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AMYPred‑FRL is a novel approach 
for accurate prediction of amyloid 
proteins by using feature 
representation learning
Phasit Charoenkwan1, Saeed Ahmed2, Chanin Nantasenamat2, Julian M. W. Quinn3, 
Mohammad Ali Moni4, Pietro Lio’5 & Watshara Shoombuatong2*

Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic 
effects in many tissues. Such amyloidoses are prominently associated with common diseases such 
as type 2 diabetes, Alzheimer’s disease, and Parkinson’s disease. There are many types of amyloid 
proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to 
identify such amyloid proteins and their pathogenic properties, but a new and effective approach is 
by developing effective bioinformatics tools. While several machine learning (ML)‑based models for in 
silico identification of amyloid proteins have been proposed, their predictive performance is limited. 
In this study, we present AMYPred‑FRL, a novel meta‑predictor that uses a feature representation 
learning approach to achieve more accurate amyloid protein identification. AMYPred‑FRL combined 
six well‑known ML algorithms (extremely randomized tree, extreme gradient boosting, k‑nearest 
neighbor, logistic regression, random forest, and support vector machine) with ten different sequence‑
based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state‑of‑the‑
art methods developed by a single feature‑based approach. A logistic regression recursive feature 
elimination (LR‑RFE) method was used to find the optimal m number of 60 PFs in order to improve the 
predictive performance. Finally, using the meta‑predictor approach, the 20 selected PFs were fed into 
a logistic regression method to create the final hybrid model (AMYPred‑FRL). Both cross‑validation 
and independent tests showed that AMYPred‑FRL achieved superior predictive performance than 
its constituent baseline models. In an extensive independent test, AMYPred‑FRL outperformed the 
existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To 
expedite high‑throughput prediction, a user‑friendly web server of AMYPred‑FRL is freely available at 
http:// pmlab stack. pytho nanyw here. com/ AMYPr ed‑ FRL. It is anticipated that AMYPred‑FRL will be a 
useful tool in helping researchers to identify new amyloid proteins.

Amyloid proteins (AMYs) can form insoluble aggregates that can accumulate to generate extracellular plaques 
or intracellular protein inclusions in many organs and tissues, most notably as part of pathological processes. 
In this aggregated form they have a fibrillary morphology and are primarily composed of β-sheet  structures1. 
Among pathological amyloids are those important in the pathogenesis of Alzheimer’s disease, where they are 
seen in central nervous system (CNS) plaques. Such plaques can also form from infectious amyloid prion proteins 
that cause spongiform encephalopathies and beta-amyloid which, when misfolded, can induce other amyloid 
proteins to similarly misfold and aggregate. Other pathologies are associated with the accumulation of cleaved 
normal proteins such as amylin/pancreatic islet amyloid polypeptide (IAPP) which is linked to the development 
of type 2  diabetes2,3. A common method for detecting the presence of amyloid proteins in tissues is a histopatho-
logic examination with the use of histochemical stains such as Congo red and thioflavin T. They can also be 
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detected by mass spectrometry testing to confirm the type and pattern of amyloid  deposited4. Proteins that form 
amyloid fibrils are extremely diverse group and lack any sequence or structural  homology5–8. Identification and 
characterization of the AMY type present in a tissue of interest is an important step needed to understand such 
pathological processes and design new therapies, such as small molecules that can inhibit AMY aggregation. 
Such approaches notably include techniques such as liquid chromatography-tandem mass spectrometry (LC–MS/
MS), but while these methods are accurate they are generally costly, technically demanding and time consuming.

Computational tools have previously been developed to study β-amyloid aggregation propensity 
(β-propensity)9,10,  amyloidogenicity11 and characterize AMY aggregation-prone regions (APRs)12–15, the latter 
being of great importance for the understanding various human  pathologies16. Several previous studies have 
shown that physicochemical properties, such as hydrophobicity, β-propensity and buriedness, are important fac-
tors for identifying APRs. Recently, Prabakaran et al. developed a new ensemble-based approach called Aggrega-
tion Nucleation Prediction in Peptides and Proteins (ANuPP)16. In order to overcome the limitations of exiting 
APR-based predictors as mentioned in Prabakaran et al.16, the ANuPP predictor was designed to be a versatile 
tool able to identify potential APRs in peptides and proteins. ANuPP achieved an area under the operator curve 
(AUC) of 0.831, as evaluated by tenfold cross-validation test, while this method gave an AUC of 0.883 on a 
blind test dataset. Their comparative results indicated that ANuPP achieved superior predictive performance 
than existing methods  (AGGRESCAN9, Fish  Amyloid17,  GAP15,  Pasta218,  TANGO13 and  WALTZ12). Detailed 
information for these APRs-based predictors is provided in an article by Prabakaran et al.19.

