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A nonconvex TVq − l
1
 

regularization model 
and the ADMM based algorithm
Zhuang Fang*, Tang Liming, Wu Liang & Liu Hanxin

The total variation (TV) regularization with l
1
 fidelity is a popular method to restore the image 

contaminated by salt and pepper noise, but it often suffers from limited performance in edge-
preserving. To solve this problem, we propose a nonconvex TVq − l

1
 regularization model in this 

paper, which utilizes a nonconvex lq-norm (0 < q < 1) defined in total variation (TV) domain (called 
TVq regularizer) to regularize the restoration, and uses l

1
 fidelity to measure the noise. Compared 

to the traditional TV model, the proposed model can more effectively preserve edges and contours 
since it provides a more sparse representation of the restoration in TV domain. An alternating 
direction method of multipliers (ADMM) combining with majorization-minimization (MM) scheme 
and proximity operator is introduced to numerically solve the proposed model. In particular, a 
sufficient condition for the convergence of the proposed algorithm is provided. Numerical results 
validate the proposed model and algorithm, which can effectively remove salt and pepper noise while 
preserving image edges and contours. In addition, compared with several state-of-the-art variational 
regularization models, the proposed model shows the best performance in terms of peak signal to 
noise ratio (PSNR) and mean structural similarity index (MSSIM). We can obtain about 0.5 dB PSNR 
and 0.06 MSSIM improvements against all compared models.

Images are often contaminated by additive noise during the formation, transition or recording process, usually 
modeled as:

where u is the original true image, f is the corresponding noisy version, and n represents additive noise. Solving 
the u from the linear system (1) is a classical inverse problem, which is actually an ill-posed problem since the 
solution of u is non-unique and is very sensitive to the initialization. A nature method to address this prob-
lem is regularization technique and functional minimization by introducing some prior informations on the 
 restorations1–5, usually formulated as:

where R(u) is regularization term that embodies the priors, F(f − u) is the fidelity term that forces the closeness 
of the restoration u to the observation f, U is a function space modeling the restoration u, and � > 0 is a tuning 
parameter that controls the tradeoff between the two terms.

For the regularization term, the earliest regularizer is Tikhonov regularization term proposed by  Phillips6 
and  Tikhonov7 in 1960s, which is defined as a quadric functional of the l2 norm of |∇u| , i.e., �∇u�22 . Tikhonov 
regularization has the strong ability of noise removing. However, it often overly smoothes the image edges. Rudin, 
Osher and Fatemi in  19928 proposed total variation (TV) regularization to address this over-smoothing problem. 
The function measured by TV allows for discontinuities along curves during the functional minimization, there-
fore edges and contours can be preserved in the restoration u. Later on, many scholars have done a lot of research 
on TV regularization, and proposed lots of improved TV-based regularization terms, such as high-order  TV9,10, 
hybrid  TV11,12, non-local  TV13,14, overlapping  TV15,16, anisotropic  TV17. We note that the TV-based regularizers 
mentioned above are convex functional.

(1)f = u+ n,

min
u

{

R(u)+ �F(f − u)
}

, s.t. u ∈ U ,

OPEN

School of Mathematics and Statistics, Hubei Minzu University, Enshi 445000, People’s Republic of China. *email: 
wdfangzhuang@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-11938-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7942  | https://doi.org/10.1038/s41598-022-11938-7

www.nature.com/scientificreports/

In the last decades, nonconvex regularization based on sparse priors has attracted much attention and found 
wide applications. It is based on the observation that signals (also images) usually have the very sparse representa-
tion in some transformed domains (such as Fourier transform, cosine transform), or in some dictionaries (such 
as wavelet dictionary, framelet dictionary, self-adaptive dictionary)18,19. It is well known that l0-norm measured 
by the number of nonzero entries is the exact measurement of the sparsity. However, it is difficult to be solved in 
the practice. A popular method to attack this problem is to use the l1-norm as a relaxation measurement, which 
is a convex functional and makes the problem easier to solve. It has been shown that under some assumptions, 
the regularization problems with such l1 relaxation leads to a near optimal sparse solution. To further encourage 
the sparsity of the solutions, some nonconvex regularizers are proposed since nonconvex functions are much 
closer to the l0-norm than convex  counterparts20,21. Since the seminal work of Geman and Geman  in22, various 
nonconvex regularization models have been proposed, such  as23–27. Although nonconvex optimization problems 
cannot guarantee the existence and uniqueness of the solution, and will lead to complex numerical calculation, 
a variety of applications (e.g.,28–31) have shown that nonconvex regularization models outperform the convex 
counterparts, and yield the restorations of high quality with sharp and neat edges. In addition, Nikolova et al.25,30 
provided a theoretical explanation for this phenomenon.

For the fidelity term, one always uses the l2-norm �f − u�22 to measure the closeness between the restoration 
u and the observation f9–16. It is well known that such least-squares fitting using l2-norm yields the mean filtering, 
which is only suitable for removing the additive Gaussian noise, but fails for salt and pepper noise. While the 
least-absolute fitting using l1-norm leads to the median filtering that is less sensitive to the outliers. So l1-norm 
fidelity term �f − u�1 is suitable for removing the salt and pepper noise. A lot of regularization models with l1
-norm fidelity have been proposed for salt and pepper noise removal, such  as3,26,32–34. In addition, Chan and 
Esedoglu  in34 demonstrated that TV regularization with l1-norm fidelity term (TVL1) is contrast invariant, as 
opposed to that with l2-norm fidelity term. However, TVL1 model has limited performance in edge-preserving 
due to the use of the convex TV regularizer. We note in passing that Meyer  in35 suggested to use some weaker-
than-l2(also l1) norms as the fidelity term to measure the residual. He introduced three functional spaces, G, E 
and F, to model the oscillatory functions, which are very suitable for image cartoon-texture decomposition, but 
not suitable for salt and pepper noise removing.

Based on the above analysis, we note that: (1) TV regularization with l1 fidelity can successfully remove salt 
and pepper noise, but lacks the ability of edge-preserving; (2) Although nonconvex regularization can preserve 
image edges well, few studies concern on salt and pepper noise removal. In order to solve these problems, and 
effectively remove salt and pepper noise while better preserving image edges and contours, a nonconvex TVq − l1 
regularization model is proposed in this paper. It utilizes a nonconvex TVq regularizer defined in TV domain 
to model the restoration u, and employs the l1-norm as the fidelity term for the noise f − u . So, the proposed 
model can remove the salt and pepper noise while preserving image edges and contours due to the combination 
of nonconvex regularization and l1-norm fidelity term. A first-order algorithm based on the alternating direction 
method of multipliers (ADMM) combining with MM scheme proximity operator is developed to numerically 
solve this nonconvex model. In addition, a sufficient condition for the convergence of the proposed algorithm 
is provided. The main contributions of this work are as follows:

• A nonconvex TVq regularization variational model with l1-norm fidelity is proposed. Although much research 
has been done on the nonconvex regularization and l1-norm fidelity term separately, to the best of our knowl-
edge, there are every few studies on the issue of the combination of the nonconvex regularization and l1-norm 
fidelity. A few recent works can be seen  in3,26,32. We note that the nonconvex regularizers in these literatures 
are defined in the image domain itself, or in the coefficient domain on a basis, whereas our regularizer is 
in TV domain. Compared with models  in3,26,32, nonconvex TV regularization has superior performance in 
edge-preserving, we refer the readers  in25,30 for more details.

