitines especially short-change ones and the risk 
for  T2D10.

Hydroxylated long‑chain acylcarnitines. Long-chain acylcarnitines are going above when fatty acid supply sur-
passes the capacity or demand of mitochondrial oxidation and the TCA  cycle29, 34. Additionally, acylcarnitine 
C16OH was significantly linked to higher diabetes  risk14. Similar results were reported about baseline concen-

Refs.

First 
author, 
year

Study 
design

Ethnicity/
Country

Study population Average age Average BMI Metabolites

Controls 
(M/F)

Patients 
(M/F) Controls Patients Controls Patients

Amino 
acid Acylcarnitine

Other 
metabolites

28
Anna 
Floegel, 
2013

Case-
cohort Germany 2282 

(867/1415)
800 
(462/338) 49.5 ± 8.9* 54.7 ± 7.3* 26.1 ± 0.09* 30.1 ± 0.15* Yes Yes Yes

29
Cristina 
Menni, 
2013

Cross-
sectional U. K 1897 

(-/1897)
115 
(-/115) 50.02 ± 14.43 63.00 ± 9.61 25.42 ± 4.55 30.58 ± 6.32 Yes No Yes

Table 4.  Literature review on biomarkers in diabetes metabolomics studies. **Data reported as median (IQR); 
*Data reported as mean ± SEM; others reported as mean ± SD. M: Male; F: Female; BMI: Body mass index.
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trations of C14OH and  C18OH32. The remarkable thing about acylcarnitines is that although changes in these 
metabolites have been studied extensively, in different studies, different types of metabolites reported as signifi-
cantly changed, which makes it challenging to reach a comprehensive conclusion. Confirms the need for further 
studies.

Differences according to sex. Sex as an endogenous factor can influence the human metabolome and provide 
valuable information through precision  medicine35. According to sex differences, C5, C5DC and, C8:1 acylcarni-
tines and leucine, methionine, glycine and, tryptophane amino acids were different between men and women in 
both study groups. All the mentioned metabolites had higher levels among men, except C8:1 and glycine. These 
findings were in line with Kirstin Mittel strass et al.’s  results36. Regardless of gender differences, just leucine and 
glycine significantly differed between diabetes and non-diabetes.

In Burcu F. Darst et al.’s study on healthy participants, C5, methionine, tryptophan, glutamate, proline, phe-
nylalanine, and the BCAAs associated with sex and were in higher levels in men, while glycine was found in a 
lower level in  men37. In the following in our study, higher levels of glutamic acid valine and proline amino acids 
were found in non-diabetic men. For diabetes, higher levels of C3 acylcarnitine along with phenylalanine and 
citrulline amino acids were observed in men. Just C3, citrulline, and valine changes among diabetes and non-
diabetes were significant without consideration of sex.

Consistent with our findings, other studies have confirmed amino acids, particularly BCAAs, as sex-depend-
ent metabolites, and higher concentrations of several amino acids have been reported in men, which can be 
caused by higher protein intake or larger muscle  mass38–40.

Conclusion
This study was performed on participants of a multi-regional cohort in Iran. Participants with diabetes were 
randomly selected, and the control group was matched with them to improve study efficiency and statistical 
precision. Along with amino acids, acylcarnitines, as less studied metabolites compared to others, were analyzed 
to be able to add new data to existing findings.

BCAAs, AAAs, and a wide range of amino acids along with many short- and long-chain acylcarnitines have 
been strongly associated with the risk of diabetes incidence. Our results displayed that the predictive factors 
contained specific amino acids and acylcarnitines would be helpful to reflect the metabolic pathway disturbances 
among diabetes. They might be advantageous for evolving the preventive, diagnostic, and therapeutic strategies 
for diabetes and its complications. In this field of study, several articles have been published in the population of 
countries with different races, ethnicities, and environmental conditions. However, according to our knowledge, 
no study has examined the status of metabolites in the population of diabetics in Iran so far. Although, further 
multiethnic extensive studies with the valuation of dietary patterns and assessment of probable complications 
are required to obtain more conclusive results.

Material and methods
Patients and experiments design. A case–control study was set up with 412 subjects (206 non-diabetic 
and 206 diabetic individuals) that were randomly chosen from participants of the Surveillance of Risk Factors of 
NCDs in Iran Study (STEPS 2016). STEPS is conducted periodically in 30 provinces of Iran to investigate none 
communicable risk  factors41. Gender, age, waist circumference, hip circumference, body mass index (BMI), sys-
tolic and diastolic pressure were documented. Biochemical characteristics of patients, including; HbA1c, fasting 
plasma glucose (FPG), and lipid levels (HDL-C, cholesterol, triglyceride), were measured by Cobas C311 auto 
analyzer using commercial kits from Roche Company (Roche Diagnostics, Mannheim, Germany).