To the best of our knowledge, only a few computational methods,  RFAmyloid9, iAMY-SCM10, PredAmyl-
MLP11 and Mukhtar et al.’s  method12 have so far been developed to predict amyloid proteins from a given 
sequence. In 2018, Niu et al.20 proposed the first sequence-based tool named RFAmyloid for discriminating 
AMYs from non-amyloid proteins (non-AMYs). RFAmyloid was created by combining a random forest (RF) 
algorithm with various feature encoding methods on a benchmark dataset that included 165 AMYs and 382 
non-AMYs. Charoenkwan et al.21 developed the iAMY-SCM, a simple and interpretable model based on a 
scoring card method (SCM) trained with estimated dipeptide propensity scores. According to the findings of 
Charoenkwan et al.21, iAMY-SCM performed at a comparable level to that of RFAmyloid, as evaluated via cross-
validation and independent testing. Most recently, Li et al.22 and Mukhtar et al.23 used amino acid composition 
(AAC), tripeptide composition (TPC), physicochemical properties of amino acids (AAI), secondary structure-
based alignments, and the segmented-position specific scoring matrix (PSSM) method to improve predictive 
performance. The computational approaches mentioned above each had their own merits and sparked interest 
in amyloid protein identification research. However, there are a few issues that need to be addressed. Firstly, 
all of the existing methods were developed by the single feature-based approach that was based on one single 
ML algorithm. Thus, their predictive performance may not be robust in all cases. Secondly, PredAmyl-MLP22 
and Mukhtar et al.  methods23 were developed and evaluated using cross-validation only. As a result, their AMY 
candidate identification performance is limited in generalizability. Finally, the overall predictive performance 
of the existing methods is still insufficient for real-world applications.

In this study, we propose a novel machine-learning meta-predictor called the AMYPred-FRL that is designed 
to further improve the prediction accuracy of amyloid proteins. The overall framework of AMYPred-FRL is 
shown in Fig. 1. In this predictor, the feature representation learning (FRL) approach was employed to generate 

Figure 1.  Schematic flowchart of the development of the AMYPred-FRL. It consists of dataset construction, 
feature extraction, baseline models construction and the final meta-based model development.
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60 probabilistic features (PFs) by combining ten different sequence-based feature descriptors with six well-known 
ML algorithms. Briefly, the former included AAC, amphiphilic pseudo-amino acid composition (APAAC), com-
position in CTD (CTDC), conjoint triad (CTriad), dipeptide composition (DPC), dipeptide deviation from the 
expected mean (DDE), distribution part of CTD (CTDD), grouped amino acid composition (GAAC), k-spaced 
conjoint triad (KSCTriad), and transition in CTD (CTDT). The latter includes the following ML algorithms: RF, 
extremely randomized tree (ET), extreme gradient boosting (XGB) k-nearest neighbor (KNN), logistic regres-
sion (LR) and support vector machine (SVM). To improve the representation ability of PFs, the feature selection 
technique was used to determine the best number m out of 60 PFs. Finally, selected m PFs were used as inputs 
for training the final meta-predictor using the SVM algorithm (AMYPred-FRL). The independent test revealed 
that AMYPred-FRL outperformed its constituent baseline models and state-of-the-art methods (RFAmyloid and 
iAMY-SCM) in terms of accuracy (ACC) of 0.873, sensitivity (Sn) of 0.848, specificity (Sp) of 0.883 and Matthew’s 
Correlation Coefficient (MCC) of 0.710, demonstrating the effectiveness and generalization ability of the method. 
We believe that our proposed predictor will aid researchers in their efforts to find new and characterize amyloid 
proteins and enable better drug discovery and development for amyloid proteins that are not well understood.

Materials and methods
Dataset preparation. The Amy dataset constructed by Niu et al.20 had previously been used to train and 
develop the four existing state-of-the-art methods  (RFAmyloid20, iAMY-SCM21, PredAmyl-MLP22 and Mukhtar 
et al.’s  method23). The Amy dataset was used as the benchmark dataset to compare the performance of the pro-
posed method to the four existing state-of-the-art methods. There are 165 AMYs and 382 non-AMYs in the 
Amy dataset, which are considered as positive and negative samples in this study, respectively. It should be 
noted that the sequence identity between AMYs and non-AMYs in the Amy dataset exhibited a sequence redun-
dancy of < 50%. In order to test the generalization ability of the proposed method, the Amy dataset was ran-
domly divided into training and independent datasets using the same procedure as the previous two methods 
 (RFAmyloid20 and iAMY-SCM21). This resulted in training and independent datasets consisting of (132 AMYs 
and 305 non-AMYs) and (33 AMYs and 77 non-AMYs), respectively.