• A first-order algorithm based on ADMM combining with proximity operator is introduced for the nonconvex 
model. In addition, the convergence property of the proposed algorithm is analyzed. We note that for the 
“nonconvex regularization + l1-norm fidelity” models, the authors  in3,26,32 also used ADMM framework.  But3 
did not give a convergence analysis. The authors  in26,32 derived a convergent algorithm by smoothing the l1
-norm fidelity term. Different from the methods  in26,32, we give a convergence analysis under some nature 
assumptions to the proposed functional and the parameters.

The structure of this paper is organized as follows. “Introduction” section presents the background and start 
of this study. “Related work” section gives some background knowledge involving TVL1 model, nonconvex 
regularization and proximity operator. “Methods” section details the proposed nonconvex TVq − l1 regulariza-
tion model, and introduces an efficient numerical algorithm for the proposed model. A sufficient condition 
for the convergence of the proposed algorithm is also provided in this section. “Results” section discusses the 
performance of the proposed model and algorithm. “Conclusion” section presents the results. The work ends 
with concluding remarks.

Related work
In this section, we recall some background knowledge that are very related to our present work, where TVL1 
model is the seminal work for salt and pepper noise removal under the variational regularization framework, 
nonconvex regularization provides the design of regularizer for the proposed model in this paper, and proximity 
operator is used to solve the nonconvex subproblem in the ADMM algorithm.
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TVL1 model. Rudin et  al.8 proposed the following TV regularization model with l2-norm fidelity term 
(TVL2) to address over-smoothing problem often arising in the Tikhonov regularization,

where �∇u�1 =
∫

�
|∇u|dx is the regularization term, and �f − u�22 is l2-norm fidelity term. Model (2) is convex 

with respect to u and easy to be solved in the practice. TVL2 model (2) is suitable for Gaussian noise removing. 
In addition, TV energy does not penalize the discontinuity of the functions along the contours, so the edges can 
be preserved in the restoration u by model (2).

Chan and Esedoglu  in34 proposed the following TV regularization model with l1-norm fidelity term (TVL1),

TVL1 model (3) is more suitable for salt and pepper noise removing than TVL2 model (2). In addition, compared 
to TVL2, TVL1 model is contrast invariant. The authors  in34 gave a simple but illustrative example to show the 
characteristics of the solutions of TVL1 model and TVL2 model. Assuming the observed image f(x) being a 
characteristic function 1Br (0)(x) of a disk Br(0) that is centered at the origin and with radius r, they derived the 
close-form solutions of (2) and (3). The solution of TVL2 model (2) can be written as:

Assuming the minimizer of TVL1 model (3) has to be of the form c1Br (0)(x) for some constant c ∈ [0, 1] , they 
get the solution as:

From (4) and (5), we observe that both disks in the TVL2 and TVL1 solutions vanish if the radiuses are less 
than 2/� . But for the disks whose radiuses r are greater than 2/� , TVL1 model preserves these disks intactly, i.e., 
uTVL1 = f  , in contrast to the “contrast loss” phenomena in TVL2 model, where the loss is inversely proportional 
to �r . This intuitive example indicates that TV regularization with l1-norm fidelity can better preserve the contrast 
of the images than that with l2-norm fidelity in the application of image restoration.

Nonconvex regularization. From the view of sparse-representation, TV energy is actually the l1-norm of 
the gradient module, which can be seen as a relaxation of the l0-norm that is the accurate measurement of the 
sparsity. To promote the sparsity of the entries, nonconvex measurement is a good candidate since it approxi-
mates the l0-norm more closely than l1-norm. Nikolova et al.25,30 proposed the following nonconvex TV regulari-
zation model with l2-norm fidelity term, which is called NTVL2 model in the following:

where ϕ(t) is a nonconvex potential function, and �ϕ(|∇u|)�1 =
∫

�
ϕ(|∇u|)dx is the nonconvex regularization 

term. Since nonconvex function ϕ(t) is closer to the l0-norm than l1-norm, NTVL2 model (6) can obtain the 
more sparse representation of |∇u| than TVL2 model (2). Furthermore, compared to the TVL2 model, NTVL2 
model encourages the penalty to the pattern of small variation, while decreases the penalty to the pattern with 
large variation. So, NTVL2 model has a superior performance in noise-removing and edge-preserving than 
classical TVL2 model. However, NTVL2 model (2) is only suitable for Gaussian noise removing due to the use 
of l2-norm fidelity.

To achieve the sparse recovery in the presence of salt and pepper noise, recently some nonconvex regulariza-
tion models with l1-norm fidelity have been  proposed3,26,32, called NRL1, which are defined as follows:

where P(·) is a nonconvex function for sparsity promotion. If A is a identity matrix, model (7) is to recover the 
sparse image u. If A is a sensing matrix accumulated by a basis, model (7) is to recover the image Au which has 
the most sparse representation on this basis. We note that the nonconvex regularizer in (7) is defined in the image 
domain itself, or in the coefficient domain on a basis. To inherit the advantages of nonconvex TV regularization 
in image restoration, we propose a generalized nonconvex regularization variational model for salt and pepper 
noise removal. It utilizes a generalized nonconvex regularizer defined in the TV domain as the priors to model 
the restorations, and employs the l1-norm as the fidelity term to measure the noises. New model can effectively 
remove salt and pepper noise due to the use of l1-norm fidelity; and well preserve image edges and contours due 
to the use of nonconvex TV regularization.

Proximity operator of lq function. The proximity operator is a generalized form of the projection opera-
tor, often used to solve non-differentiable optimization problems. In this paper, we use it to solve the nonconvex 

(2)min
u

{

�∇u�1 +
�

2

∥

∥f − u
∥

∥

2

2

}

,

(3)min
u

{

�∇u�1 + �
∥

∥f − u
∥

∥

1

}

.

(4)uTVL2(x) =
{

0, if 0 � � � 2/r,
(

1− 1
�r

)

1Br (0)(x), if � > 2/r.

(5)uTVL1(x) =

{

0, if 0 � � � 2/r,
c1Br (0)(x), if � = 2/r,
1Br (0)(x), if � > 2/r.

(6)min
u

{

�ϕ(|∇u|)�1 +
�

2

∥

∥f − u
∥

∥

2

2

}

,

(7)min
u

{

P(u)+
�

2

∥

∥f − Au
∥

∥

1

}

,
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subproblems in the iterative algorithm. For a proper and lower semi-continuous function P(x), the correspond-
ing proximity operator is defined  as36,37,

Intuitively, proximity operator proxP,ρ(t) is to approximate the point t with some other point x under the norm 
�x − t�22 and the penalty P(x). The positive parameter ρ > 0 is introduced as a means to control the approxima-
tion. In the following, we review the proximity operator for lq(0 < q < 1) function, which will be used in our 
numerical implementation.