Study cases were selected randomly from the STEPS, and then each case was then matched to control accord-
ing to age, sex, and BMI. All patients were diagnosed with diabetes according to the diabetes diagnosis and 
treatment standards of the American Diabetes Association (ADA)42. The study protocol was approved by the 
ethics committee of Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical 
Sciences (IR.TUMS.EMRI.REC. 1395.00141) and performed under the declaration of Helsinki. Also, written 
informed consent was obtained from all participants.

Detection of metabolites by tandem mass spectrometry. Details of the analytical procedures were 
described  elsewhere43. In brief, fasting plasma samples were derivatized (with 1-butanol and HCL) and analyzed 
by the API SCIEX 3200 triple quadrupole mass spectrometer system, along with Thermo Scientific Dionex Ulti-
Mate 3000 standard HPLC system using positive electrospray ionization mode. A mixture of 75% acetonitrile 
aqueous solution was used as the mobile phase. The injected volume was five μL. The complete analysis con-
tained 50 metabolites, including 20 amino acids and 30 acylcarnitines. The quantification of different metabo-
lites was undertaken by Multiquant software (AB Sciex) against different isotopes as internal standards. Quality 
control was accomplished to screen the stability and functionality of the system through instrumental analyses.

Metabolomics study. Data pre‑processing. All data involved in this study were analyzed by IBM SPSS 
Statistics software version 26 (https:// www. ibm. com/ analy tics/ spss- stati stics- softw are). Missing values were re-
placed based on imputation models and data scaled and standardized by Z-transformation to compare values 
between different data ranges.

Univariate analysis. The results were compared using independent sample T-test or Mann–Whitney U test 
(after checking the normality by Kolmogorov–Smirnov test), and P values were calculated. The odds ratio (OR) 

https://www.ibm.com/analytics/spss-statistics-software
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with a 95% confidence interval (CI) (per metabolite) was calculated using binary logistic regression analysis to 
adjust the results for systolic and diastolic blood pressure and lipid profile (HDL-C, cholesterol, triglyceride) as 
covariates. The Benjamini–Hochberg false discovery rate (FDR) was calculated to adjust the P value for multiple 
comparisons. P values < 0.05 were considered significant. Also, metabolites differences among diabetes and non-
diabetes were evaluated according to sex differences.

Multivariate data analysis. The correlations of metabolites were calculated based on Pearson correlation coef-
ficient (Supplementary Fig. 2), and then to deal with multiple comparisons, factor analysis was used, and prin-
cipal component analysis (PCA) was performed by varimax rotation to extract factors, achieve the metabolite 
patterns and loading matrix. Kaiser–Meyer–Olkin (KMO) and Bartlett sphericity tests were used to evaluate the 
statistical correlation between variables and sufficiency of sample size. A KMO coefficient around 0.8 took into 
account as credible. We extracted 13 factors based on scree plot (eigenvalue > 1). Metabolites with the maximum 
loading (more than 0.4) for a factor were used as relevant components. Factor scores for each of the extracted 
factors were calculated by summing the concentrations of the metabolites multiplied by loadings. Multivariate 
logistic regression was used to estimate OR and their 95% CI of the extracted factors to analyze the relationship 
between metabolite patterns and diabetes incidence. Models were adjusted for blood pressure and lipid profile 
(HDL-C, cholesterol, triglyceride).

Pathways analyses. Influenced pathways for significant metabolites were plotted. Metaboanalyst software ver-
sion 5.0 (https:// www. metab oanal yst. ca )was implemented for pathway enrichment analysis based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway database.

Acylcarnitines name. Free carnitine (C0), acetylcarnitine (C2), propionylcarnitine (C3), Malonylcarni-
tine (C3-DC), butyrylcarnitine (C4), Methylmalonyl-/succinylcarnitine (C4-DC), 3-OH-iso-/butyrylcarnitine 
(C4-OH), isovalerylcarnitine (C5), Tiglylcarnitine (C5:1), 3-OH-isovalerylcarnitine (C5-OH), glutarylcarnitine 
(C5DC), hexanoylcarnitine (C6), octanoylcarnitine (C8), Octenoylcarnitine (C8:1), decanoylcarnitine (C10), 
Decenoylcarnitine (C10:1), dodecanoylcarnitine (C12), tetradecanoylcarnitine (C14), Tetradecenoylcarnitine 
(C14:1), Tetradecadienoylcarnitine (C14:2), 3-OH-tetradecanoylcarnitine (C14-OH), hexadecanoylcarnitine 
(C16), 3-OH-hexadecanoylcarnitine (C16-OH), 3-OH-hexadecenoylcarnitine (C16:1-OH), Hexadecenoyl-
carnitine (C16:1), octadecanoylcarnitine (C18), Octadecenoylcarnitine (C18:1), 3-OH-octadecanoylcarnitine 
(C18-OH), 3-OH-octadecenoylcarnitine (C18:1-OH), Octadecadienoylcarnitine (C18:2).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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