Feature extraction. AAC descriptors represent the occurrence frequency of standard amino acids in a 
protein  sequence24–26. For the ith amino acid, its occurrence frequency (aa(i)) is represented by:

where AAi is the count of occurrences for the ith amino acid and L is the length of the protein. DPC descriptors 
represent the occurrence frequency of all possible dipeptides in a protein sequence. For the ith dipeptide, its 
occurrence frequency (dp(i)) is represented by:

where DPi is the count of occurrences of the ith dipeptide. Final vectors for AAC and DPC are represented as 
20- and 400-dimension (20-D and 400-D, respectively) feature vectors,  respectively21,27–29.

The APAAC descriptor was introduced by  Chou30 for solving the problem of sequence-order information. 
The vector for APAAC is represented as a (20 + 2�)-D feature vector, which is represented by:

where the first 20-D feature vector (x1, x2, . . . , x20) represents the above-mentioned AAC feature descriptor and 
the remaining 2λ-D feature vector represents the set of correlation factors that reveal physicochemical proper-
ties such as hydrophobicity and hydrophilicity in a protein. In this study, parameters of APAAC (the discrete 
correlation factor λ and weight of the sequence information ω ) were estimated by varying ω and λ values from 
0 to 1 and 1 to 10, respectively, with step sizes of 0.1 and 1 as evaluated on the training dataset via the tenfold 
cross-validation procedure. After performing parameter optimization, ω and λ values of 0.5 and 10, respectively, 
were used. The parameter optimization in the current study is the same as employed in our previous  studies31–34.

Regarding GAAC descriptor, it accounts for properties for all twenty amino acids that can be categorized 
into five classes including aliphatic group, aromatic group, positive charge group, negatively charged group and 
uncharged group (Supplementary Table S1). Thus, the vector for GAAC is a 5-D feature vector. The CTD method 
describes the overall composition of amino acid properties of protein  sequences35. This method provides three 
different feature descriptors consisting of the combination (C), transformation (T) and distribution (D)36. These 
three different feature descriptors are based on 13 different physicochemical properties including hydrophobicity, 
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normalized van der Waals volume, polarity, polarization, charge, secondary structure and solvent  accessibility37. 
Particularly, CTDC, CTDD and CTDT represent 39-D, 195-D and 39-D feature vectors, respectively. Further 
details of CTDC, CTDD and CTDT descriptors are described in the work of Xiao et al.38.

The CTriad descriptor considers the tripeptide as a single unit for describing protein  sequences39. All twenty 
amino acids are classified into seven classes according to their physiochemical properties. As a result, the vec-
tor for CTriad is a 343-D feature vector. In the meanwhile, the KSCTriad descriptor is the modified version of 
CTriad where it provides additional information pertaining to continuous amino acid units as separated by any 
k residues where k has a value of 0–5 with an interval of  140. Furthermore, the KSCTriad is a 343-D feature vec-
tor. Moreover, the DDE descriptor integrates three property classes including DPC, the theoretical mean (TM) 
and the theoretical variance (TV)22. Particularly, the final vector for DDE is a 400-D feature vector. All these ten 
sequence-based feature descriptors can be calculated using the iFeature software  package37.

Identification of informative features. The extraction of salient features has a crucial influence on the 
design of computational models. However, taking into account all of the original features may contain irrel-
evant, redundant, or noisy information that may have a negative impact on the predictive ability of the models. 
Consequently, capturing significant conserved features is critical in this regard. Here, we used a two-way feature 
selection approach based on a logistic regression-recursive feature elimination to extract a subset of prominent 
attributes (LR-RFE). To the best of our knowledge, the LR in conjunction with the recursive feature elimination 
(RFE) approach is firstly used in AMY identification research. It is a backward iterative process of removing triv-
ial features. The procedure of the LR-RFE method can be described as follows. Firstly, each feature importance is 
determined using the L1-regularized logistic regression (L1-LR) method. Specifically, the objective function of 
the L1-LR method for n samples is represented by:

where βi represents the predictive ability of the ith feature. In the meanwhile, ai represents xiyi and L1 norm 
|β|1 represents 

∑n
i=1 |βi| where λ > 0. Features exhibiting the largest value of βi are retained while features with 

the lowest values of βi are discarded from the attribute set. Secondly, features are ranked followed by sorting in 
descending order according to βi . The LR-RFE method repeats this process for N times until an optimal feature 
set with higher prediction performance is obtained.

Feature representation learning framework. Unlike traditional feature encodings, the FRL method 
employs a wide range of feature descriptors to provide sufficient information from various perspectives. The 
FRL method, originally proposed by Wei et al.41, has recently been shown to perform well in identifying various 
functional activities of  peptides41–44. Inspired by the original FRL  method41, we developed and implemented 
the extended version of the FRL method by combining it with various ML  classifiers34,41–43,45,46. The used FRL 
method and the AMPred-FRL development are described further below.