When the penalty is given as lq-norm (0 < q < 1) , i.e.,

the proximity operator does not has a closed-form expression except for two special cases of q = 1/2 and q = 2/3 . 
When P(x) = |x|1/2 , the corresponding proximity operator is a l1/2 thresholding  function38,39,

where

When P(x) = |x|2/3 , the corresponding proximity operator is a l2/3 thresholding  function39,40,

where

and

For any other q, the authors  in41 give a semi-implicit expression of the proximity operator with lq-norm penalty, 
which is defined as:

In (10), the threshold τ satisfies that τ = β + qβq−1/ρ with β =
(

2(1− q)/ρ
)

1
2−q , and y∗ is the shrinkage that 

has not explicit expression. It is a zero point of the non-linear function h(y) = qyq−1 + ρy − ρ|t| over the region 
(β , |t|).

Methods
The main purpose of this paper is to effectively remove salt and pepper noise while successfully preserve image 
edges and contours in image restoration under the variational framework. Firstly, a variational regularization 
model combining nonconvex regularization and l1 fidelity is proposed, which is actually a minimization prob-
lem. And then, the classical ADMM algorithm is developed to numerically solve the proposed model, which is 
programmed by MATLAB software in the experiments. Finally, some commonly used test images and datasets 
are used to validate the proposed model and algorithm. The PSNR and MSSIM indexes are used as the means 
to quantitatively evaluate the performance. Figure 1 shows a flow chart to clarify the study design of the present 
work.

The proposed nonconvex TVq − l
1
 regularization model. In this section, we present a nonconvex 

TVq − l
1
 regularization variational model, called NTVL1 in the following, which is defined as:

proxP,ρ(t) = argmin
x

{

P(x)+
ρ

2
�x − t�22

}

.

P(x) = |x|q, (0 < q < 1),

(8)proxP,ρ(t) =















2
3 |t|
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1+ cos
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2π
3 − 2ϕρ(t)
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3 |t|
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1+ cos
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1
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with φ = arccosh

(

27t2

16
ρ− 3

2

)

P(ρ) =
2

3

(

3ρ3
)

1
4 .

(10)proxP,ρ(t) =







0 if |t| < τ ,
�

0, sign(t)β
�

if |t| = τ ,
sign(t)y∗ if |t| > τ .
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where P(Bu) is the regularization term, in which P(·) : R+ → R
+ is a continuous, increasing and nonconvex lq 

function for sparsity promotion, and B is the gradient operator |∇| = (∇2
x +∇2

y )
1/2 . We note in passing that B 

can be choose some other difference operators, such as x-directional difference ∇x , y-directional difference ∇y , 
and anisotropic difference operator ∇x +∇y . The l1-norm �f − u�1 is the fidelity term. U is a function space (e.g., 
Sobolev space, bounded variation space). And � is a positive tuning parameter, which balances the regularization 
term and fidelity term. Model (11) combines the advantages of nonconvex TV regularization and l1-norm fidelity. 
It can effectively remove the salt and pepper noises by l1-norm fidelity term, while preserving the valuable edges 
and contours via nonconvex TV regularization.

Remark 1 Although much research has been done on the nonconvex regularization and l1-norm fidelity term 
separately, to the best of our knowledge, there are every few studies on the combination of them. A few works 
can be seen  in26,32, called NRL1, which are defined as follows:

where P(u) is a nonconvex regularization term to measure the sparsity of u, and A is a transformation matrix. 
If A is a identity matrix, NRL1 model is to recover the sparse image u, and if A is a sensing matrix accumulated 
by a basis, it recovers the image Au that has the most sparse representation on the basis A. But differed from 
NRL1 regularizer P(u), our nonconvex regularizer is P(Bu) that is defined in TV domain. In image restoration 
application, such scheme can better preserve edges and contours than NRL1.

Remark 2 The model (11) can effectively preserve edges and contours in the restoration u due to the use of 
nonconvex TV regularization term. Using a basis of a local framework (N, T), where N is normal direction 
defined as N = ∇u/|∇u| , and T is the corresponding tangent direction defined as T = ∇u⊥/|∇u| , we derive 
the Euler-Lagrange equation associated with (11),

where uTT and uNN are the second derivatives of u in T and N directions, and P′(|Bu|)/|Bu| and P′′(|Bu|) can be 
seen as the adaptive diffusion velocity along T-direction and N-direction, respectively. It is obviously that P′(t) 
is a monotony decrease function and satisfies P′′(t) < 0 since P(t) is a nonconvex increasing function.

Along T-direction, for the image pixels where |Bu| ≈ 0 (homogeneous regions), the diffusion Eq. (12) has 
strong smoothing effect since the diffusivity P′(|Bu|)/|Bu| is of a large value. And for the image pixels where the 
value of |Bu| is large (edges), the model (12) has weak smoothing effect since the value of diffusivity P′(|Bu|)/|Bu| 
is small. Along N-direction, the adaptive diffusivity always satisfies P′′(|Bu|) < 0 for each image pixel, which 
means that diffusion in normal direction is always reverse. Based above, we can conclude that the proposed model 
can effectively smooth the image homogeneous regions, while still preserving the edges and contours very well.

(11)min E(u) = P(Bu)+ ��u− f �1 s.t. u ∈ U ,

min
u

{

P(u)+ �
∥

∥f − Au
∥

∥

1

}

,

(12)
P′(|Bu|)
|Bu|

uTT + P′′(|Bu|)uNN + �
u− f

|u− f |
= 0 (|Bu| �= 0, |u− f | �= 0),

Figure 1.  The demonstration of the study design of the present work.
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The proposed algorithm. Obviously, model (11) is a nonconvex and nonsmooth optimization problem 
since the first term is nonconvex, and the second term is nonsmooth. In this section, we propose an efficient 
first-order algorithm to solve this model using ADMM framework. ADMM algorithm decouples the variables 
and makes the global problem easy to tackle, which is very suitable to solve the distributed optimization and 
high-dimensional optimization problems. With the use of an auxiliary Bu = v , ADMM algorithm is to solve the 
following linearly constrained reformulation of (11):

Transforming (13) into an augmented Lagrangian formulation, we obtain

where u and v are primal variables, p is the Lagrangian multiplier, also called dual variable, and ρ > 0 is a penalty 
parameter. Functional (14) can be simplified as:

where C = 1
2ρ �p�

2
2 that can be neglected in the minimization problem. Then, we alternatively minimize (15) 

with respect to u and v, and then update the multiplier p. Specifically, the minimization solutions (uk+1, vk+1) 
are obtained alternatively while the other variables are fixed, which leads to the following iteration scheme.

• Step 1. Fixing variables v and p, we minimize the energy L(u, v; p) with respect to u. 

• Step 2. Fixing variables u and p, we minimize the energy L(u, v; p) with respect to v. 

• Step 3. Updating Lagrangian multiplier p as follows: 

 ADMM algorithm solves the original model (11) by alternatively updating the above steps. In the following, 
we solve the subproblems (16) and (17) in detail.

Solve the subproblem (16) with respect to u. Using an auxiliary variable w = u− f  , we convert the minimiza-
tion problem (16) into an equivalent form,

Then, the optimal uk+1 can be computed by uk+1 = f + wk+1 . The w-subproblem (19) is actually l1-regularized 
least squares problem. We use a majorization-minimization (MM) scheme to solve this subproblem approxi-
mately. Specifically, let nk = vk − Bf − pk

ρ
 , we majorize the quadratic functional �Bw − nk�22 in the objective 

functional (19) with a simple surrogate functional by linearizing it at point wk,

where d
(

wk
)

 is the gradient of the quadratic functional �Bw − nk�22 at point wk , computed by 
d
(

wk
)

= BT (Bwk − nk) , and τ > 0 is a proximal parameter. Using such an approximation of 
∥

∥Bw − nk
∥

∥

2

2
 in (19), 

we denote the new energy as F(w,wk) . Obviously, when the proximal parameter τ satisfies 1/τ > �max

(

BTB
)

 , 
where �max

(

BTB
)

 denotes the maximum eigenvalue of the matrix BTB , the new energy F(w,wk) satisfies the 
classical MM conditions: (i) F(w,wk) ≥ F(w) for all w, and (ii) F(wk ,wk) = F(wk) . Minimizing the surrogate 
energy F(w,wk) in stead of the original energy F(w), and neglecting the constant in the F(w,wk) , we obtain the 
following minimization problem,

(13)min
u,v

{

P(v)+ ��u− f �1
}

s.t. Bu = v, u ∈ U .

(14)L(u, v; p) = P(v)+ ��u− f �1 + �p,Bu− v� +
ρ
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Model (20) is a classical l1 + l2 minimization problem, which can be explicitly solved by a soft thresholding with 
the shrink operator, i.e.,

where shrink operator is defined as:

Solve the subproblem (17) with respect to v. Let mk = Buk+1 + pk

ρ
 , the v-subproblem (17) can be computed by 

the proximity operator, i.e.,

where proxP,ρ is the proximity operator for the function P(·) with penalty ρ.
The above states the algorithm that solves the augmented Lagrangian formulation L(u, v; p) with a fixed k. 

At last, in order to incorporate the algorithm into ADMM framework to solve the original nonconvex model 
(11), starting with the initial assignment as k = 0 , u0 = f  , v0 = Bf  and p0 = 0 , we reiterate the above computing 
processes, each time updating the value of k as k + 1 . Consequently, the ADMM algorithm to our nonconvex 
variational model (11) is written as follows (Algorithm 1). 

We note that for the Algorithm 1, it only needs one loop to iteratively update the function values. The com-
putation load in each iteration is matrix multiplication. So the complexity of the Algorithm 1 is O(mn), where 
m is the size of the input images, and n is the number of the loop iterations.

Convergence analysis. In this subsection, we analyze the convergence property of the Algorithm 1. Note 
that the convergence issue of ADMM algorithm for the convex models has been well addressed, such  as42–45, 
while there are very few studies on the nonconvex cases. Inspired by the approaches and conclusions  in46,47, 
we derive the following results for convergence of the Algorithm 1. Firstly, several assumptions are introduced, 
which will be used in the following convergence analysis.

Assumption 1 Function P(·) is closed, proper and lower semicontinuous.

Assumption 2 The gradient of P(·) is Lipschitz continuous, i.e., for any x and y, there exists a positive constant 
K > 0 , such that:

We note that here we use gradient ∇ rather than derivative since gradient is a generalization of the derivative.

Assumption 3 The penalty parameter ρ is chosen large enough such that ρ > K . In this case, the v-subproblem 
(17) is strongly convex.

(20)wk+1 = argmin
w

{

��w�1 +
ρ

4τ

∥

∥

∥
w − wk + τd

(

wk
)∥

∥

∥

2

2

}

.

(21)wk+1 = shrink

(

wk − τd
(

wk
)

,
4τ�

ρ

)

,

shrink(t,α) = sign(t)max{|t| − α, 0}.

(22)vk+1 = proxP,ρ(m
k),

∥

∥∇P(x)−∇P(y)
∥

∥

2
� K

∥

∥x − y
∥

∥

2
.
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Assumption 4 The energy E(u) is bounded below, i.e., E = min E(u) > −∞.

We first show that the difference of the dual variable p in the iteration can be bounded above by that of the 
primal variable v.

Lemma 1 Let (uk , vk; pk) be the sequence obtained by Algorithm 1, then we have following:

Proof From the v update step (17), we have the following optimality condition:

Combining with the dual variable update step (18), i.e.,

We have

By the assumption that the gradient of P is Lipschitz continuous, we have

The desired result is obtained.   �

Next, we show that the augmented Lagrangian function L(u, v; p) is monotonically decreasing in the itera-
tive process.

Lemma 2 Let (uk , vk; pk) be the sequence obtained by Algorithm 1, then we have following:

where γ1 = ρ
(

1/τ − �max(B
TB)

)

.

Proof In (19), let

In w-subproblem (20), we actually minimizes the following approximated objective of (19),

Because wk+1 is the minimizer of F
(

w,wk
)

 , we have

which implies that:

Further, the Hessian of h(w) is ∇2h(w) = BTB , we deduce that:

where �max

(

BTB
)

 denotes the maximum eigenvalue of the matrix BTB . The inequality (24) combining with 
(25) yields:

�pk+1 − pk�2 ≤ K�vk+1 − vk�2.

∇P(vk+1)−
(

pk + ρ(Buk+1 − vk+1)

)

= 0.

pk+1 = pk + ρ(Buk+1 − vk+1).

(23)pk+1 = ∇P(vk+1).

�pk+1 − pk�2 = �∇P(vk+1)−∇P(vk)�2 ≤ K�vk+1 − vk�2.

L
(

uk+1, vk; pk
)

− L
(

uk , vk; pk
)

≤ −
γ1

4

∥

∥

∥
uk+1 − uk

∥

∥

∥

2

2
,

h(w) =
∥

∥

∥
Bw + Bf − vk + pk/ρ

∥

∥

∥

2

2
.

F
(

w,wk
)

= ��w�1 +
ρ

2

〈

∇h
(

wk
)

, w − wk
〉

+
ρ

4τ

∥

∥

∥
w − wk

∥

∥

∥

2

2
.

F
(

wk+1,wk
)

≤ F
(

wk ,wk
)

,

(24)�

∥

∥

∥
wk+1

∥

∥

∥

1
+

ρ

2

〈

∇h
(

wk
)

, wk+1 − wk
〉

+
ρ

4τ

∥

∥

∥
wk+1 − wk

∥

∥

∥

2

2
� �

∥

∥

∥
wk

∥

∥

∥

1
.

(25)
h
(

wk+1
)

�h
(

wk
)

+
〈

∇h
(

wk
)

, wk+1 − wk
〉

+
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(

BTB
)

2

∥

∥

∥
wk+1 − wk

∥

∥
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2

2
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where γ1 = ρ
(

1/τ − �max(B
TB)

)

 . With the fact that w = u− f  , we have

which together with (26) yields:

The desired result is obtained.   �

Lemma 3 Let (uk , vk; pk) be the sequence obtained by Algorithm 1, then we have following:

where γ2 is a positive constant associated with ρ.