Baseline models generation. As summarized in Table 1, we employed ten different feature encodings (AAC, 
APAAC, CTDC, CTDD, CTDT, CTriad, DPC, DDE, GAAC, and KSCTriad) as derived from three different 
properties (composition information, composition–transition–distribution information and physicochemi-
cal properties). Subsequently, each feature descriptor was individually employed for training baseline models 
using six different ML algorithms (ET, KNN, LR, RF, SVM and XGB). In total, 60 baseline models (6 MLs × 10 
encodings) were created using the Scikit-learn package in Python with default parameters (version 0.22)47. The 
procedure for building baseline models was performed in a similar fashion to the one used in our previous 
 studies34,45,46,48.

(4)min (α,β)ℓ+ �|β|1 =
1

n

n
∑

i=1

log(1+ exp(−(βTai + αiyi)))+ �

n
∑

i=1

|βi|

Table 1.  Summary of ten different feature encodings along with their corresponding description and 
dimension.

Order Descriptors Description Dimension References

1 AAC Amino acid composition 20 56

2 APAAC Amphiphilic pseudo-amino acid composition 22 30

3 CTDC Percentage of particular amino acid property groups 39 35,36,57

4 CTDD Distribution of amino acid properties in sequences 195 2–4

5 CTDT Percentage of mutual conversion in amino acid properties 39 35,36,57

6 CTriad Conjoint triad 343 39

7 DDE Dipeptide deviation from expected mean 400 58,59

8 DPC Dipeptide composition 400 35,58

9 GAAC Grouped amino acid composition 5 37,56,60

10 KSCTriad K-spaced conjoint triad 343 37
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Feature representation generation. Each baseline model can provide two types of information including proba-
bilistic information and class information. For a given protein sequence P, its probabilistic information was 
obtained from the predicted probability. In the case of the class information, if the predicted probability of P 
exceeds 0.5, the protein sequence belongs to AMY, otherwise, the protein sequence belongs to the non-AMY 
class. Subsequently, we concatenated all of the predicted probability and predicted class as derived from 60 base-
line models in order to obtain two 60-D feature vectors, which are referred to as probabilistic feature (PF) and 
class feature (CF) vectors, respectively. In the meanwhile, the combination of PF and CF is referred to as PCFs 
that essentially represents a 120-D feature vector. The PF and CF are represented by:

where P(Mi , Fj) and C(Mi , Fj) were obtained using the ith baseline model with the jth feature descriptor. The 
PF, CF and PCF are considered as new feature vectors.

Feature representation optimization. The optimal feature sets of PF, CF, and PCF were determined using the 
LR-RFE method so as to improve the feature representation ability. There are three main steps for determining 
the optimal feature vectors using the LR-RFE method, which are as follows: (i) 60 PFs, 60 CFs and 120 PCFs were 
ranked using the L1-LR method, (ii) the RFE algorithm was applied for selecting optimal features using an inter-
val of 5 that finally led to the selection of 20 PFs, 30 CFs and 10 PCFs, (iii) all feature subsets were used to train 
LR models individually that are then used for developing the meta-predictor. The feature subset with the highest 
cross-validation ACC was considered as the optimal feature set and used for the meta-predictor development.

AMPred‑FRL development. In this study, the FRL method systematically uses these baseline models to build 
a single hybrid model. After obtaining the best feature sets, they were individually fed into the LR algorithm 
(referred herein as mLR) to produce the final meta-predictor. To improve the predictive performance even fur-
ther, parameters for each of the three mLR models were estimated using the tenfold cross-validation procedure 
(i.e. the search range is presented in Supplementary Table S2).

Performance evaluation metrics. The predictive performance of our proposed model, baseline models 
and the two state-of-the-art methods is evaluated and compared using five common performance measures as 
follows: ACC, sensitivity (Sn), specificity (Sp), Matthew’s Correlation Coefficient (MCC) and area under the 
receiver-operating curves (AUC)46,49. These performance measures are described by the following equations:

where TP, TN, FP and FN represent the number of true positives, true negatives, false positives and false nega-
tives,  respectively50–52.

Results and discussion
Performance evaluation of different baseline models. In this section, we investigated and evaluated 
the predictive performance of different baseline models trained using ten different feature encodings (AAC, 
APAAC, CTDC, CTDD, CTDT, CTriad, DPC, DDE, GAAC, and KSCTriatd) and six different ML algorithms 
(ET, KNN, LR, RF, SVM and XGB) by performing both tenfold cross-validation and independent tests. Their 
cross-validation and independent test results are provided and visualized in Supplementary Tables S3, S4 and 
Fig. 2, respectively. As can be seen from Supplementary Table S3, AAC, APAAC, CTDC, CTDD, CTDT, CTraid, 
DDE, DPC, GAAC and KSCTraid display average cross-validation results for the 2 performance metrics (ACC, 
MCC) of (0.778, 0.396), (0.822, 0.564), (0.734, 0.281), (0.808, 0.519), (0.745, 0.300), (0.786, 0.455), (0.751, 0.320), 
(0.756, 0.342), (0.712, 0.209) and (0.787, 0.461), respectively, as obtained from six different ML algorithms. From 
amongst these ten different feature encodings, it was noted that there were four beneficial feature descriptors 
for AMY identification consisting of APAAC, CTDD, KCTraid and CTraid that were able to achieve an average 
MCC value larger than 0.4. Particularly, APAAC, CTDD, KCTraid and CTraid feature descriptors were used as 
input for the development of LR, ET, RF and RF classifiers that were found to produce the highest cross-valida-
tion results, as evaluated by the two performance metrics (ACC, MCC) of (0.833, 0.606), (0.842, 0.610), (0.808, 
0.519) and (0.810, 0.522), respectively.

(5)PF = [P(M1, F1), . . . , P(Mi , Fj), . . . , P(Ms , Ft))]T

(6)CF = [C(M1, F1), . . . , C(Mi , Fj), . . . , C(Ms , Ft))]T

(7)ACC =
TP+ TN

(TP+ TN+ FP+ FN)

(8)Sn =
TP

(TP+ FN)

(9)Sp =
TN

(TN+ FP)

(10)MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
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We also investigated the predictive performance of 60 baseline models so as to determine the best performer 
of these for AMY identification. From Fig. 2 and Supplementary Tables S3, S4, several important observations 
can be summarized as follows. Firstly, the ten baseline models ranking highest for cross-validation MCC were 
the following: ET-CTDD, LR-APAAC, ET-APAAC, LR-DDE, RF-CTDD, SVM-DDE, XGB-APAAC, SVM-DPC, 
XGB-CTDD and RF-APAAC. It was notable that seven out of ten top-ranked baseline models were developed 
from APAAC and CTDD, which again confirms their importance in AMY identification. Secondly, six out of 
ten top-ranking baseline models were developed using tree-based ensemble algorithms (RF, ET and XGB). 
From amongst the ten top-ranking baseline models, RF-based, ET-based and XGB-based classifiers achieved 
favorable ACC in the range of 0.815–0.842 while LR-based classifiers were found to achieve an ACC of 0.833, 
which was comparable to these tree-based classifiers. Thirdly, ET-CTDD was found to be the best baseline model 
as obtained from cross-validation and independent performance (ACC, MCC) of (0.842, 0.610) and (0.855, 
0.660), respectively.

Comparison of class, probabilistic and combined information. In this section, we compared the 
predictive performance of mLR models as trained with CF, PF and PCF feature vectors. Their cross-validation 
and independent test results are recorded in Tables 2 and 3, respectively. As can be seen in Table 2, the PF vec-

Figure 2.  Performance evaluations of top 30 baseline models. (A,B) Cross-validation ACC and MCC as well as 
(C,D) Independent test ACC and MCC.

Table 2.  Cross-validation results for different feature representations using class and probabilistic information.

Features Dimension ACC Sn Sp MCC AUC 

CF 60 0.851 0.673 0.928 0.634 0.883

PF 60 0.870 0.735 0.928 0.687 0.912

PCF 120 0.858 0.711 0.921 0.654 0.889

Optimal CF 30 0.883 0.749 0.941 0.717 0.895

Optimal PF 20 0.892 0.780 0.941 0.743 0.925

Optimal PCF 10 0.881 0.765 0.931 0.714 0.919
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tor could outperform both CF and PCF vectors, which correspondingly achieved the highest values for ACC 
(0.870), Sn (0.735), MCC (0.687) and AUC (0.912) on the training dataset. In the case of independent test 
results, we observed that the overall performance of the PF vector was consistently better than those of CF and 
PCF vectors as indicated by all five performance metrics (i.e., ACC, Sn, Sp, MCC and AUC).

To enhance the predictive performance of mLR models, the LR-RFE method was used for identifying the 
optimal feature sets of PF, CF and PCF vectors. For the CF, PF and PCF feature vectors, Table 2 shows that when 
the feature number was set to 30, 20 and 10, respectively, their predictive models could achieve maximal cross-
validation performance (ACC and MCC) of (0.867, 0.677), (0.892, 0.743) and (0.881, 0.717), respectively. For the 
convenience of discussion, the optimal feature vectors of CF, PF and PCF were referred as optimal CF, optimal 
PF and optimal PCF, respectively. The overall cross-validation performance of the optimal PF was better than 
that of the optimal CF and the optimal PCF in terms of ACC, Sn, MCC and AUC. In the case of independent 
test results, the optimal PF outperformed those of the optimal CF and optimal PCF as indicated by three out 
of five performance metrics (i.e., ACC, Sp and MCC). In particular, the optimal PF achieved an ACC of 0.873, 
an Sp of 0.883 and an MCC of 0.710 (Table 3). For convenience, the mLR model trained with the 20-D optimal 
PF will be considered as the final meta-predictor that is herein referred to as the AMYPred-FRL. Details of the 
optimal feature vectors of CF, PF and PCF are provided in Supplementary Table S5.