Proof By the assumption, ρ > K implies that L
(

uk+1, v; pk
)

 is strongly convex respect to the variable v. So, we 
can deduce that there must exist a positive constant γ2(ρ) such that:

Because vk+1 is a minimizer of L
(

uk+1, v; pk
)

 , we have

It follows from (27) and (28) that:

The desired result is obtained.   �

Lemma 4 Let (uk , vk; pk) be the sequence obtained by Algorithm 1, then we have following:

Proof We first split the difference of the augmented Lagrangian function by:

The first term in right side of (29) can be computed by:

(26)

�

∥

∥

∥
wk+1

∥

∥

∥

1
+

ρ

2
h
(

wk+1
)

� �

∥

∥

∥
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∥

∥

∥

1
+

ρ

2
h
(

wk
)

+
ρ

2

〈

∇h
(
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)

, wk+1 − wk
〉

+
ρ�max

(

BTB
)

4

∥

∥

∥
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∥

∥

∥

2

2

� �

∥

∥

∥
wk

∥

∥

∥

1
+

ρ

2
h
(

wk
)

−
γ1

4

∥

∥

∥
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∥

∥

∥

2

2
,

∥

∥

∥
wk+1 − wk

∥

∥

∥

2

2
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∥

∥

∥
uk+1 − uk

∥

∥

∥

2

2
,

L
(

uk+1, vk; pk
)

− L
(

uk , vk; pk
)

≤ −
γ1

4

∥

∥

∥
uk+1 − uk

∥

∥

∥

2

2
.

L
(

uk+1, vk+1; pk
)
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(
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∥

∥

∥
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∥

∥

∥

2

2
,
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∥
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∥
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2
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∥
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2

2
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∥
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∥

∥

∥

2

2
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(

uk , vk; pk
)

= L
(
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− L
(
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(30)
L
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)

− L
(
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=
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By the dual variable update step (18), we have

Equation (30) together with Eq. (31) yields:

Further, by Lemma 1, Eq. (32) implies that:

The second term in right side of (29) can be split as:

which together with Lemmas 2 and 3 yields:

Combining Eqs. (33) and (34), we obtain

The desired result is obtained.   �

Lemma 4 implies that if the condition ργ2 > 2K2 is satisfied, then

which implies that the value of the augmented Lagrangian function will always decrease with the iteration pro-
gressing. We note that as long as parameter γ2  = 0 , one can always find a suitable ρ large enough such that the 
condition ργ2 > 2K2 is satisfied, since ργ2 is monotonically increasing with respect to ρ , and 2K2 is a constant 
associated with the function P(·).

Lemma 5 Let (uk , vk; pk) be the sequence obtained by Algorithm 1, then we have following:

where E is the lower bound of E(u) defined in Assumption 4.

Proof The augmented Lagrangian function L
(

uk+1, vk+1; pk+1
)

 can be expressed as:

By (23), pk+1 = ∇P(vk+1) , (35) can be rewritten as:

With the fact that P(·) is a nonconvex function, we have
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1

ρ

(
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.
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∥
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∥

∥

2

2
.

(33)L
(

uk+1, vk+1; pk+1
)

− L
(

uk+1, vk+1; pk
)

�
K2

ρ

∥

∥

∥
vk+1 − vk

∥

∥

∥

2

2
.

L
(

uk+1, vk+1; pk
)

− L
(

uk , vk; pk
)

= L
(

uk+1, vk+1; pk
)

− L
(

uk+1, vk; pk
)

+ L
(

uk+1, vk; pk
)

− L
(

uk , vk; pk
)

,

(34)
L
(

uk+1, vk+1; pk
)

− L
(

uk , vk; pk
)

� −
γ1

4

∥

∥

∥
uk+1 − uk

∥

∥

∥

2

2
−

γ2

2

∥

∥

∥
vk+1 − vk

∥

∥

∥

2

2
.

L
(

uk+1, vk+1; pk+1
)

− L
(

uk , vk; pk
)

�

(

K2

ρ
−

γ2

2

)

∥

∥

∥
vk+1 − vk

∥

∥

∥

2

2
−

γ1

4

∥

∥

∥
uk+1 − uk

∥

∥

∥

2

2
.

L
(

uk+1, vk+1; pk+1
)

− L
(

uk , vk; pk
)

� 0,

lim
k→∞

L
(

uk , vk; pk
)

� E,

(35)
L
(

uk+1, vk+1; pk+1
)

= P(vk+1)+ �

∥

∥

∥
uk+1 − f

∥

∥

∥

1

+
〈

pk+1,Buk+1 − vk+1
〉

+
ρ

2

∥

∥

∥
Buk+1 − vk+1

∥

∥

∥

2

2
.

(36)
L
(

uk+1, vk+1; pk+1
)

= P(vk+1)+ �

∥

∥

∥
uk+1 − f

∥

∥

∥

1

+
〈

∇P(vk+1),Buk+1 − vk+1
〉

+
ρ

2

∥

∥

∥
Buk+1 − vk+1

∥

∥

∥

2

2
.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7942  | https://doi.org/10.1038/s41598-022-11938-7

www.nature.com/scientificreports/

Since 
∥

∥Buk+1 − vk+1
∥

∥

2

2
≥ 0 , it follows from (36) and (37) that

Clearly, the inequation (38) together with Assumption 4 imply that the augmented Lagrangian function 
L
(

uk+1, vk+1; pk+1
)

 is bounded below.   �

Lemma 4 shows that the augmented Lagrangian function L
(

uk , vk; pk
)

 is monotonically decreasing, and 
Lemma 5 shows that L

(

uk , vk; pk
)

 is bounded below. So, we can conclude that the augmented Lagrangian func-
tion L

(

uk , vk; pk
)

 is convergent as k → ∞.

Theorem 1 Let (uk , vk , pk) be the sequence obtained by Algorithm 1, suppose that ρ > K  , ργ2 > 2K2 and 
1/τ > �max(B

TB) , then we have following: 

 (i) limk→∞
∥

∥Buk+1 − vk+1
∥

∥

2

2
= 0.

 (ii) If U is a compact set, then the sequence zk = (uk , vk , pk) converges a limit point z∗ = (u∗, v∗, p∗) . In addi-
tion, z∗ is a stationary point of the augmented Lagrangian function L(u, v; p).