Contribution of new feature representations. This section investigates whether the feature represen-
tation (i.e., the optimal PF) proposed herein as derived using the FRL approach could improve the predic-
tion accuracy of amyloid protein identification. To demonstrate this point, we compared the performance of 
the optimal PF and conventional feature descriptors as evaluated by six ML algorithms via cross-validation 
and independent tests. The feature descriptor with the highest cross-validation MCC was considered to be the 
optimal descriptor and was used for this comparative analysis. As can be seen from Supplementary Tables S3, 
S4, optimal descriptors for ET, KNN, LR, RF, SVM and XGB are CTDD, APAAC, APAAC, CTDD, DDE and 
APAAC, respectively. Comparative results are summarized in Tables 4, 5 as well as Fig. 3. As shown in Table 4, 
the optimal PF exhibited better performance than those of compared feature descriptors with the exception 
of KNN. As shown in Table 4, the optimal PF trained with ET, LR, RF, SVM and XGB could achieve a cross-
validation MCC of 0.860, 0.888, 0.860, 0.870 and 0.870, respectively, with improvements of 1.8%, 5.5%, 2.20%, 
3.5% and 3.7%, respectively. In the case of independent test results, it is observed that the optimal PF vectors 
could achieve better performance in terms of ACC, Sn and MCC. (Table 5). Secondly, to elucidate the effective-
ness of our feature representations, t-distributed stochastic neighbor embedding (t-SNE) was used to visualize 
the feature space between our feature representation and the best feature descriptors (i.e., APAAC and CTDD) 

Table 3.  Independent test results for different feature representations using class and probabilistic 
information.

Features Dimension ACC Sn Sp MCC AUC 

CF 60 0.836 0.727 0.883 0.610 0.896

PF 60 0.882 0.848 0.896 0.727 0.921

PCF 120 0.855 0.818 0.870 0.668 0.912

Optimal CF 30 0.864 0.879 0.857 0.701 0.914

Optimal PF 20 0.873 0.848 0.883 0.710 0.902

Optimal PCF 10 0.836 0.758 0.870 0.618 0.889

Table 4.  Performance comparison of new feature representation with conventional sequence-based feature 
descriptors as evaluated on the cross-validation test.

Method Feature ACC Sn Sp MCC AUC 

ET
Optimal PF 0.860 0.719 0.921 0.664 0.915

CTDD 0.842 0.636 0.931 0.610 0.892

KNN
Optimal PF 0.801 0.665 0.859 0.527 0.762

APAAC 0.812 0.591 0.908 0.535 0.848

LR
Optimal PF 0.888 0.765 0.941 0.731 0.926

APAAC 0.833 0.735 0.875 0.606 0.878

RF
Optimal PF 0.860 0.718 0.921 0.661 0.913

CTDD 0.838 0.636 0.925 0.599 0.884

SVM
Optimal PF 0.870 0.727 0.931 0.687 0.892

DDE 0.835 0.659 0.911 0.597 0.890

XGB
Optimal PF 0.870 0.726 0.931 0.686 0.917

APAAC 0.833 0.644 0.915 0.589 0.881
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using the training and independent test datasets. Figure 4 depicts the distribution of the feature space in a 2D 
representation whereby AMYs (red spots) and non-AMYs (green spots) are shown. As can be noticed in Fig. 4, 
red and green spots when superimposed with feature descriptors (Fig. 4A,B and D,E) there appear to be overlaps. 
On the other hand, a clear distinction between red and green spots could be obtained from this feature repre-
sentation (Fig. 4C,F). This confirmed that the FRL approach could effectively take advantage of variant models 
for capturing discriminative patterns between AMYs and non-AMYs thereby leading to more accurate AMY 
identification.

Mechanistic interpretation of AMYPred‑FRL. Here, the SHapley Additive exPlanations (SHAP) 
approach was utilized to determine which features were the most important for AMYPred-FRL and its constitu-
ent baseline models. The SHAP method was well-known as a unified framework that was utilized to enhance 

Table 5.  Performance comparison of new feature representation with conventional sequence-based feature 
descriptors as evaluated on the independent test.

Method Feature ACC Sn Sp MCC AUC 

ET
Optimal PF 0.873 0.848 0.883 0.710 0.925

CTDD 0.855 0.788 0.883 0.660 0.905

KNN
Optimal PF 0.827 0.788 0.844 0.609 0.816

APAAC 0.764 0.667 0.805 0.458 0.829

LR
Optimal PF 0.873 0.848 0.883 0.710 0.902

APAAC 0.773 0.697 0.805 0.484 0.832

RF
Optimal PF 0.882 0.848 0.896 0.727 0.925

CTDD 0.836 0.788 0.857 0.626 0.897

SVM
Optimal PF 0.900 0.879 0.909 0.769 0.900

DDE 0.791 0.667 0.844 0.507 0.867

XGB
Optimal PF 0.882 0.818 0.909 0.721 0.924

APAAC 0.809 0.667 0.870 0.542 0.876

Figure 3.  Performance comparison of optimal PF and conventional feature descriptors for six ML algorithms 
(ET, KNN, LR, RF, SVM and XGB) in terms of cross-validation ACC and MCC (A,B) and independent test 
ACC and MCC (C,D).
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interpretable predictions and assess the features’ importance  value53,54. The AMYPred-FRL was developed by 
integrating the PFs of the 20 baseline models of SVM-AAC, LR-AAC, XGB-AAC, KNN-AAC, RF-DPC, LR-
DPC, XGB-DPC, SVM-APAAC, LR-APAAC, XGB-APAAC, XGB-CTDC, RF-CTDD, ET-CTDD, XGB-CTDD, 
XGB-CTDT, XGB-KSCTraid, RF-CTraid, XGB-CTraid, SVM-DDE, LR-DDE (Supplementary Table S5). As seen 
in Fig. 5A, the top five PFs consists of five baseline models of ET-CTDT, SVM-DDE, SVM-APAAC, LR-APAAC 
and SVM-AAC play an important role for AMYPred-FRL. It could be noticed that SVM-AAC was found in the 
5th top-ranked important baseline model ranked by SHAP values. Figure 5B shows that Ile, Gly, Gln, Ala and 
Arg play a predominant role for SVM-AAC, where Gly and Gln might be crucial factors responsible for AMYs, 
while Ile, Arg and Ala might be crucial factors responsible for non-AMYs. These results were consistent with the 
20 amino acid compositions of AMYs and non-AMYs as summarized in Supplementary Table S6. However, the 
analysis result was derived from the training dataset containing 132 AMYs and 305 non-AMYs. As a result, this 
analysis might be limited due to the small size of samples and classes used herein. Improving predictive abili-
ties and model interpretability in future studies will require further computational model development for the 
AMYs subclass prediction.

Comparison of AMYPred‑FRL and its constituent baseline models. To investigate the effective-
ness of the AMYPred-FRL predictor, we compared its performance against the top five baseline models hav-
ing the highest cross-validation ACC and MCC, namely ET-CTDD, LR-APAAC, ET-APAAC, LR-DDE and 
RF-CTDD,. To create a fair comparison, these top five baseline models were evaluated on the same training 
and independent datasets. The comparative performance of AMYPred-FRL and the top five baseline models is 
summarized in Fig. 6. Detailed results are presented in Supplementary Table S7. It can be seen from Fig. 6A,B 
that AMYPred-FRL afforded the best cross-validation performance as indicated by four out of five evaluation 
metrics (ACC, Sn, MCC and AUC). In particular, AMYPred-FRL had ACC, Sn, MCC and AUC of 5.0–5.9%, 
4.5–14.4%%, 13.3–14.4% and 3.2–5.4%, respectively, higher than the top five baseline models. In the case of 
models evaluated on the independent test set, AMYPred-FRL was found to produce the best performance as 
judged by ACC, Sn and MCC (Fig. 6C,D). Notably, the ACC, Sp and MCC of AMYPred-FRL were 0.873, 0.848 
and 0.710, respectively, which corresponded to improvements of 1.8–10.0%, 6.0–24.2% and 5.0–22.6% greater 
than those of the top five baseline models, respectively. In addition, Sp and MCC results from the AMYPred-FRL 
model demonstrated that it is a powerful AMY predictor that can effectively distinguish false positives and false 
negatives for unknown AMY candidates, highlighting its superior generalization ability.

Comparison of AMYPred‑FRL with two state‑of‑the‑art methods. To further validate the robust-
ness of AMYPred-FRL, we tested and compared its predictive performance against two of four current state-

Figure 4.  t‑distributed stochastic neighbor embedding (t-SNE) distribution of positive and negative samples on 
training (A–C) and independent test (D–F) datasets. APAAC (A,D), CTDD (B,E) and Optimal PF (C,F).
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Figure 5.  SHAP values of 20 important features used for AMYPred-FRL (A) and SVM-AAC (B). SHAP values 
represent the directionality of the informative features, where positive and negative SHAP values represent 
positive (AMYs) and negative (non-AMYs) predictions.

Figure 6.  Performance comparison of AMYPred-FRL with the top five baseline models on the training (A,B) 
and independent tests (C,D). Prediction results of AMYPred-FRL and the top five baseline models in terms of 
ACC, Sn, Sp and MCC (A,C). ROC curves and AUC values of top five baseline models (B,D).
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of-the-art methods  (RFAmyloid20 and iAMY-SCM21) using the independent dataset (33 AMYs and 77 non-
AMYs) because the other two state-of-the-art methods (PredAmyl-MLP22 and Mukhtar et al.’s  method23) were 
not performed using the independent test. Table 6 summarizes the predictive performance of the two compared 
methods, which were obtained by feeding protein sequences from the independent dataset (i.e. containing 33 
AMYs and 77 non-AMYs) to their web servers (accessed on 7 July 2021). As can be seen in Table 6, AMYPred-
FRL achieved the best overall performance as indicated by three performance measures (ACC, Sn and MCC) 
as compared by the two state-of-the-art methods. Particularly, the ACC, Sn and MCC for AMYPred-FRL had 
corresponding values of 0.873, 0.848, and 0.710, respectively, higher than the second-best method iAMY-SCM 
by 5.5%, 24.2% and 16.1% respectively. This suggests that the predictor proposed herein was more effective than 
the compared state-of-the-art methods for distinguishing AMYs from non-AMYs.