Proof We first prove part (i) of the theorem. By Lemmas 4 and 5, we can conclude that the augmented Lagrangian 
function L

(

uk , vk; pk
)

 is convergent as k → ∞ , which implies that:

By Lemma 4, we have

Since ργ2 > 2K2 and γ1 > 0 , taking limit for (40), and combining (39), we have

By Lemma 1, we further obtain

With the fact that pk+1 = pk + ρ
(

Buk+1 − vk+1
)

 , using (41), we have

which implies that:

Next, we prove part (ii) of the theorem. We first show that there exists a limit point for the sequence 
zk = (uk , vk , pk) . Since U is a compact set, and limk→∞

∥

∥uk+1 − uk
∥

∥

2

2
= 0 , there must exist a convergent subse-

quence uki1 of uk such that uki1 → u∗ . Since B is a bounded linear operator, and U is a compact set, we can deduce 
that the map set BU = {v : Bu = v, u ∈ U} is also a compact set. With the fact that limk→∞

∥

∥Buk − vk
∥

∥

2

2
= 0 

and limk→∞
∥

∥vk+1 − vk
∥

∥

2

2
= 0 , we can deduce that vk also lies in the compact set, and exists a convergent 

subsequence vki2 such that vki2 → v∗ . Note that ∇P(v) is Lipschitz continuous, and BU is a compact set, we can 
deduce that ∇P(v)(v ∈ BU) is bounded, which implies that ∇P(vk) is a bounded sequence. With the fact that 
pk = ∇P(vk) and limk→∞

∥

∥pk+1 − pk
∥

∥

2

2
= 0 , there must exist a convergent subsequence pki3 such that pki3 → p∗ , 

Selecting the same indexes from {ki1} , {ki2} and {ki3} , denoted as {ki} , we have zki → z∗ = (u∗, v∗, p∗) as ki → ∞.
Next, we show that any limit point of the sequence zk is the a stationary point of the augmented Lagrangian 

function L(u, v, p). By the optimality conditions, the sequence zk = (uk , vk , pk) satisfies that:

Since zki → z∗ = (u∗, v∗, p∗) as ki → ∞ , passing to the limit in (42) along the subsequence zki , we obtain
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which implies that z∗ = (u∗, v∗, p∗) is a stationary point of the augmented Lagrangian function L(u, v, p). The 
desired result is obtained.   �

Results
In this section, we show the effectiveness of the proposed model and algorithm in image denoising application. 
The programs are coded in MATLAB, and run on a PC with Intel Core i5 2.5G CPU and 4.00G RAM. The peak 
signal to noise ratio (PSNR) and mean structural similarity (MSSIM)  index48 are used as the means of judging 
the performance. The main experimental content of this paper is as follow: 

(1) The effectiveness of the proposed model, and the convergence of the algorithm.
(2) The effect of the nonconvex parameter q in the proposed model.
(3) The comparison with TVL2, NTVL2, TVL1, TGV, NLTV, NRL1, ASWMF and BM3D models on some test 

images and datasets.

In all experiments, the difference operator B in the model (11) is chosen as the gradient operator |∇| . Then, 
P(|∇u|) is the nonconvex total variation measure of the input u. Here, we give the definition of ∇ in the discrete 
case. Rearranging the two-dimensional image matrix u in (11) into a vector by scanning the column one by one, 
we define the gradient operator ∇ in a matrix form,

where In is the n-dimensional identity matrix, ⊗ denotes the Kronecker product, and ∇1 is difference elementary 
matrix defined as:

Then, let u be an image in Rn2 . The gradient of u can be computed as:

In the proposed model (11), we use lq-norm as the nonconvex penalty function, i.e., P(x) = |x|q . Here, we only 
use the lq-norm penalty since (1) it has a flexible parametric form; (2) it’s proximity operator corresponds to 
a thresholding function that is easy to compute in the practice; (3) the popular hard- and soft-thresholding 
is the special cases of our lq thresholding. By Theorem 6, the parameter ρ must be chosen large enough to 
guarantee the convergence conditions. However, the ADMM algorithm would be every slow and impractical 
if with a very large value of ρ . In this paper, we adopt the scheme  in26 to address this problem. Starting with a 
properly small value of ρ , we gradually increase the values of ρ in the iteration until reaching the target value, 
i.e., 0 < ρ0 < ρ1 < · · · < ρk · · · . The stopping criterion for the proposed algorithm is that the relative-change 
between the restored images of the successive iterations is smaller than ε = 10−3 . The parameter τ is set as 
τ = 0.9/�max(B

TB) ; � is manually tuned such that the restoration achieves the largest PSNR value.

The effectiveness of the proposed model. The first experiment aims to show the effectiveness of the 
proposed model and algorithm in image denoising application. The nonconvex regularization function is chosen 
as P(x) = |x|1/2 whose corresponding proximity operator is computed by (9). Test images shown in the first 
column of Fig. 2 are two synthetic images and two real images with the size of 256× 256 . The second column of 
Fig. 1 shows the corresponding noisy versions obtained by adding the salt and pepper noises with the density of 
0.03 into the clean data. Here, Matlab built-in function imnoise are used to contaminate the images. The denois-
ing results are shown in the last column of Fig. 1. From the results, we observe the following: (1) The proposed 
model is very effective for salt and pepper noises removing due to the use of the l1 fidelity term. Almost all salt 
and pepper noises are removed in the restorations; (2)The image edges and contours can be preserved well by 
using nonconvex TV regularization.

Next, we demonstrate the convergence property of the proposed algorithm by plotting two measures of the 
sequence uk conducted by Algorithm 1. Here, the test data are the images in the first experiment. Figure 3 shows 
the plots of the relative-change of the restorations versus iterations, where the relative-change of the restoration u 
in the iteration is computed by 

∥

∥uk+1 − uk
∥

∥

2
/
∥

∥uk+1
∥

∥

2
 . Figure 4 shows the plots of the energy E(uk) computed by 

(11) versus iterations. From Fig. 4, we can see that the relative-change of u significantly decreases in the first few 
steps, and then converges to zero, which implies that uk+1 → uk as k → ∞ in the l2 topology. And from Fig. 4, 
we observe that the energy E firstly decreases with the iteration progressing, and then converges to a constant, 
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which implies that the limit point of the sequence uk is a local minimum point of the functional E(u). These two 
figures support the convergence analysis of the proposed algorithm in “The comparison experiment” section.

The test of different nonconvex parameter q. In this section, we test the lq-norm nonconvex penalty 
functions with different q-values in the interval of (0, 1). In the proposed algorithm, the v-subproblem is updated 
by proximity operator with lq-norm penalty. We note that when q = 1/2 and q = 2/3 , the corresponding prox-
imity operators are l1/2 and l2/3 thresholding functions, which can be explicitly computed by (9) and (10), respec-
tively. For any other values of q, the corresponding proximity operators are computed by (2.9), in which we need 
to solve a zero point y∗ of the non-linear function h(y) = qyq−1 + ρy − ρ|t| . In the numerical implementation, 
the zero point y∗ is solved by Newton method since h(y) is a convex function.

Figure 5 shows the denoising results of the proposed model with different values of q, q ∈ {0.2, 0.5, 0.7, 0.9} , 
for two test images (Synthetic image A and Cameraman) with the size of 256× 256 , where the the noisy images 
are obtained by adding the salt and pepper noises with the density of 0.03 into the clean data. We observe that, 
with these different nonconvex functions, the models all can remove the salt and pepper noises while preserving 
edges and contours in the restorations. However, the PSNR values listed in Table 1 show that in restoring the 
synthetic image, q = 0.2 yields the best performance, which is different from the results in restoring the Camera-
man image, where q = 0.7 yields the best performance. In our opinion, this is due to the nature that real images 
are not strictly sparse as the synthetic sparse images in the TV domain.

The comparison experiment. In this subsection, we compare the proposed model with several state-of-
the-art models in denoising application.

Figure 2.  The denoising results of the proposed model.
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The comparison with TVL2, NTVL2 and TVL1. In this experiment, we compare the proposed model with 
 TVL28,  NTVL225 and  TVL134 models. Firstly, we denoise Cameraman image that is contaminated by mixed 
Gaussian noise and salt and pepper noise of different levels. Test images are shows in the first row of Fig. 6, which 
are obtained by adding Gaussian noise with variance of σ = 0.005, 0.01, 0.015 , mixed with salt and pepper noise 
with density of d = 0.02, 0.03, 0.04 to the clean data, respectively. We use Matlab built-in function imnoise twice 
to add the mixed noises. The PSNR and MSSIM values of the noisy versions are listed in Table 2. The restoration 
results of the noisy Cameraman with different noise levels are shown in Figs. 7, 8 and 9, respectively. In these 
figures, the first row shows the denoising results using the four models, and the second row shows the corre-
sponding local zoomed-in regions of the restorations. The PSNR and MSSIM values for all restorations are listed 
in Table 3. From the numerical results, we have the following conclusions:

• l1-norm fidelity term is more effective for salt and pepper noise and outlier removing than l2-norm. We 
observe that TVL2 and NTVL2 models perform well for Gaussian noise removing, but fail for salt and pepper 
noise. Some impulsive points are still remained in the restorations obtained by TVL2 and NTVL2 models. 
For TVL1 and NTVL1 models, however, it can be seen that these two models can remove the salt and pep-
per noise successfully. Almost all impulsive points are removed from the restorations by TVL1 and NTVL1 
models.

• Nonconvex regularization has the better performance in edges and contours preserving than convex ones. 
Comparing the restorations of TVL2 and NTVL2 models, we observe that NTVL2 model keeps sharp features 
better than TVL2 model, even those impulsive points that are more prominent in the restorations by NTVL2 

Figure 3.  The plots of the relative-change of the restorations versus iterations.
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model. NTVL1 and TVL1 models can remove the impulsive points due to the use of the l1-norm fidelity. But 
obviously, the NTVL1 model significantly outperforms TVL1 model in preserving sharp contours and details. 
For example, in the face and camera of the cameraman, NTVL1 model restores more details and features 
than TVL1 model. In addition, Table 3 show that restorations by the NTVL1 model have slightly greater 
PSNR and MSSIM values than TVL1 model, which further demonstrates that nonconvex regularization has 
the better performance than convex regularization.

• The proposed NTVL1 model has the largest PSNR and MSSIM values within these four models. It indicates 
that the combination of nonconvex regularization and l1-norm fidelity is promising in restoring the images 
contaminated by mixed Gaussian noise and salt and pepper noise.

Next, we apply the proposed model to several real images. Test images shown in Fig. 5 are “Pepper”, “House”, 
“Boats” and “Man” images with the size of 256× 256 , which contain lots of edges, contours, details, textures, 
inhomogeneous regions and features of low contrast and so on. The noisy versions are obtained by adding 
the mixed Gaussian noise with σ = 0.01 and salt and pepper noise with d = 0.03 to the clean data. The PSNR 
and MSSIM values of the test noisy images are shown in Table 2. Again, we compare the proposed model with 
TVL2, NTVL2 and TVL1 models. Figure 10 shows the restoration results. One can clearly see that TVL2 and 
NTVL2 model can successfully remove Gaussian noise while preserving edges and contours. But they fail to 

Figure 4.  The plots of the energy E versus iterations.
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remove salt and pepper noise. Some impulsive points are still remained in the restorations. TVL1 and NTVL1 
can simultaneously remove Gaussian noise and salt and pepper noise while preserving the edges. But we can see 
that the proposed model preserves more image contours and details than TVL1. Table 3 and Figure 11 show that 
NTVL1 model has the largest PSNR and MSSIM values, which further demonstrates that our model has the best 
performance in restoring the images contaminated by mixed Gaussian and salt and pepper noise in these four 
models due to the use of the combination of nonconvex TV regularization and l1-norm fidelity.

The comparison with TGV, NLTV, NRL1, ASWMF and BM3D. In this experiment, we compare the proposed 
model with very famous total generalized variation (TGV)10, nonlocal total variation (NLTV)13, adaptive switch-
ing weighted median filter (ASWMF)49, nonconvex regularization model with l1-nrom fidelity (NRL1)26, and 
block-Matching and 3D filtering (BM3D)50. TGV is a high-order variation regularization model, which can 

Figure 5.  The test of lq-norm nonconvex penalty functions with different q-values.

Table 1.  PSNR for NTVL1 model with different penalty functions.

Images Noisy q = 0.2 q = 0.5 q = 0.7 q = 0.9

Synthetic image 19.4521 32.2447 32.1714 31.8729 31.8704

Cameraman 19.7212 29.6341 29.7428 30.1026 29.8905
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well restore piecewise smooth regions while preserving the edges. NLTV uses patch-distance rather than point-
distance to measure the nonlocal similarity of the image, which can better restore the image details than classic 
TV based models. ASWMF is based on median filting which can well remove the salt and pepper noise. NRL1 
is a robust sparse recovery model with l1-norm fidelity, which can well restore the sparse image, or image with 
sparse representation on some basises. In the experiment, as  in26, the sensing matrix A in NRL1 (8) is chosen 
as a partial discrete cosine transformation matrix. BM3D is a hybrid model, which combines block-Matching, 
3D linear transform thresholding, and Wiener filtering. It is probably one of the best methods so far in image 
denoising application.

We use three images (“House”, “Boats” and “Cameraman”) with the size of 256× 256 as the test data for 
comparisons. All images are contaminated by mixed Gaussian noise with σ = 0.015 and salt and pepper noise 
with d = 0.04 . The restoration results are shown in Fig. 12. To save space, we here only show the result of House. 
We can see that TGV and NLTV can remove the Gaussian noise, but fail to remove salt and pepper noise. NLTV 
obtain the results with higher visual quality than TGV. ASWMF can well remove the salt and pepper noise, 
but blurs the edges. Our model and NRL1 can successfully remove the mixed noises, while well preserving the 
images edges and contours. BM3D has the best performance in terms of visual quality. The PSNR values are 
listed in Table 4 and Fig. 13. From the results, we note that the proposed model obtains the results with higher 

Figure 6.  The test images.

Table 2.  PSNR and MSSIM for the test images.

Images Noise level PSNR MSSIM

Cameraman σ = 0.005, d = 0.02 19.8379 0.7021

Cameraman σ = 0.010, d = 0.03 17.5835 0.6251

Cameraman σ = 0.015, d = 0.04 16.3325 0.5573

Pepper σ = 0.010, d = 0.03 17.7076 0.6285

House σ = 0.010, d = 0.03 17.7013 0.6274

Boats σ = 0.010, d = 0.03 17.6472 0.6201

Man σ = 0.010, d = 0.03 17.7343 0.6342
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PSNR values compared with TGV, NLTV, ASWMF and NRL1. BM3D has the largest PSNR values in these 
six models. Although BM3D works better than the proposed model, we think that the proposed model is still 
worthy of consideration since it needs lower computational complexity compared to BM3D, and outperforms 
other popular models.

The comparison in Set5 and Set13 datasets. In the last experiment, to further show the effectiveness and adapt-
ability of the proposed model, we test the proposed model on Set5 and Set13  datasets28. The test images in these 
two datasets are contaminated by mixed Gaussian noise and salt and pepper noise. Again, we compare the pro-
posed model with five TV based models: TVL2, NTVL2, TVL1, TGV and NLTV. The PSNR values of the results 
are shown in Tables 5 and 6. The second column in the tables is the noise level. The two numbers are the variance 
of the Gaussian noise and the density of the salt and pepper noise, respectively. And Fig. 14 shows the line chart 
of the average PSNR on the two datasets. From the results, we observe that the proposed model achieves the 

Figure 7.  The denoising results of Cameraman contaminated by Gaussian noise ( σ = 0.005 ) and salt and 
pepper noise ( d = 0.02).

Figure 8.  The denoising results of Cameraman contaminated by Gaussian noise ( σ = 0.01 ) and salt and pepper 
noise ( d = 0.03).
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best performance in terms of PSNR on Set5 and Set13 datasets. It yields about 0.5 dB PSNR and 0.06 MSSIM 
improvements against all compared models.

Based on the above experiments, we can obtain the following results: (1) The proposed TVq − l1 model 
is effective for salt and pepper noise removal while preserving image edges and contours quite well. (2) The 
convergence of the proposed algorithm is verified by experiments. (3) Compared with TVL2, NTVL2, TVL1, 
TGV, NLTV, NRL1, ASWMF, the proposed model shows the best performance in terms of PSNR and MSSIM.

Conclusions
This paper introduces a novel variational regularization model to restore images contaminated by salt and pep-
per noise. Different from the very famous TVL1 model, the proposed model uses a nonconvex total variation 
TVq(0 < q < 1) as the regularizer, which enables the model to be more effective for edge-preserving. A first-
order algorithm based on ADMM combining with MM scheme and proximity operator to solve this nonconvex 
minimization problem. In addition, a sufficient condition for the convergence of the proposed algorithm is 
provided. Numerical results demonstrate that the proposed model can effectively remove salt and pepper noise 
while preserving image edges and contours. Moreover, compared with TVL2, NTVL2, TVL1, TGV, NLTV, NRL1 
and ASWMF models, the proposed model shows the best performance in terms of PSNR and MSSIM values. It 
yields about 0.5 dB PSNR and 0.06 MSSIM improvements against all compared models.

It should be point out that our nonconvex TVq regularization may lead to undesired artificial staircase in the 
restorations. In the future, we will focus on solving this problem by introducing some nonconvex high-order TV 
regularization. In addition, the ADMM algorithm used in this paper cannot guarantee to find the global optimum 
of the model. Therefor, another successive research is to combine some other algorithms, such as nature-inspired 
heuristic  algorithms51–54, arithmetic optimization  algorithms55.

Figure 9.  The denoising results of Cameraman contaminated by Gaussian noise ( σ = 0.015 ) and salt and 
pepper noise ( d = 0.04).

Table 3.  PSNR and MSSIM for TVL2, NTVL2, TVL1 and NTVL1 models.

Images

TVL2 NTVL2 TVL1 NTVL1

PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

Figure 7 28.5674 0.8823 27.6502 0.8332 30.1432 0.9221 30.8473 0.9276

Figure 8 26.4748 0.8014 26.0423 0.7643 28.8482 0.8704 29.5037 0.8812

Figure 9 24.3374 0.7553 23.7385 0.7054 26.8120 0.8071 27.3345 0.8137

Pepper 26.7285 0.8165 26.3427 0.7745 29.1487 0.8732 29.8821 0.8904

House 27.1347 0.8334 26.7348 0.8057 30.0143 0.8908 30.4465 0.9013

Boats 26.5703 0.7927 25.7250 0.7302 29.0032 0.8616 29.7231 0.8728

Man 26.6031 0.8156 26.1026 0.7627 29.1179 0.8715 29.8032 0.8801
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Figure 10.  The denoising results of noisy Pepper, House, Boats and Man.
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Figure 11.  The Histogram of PSNR and MSSIM for different models.
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Figure 12.  The comparison with TGV, NLTV, NRL1, ASWMF and BM3D.

Table 4.  The PSNR for TGV, NLTV, ASWMF, NRL1, BM3D and NTVL1 models.

Images Noisy TGV NLTV ASWMF NRL1 BM3D NTVL1

House 16.2501 25.5008 27.2079 27.5425 29.3425 30.4817 29.4744

Boats 16.2793 24.8049 26.2132 26.4373 27.4574 28.7125 27.6892

Cameraman 16.2284 24.4891 26.1124 26.6492 27.0323 28.6056 27.3345
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Figure 13.  The plots of the relative-change of the restorations versus iterations.

Table 5.  The PSNR of the restored images in Set5.

Images Noise level TVL2 NTVL2 TVL1 TGV NLTV NTVL1

Baby (0.005, 0.02) 28.2722 27.7786 30.0166 28.2438 28.4745 30.7418

Bird (0.005, 0.02) 28.3072 27.5825 29.6969 28.1984 28.7564 30.0999

Butterfly (0.005, 0.02) 28.0594 27.4015 29.8055 27.9386 28.4578 30.4686

Head (0.010, 0.03) 27.3612 26.3291 28.3278 27.4926 27.7044 29.2682

Woman (0.010, 0.03) 27.3959 26.3629 28.1289 27.2359 27.8926 29.1155

Table 6.  The PSNR of the restored images in Set13.

Images Noise level TVL2 NTVL2 TVL1 TGV NLTV NTVL1

Baboon (0.005, 0.02) 28.5925 27.4458 29.7545 28.4815 28.7382 30.3338

Barbara (0.005, 0.02) 28.6531 28.0490 29.6462 28.4925 28.6292 30.3059

Bridge (0.005, 0.02) 28.4917 27.7452 29.7116 28.3681 28.5960 30.2850

Coastguard (0.005, 0.02) 28.8866 27.9923 30.5251 28.4509 29.2313 31.1448

Comic (0.010, 0.03) 26.7026 25.9285 27.4109 26.3028 26.4793 27.8180

Face (0.010, 0.03) 27.6718 26.5550 28.6417 27.7066 27.7051 29.6331

Flowers (0.010, 0.03) 27.2734 26.2021 28.1997 26.9240 26.8204 28.8680

Foreman (0.010, 0.03) 27.7899 26.9040 28.8294 27.7680 27.7259 29.6630

Man (0.015, 0.04) 24.5600 23.6500 26.6661 24.5250 24.7719 27.9400

Monarch (0.015, 0.04) 24.6650 23.7680 26.7085 24.5745 24.5973 27.2110

Pepper (0.015, 0.04) 24.9870 24.4955 27.2536 24.6818 25.1831 28.1390

Ppt3 (0.015, 0.04) 24.4412 23.8398 26.7101 24.6009 24.5333 26.9494

Zebra (0.015, 0.04) 24.0921 23.7238 25.8972 24.0275 23.6755 26.7856
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