Case study. In this section, we performed a case study based on an external dataset that was extracted from 
the CPAD 2.0  database55 (downloaded on 16 December 2021) to assess the predictive capability of AMYPred-
FRL. We first removed all AMYs and non-AMYs that were found in the training and independent datasets from 
the Amy  dataset20. Sequences containing < 20 amino acids were also excluded. As a result, the final external data-
set contained 50 AMYs and 19 non-AMYs. Supplementary Tables S8–S10 provides detailed prediction results of 
AMYPred-FRL, iAMY-SCM and the top three baseline models (i.e., ET-CTDD, LR-APAAC and ET-APAAC) on 
the external dataset. As seen, AMYPred-FRL achieved the best performance measured by three metrics, includ-
ing ACC (0.971), Sn (0.980) and MCC (0.928), as compared with iAMY-SCM (Supplementary Table S8) and the 
best-performing baseline model ET-CTDD (Supplementary Tables S9–S11).

Although ET-CTDD achieved comparable performance with AMYPred-FRL on the external dataset, this 
method failed to perform well on both the training (Sn of 0.636 and MCC of 0.610) and independent test (Sn of 
0.788 and MCC of 0.660) datasets. On the other hand, Supplementary Table S11 shows that the performances 
of AMYPred-FRL on all the training, independent test and external datasets are consistently better than ET-
CTDD and other baseline models. Furthermore, the MCC of AMYPred-FRL on the training and independent 
test datasets were significantly higher than that of ET-CTDD (0.743 vs. 0.610 and 0.710 vs. 0.660, respectively), 
highlighting the superior generalization ability of AMYPred-FRL. This indicated that the FRL strategy is capable 
of effectively integrating the strengths of baseline models to make more accurate and stable AMY identification. 
And, the high MCC of AMYPred-FRL indicated that this new predictor could effectively reduce the number of 
both false positive and false negative and narrow down experimental efforts.

Genome‑wide prediction of AMYs in Saccharomyces cerevisiae. In this study, we also utilized the 
proposed AMYPred-FRL for the proteome-wide identification of AMYs for Saccharomyces cerevisiae. First of 
all, we collected 126,486 Saccharomyces cerevisiae proteins, which were directly downloaded from the UniProt 
database. Then, we used the probability thresholds of 0.80, 0.85, 0.90, 0.95 and 0.99 in order to obtain the high-
confidence prediction results. The statistical summary of predicted AMYs based on various the probability 
thresholds are provided in Supplementary Table S12. As seen in Supplementary Table S12, the numbers of pre-
dicted AMYs based probability thresholds of 0.80, 0.85, 0.90, 0.95 and 0.99 are 9710, 7028, 4174, 1444 and 105, 
respectively. Detailed lists of the predicted AMYs based on the five selected probability thresholds could be freely 
downloaded at http:// pmlab stack. pytho nanyw here. com/ AMYPr ed- FRL.

Conclusions
Identification of amyloid proteins is crucial for accelerating the drug development process as well as aiding the 
understanding of their functional properties. Few computational approaches have been proposed for amyloid 
protein identification. These models use different approaches to amyloid identification, so could be used together, 
however there appears to be no computational approach yet developed that can effectively integrate variant 
models to develop a hybrid model that could achieve high model performance relative to that of the single 
feature-based approach. Therefore, in this study, we developed AMYPred-FRL as a novel machine-learning 
meta-predictor for the accurate identification of amyloid proteins by using the FRL approach. Particularly, 
AMYPred-FRL makes use of ten different feature encodings (AAC, APAAC, CTDC, CTDD, CTDT, CTriad, 
DPC, DDE, GAAC and KSCTriad) as derived from three different aspects (composition information, composi-
tion–transition–distribution information and physicochemical properties) that are subsequently modeled by six 
well-known ML algorithms (ET, KNN, LR, RF, SVM and XGB). A series of comparative experiments showed 
that AMYPred-FRL can achieve a better performance than those of its constituent baseline models and state-
of-the-art methods (RFAmyloid and iAMY-SCM) as evaluated on the independent test thereby highlighting its 

Table 6.  Performance comparison of AMYPred-FRL with the two state-of-the-art methods on as evaluated on 
the independent test. Performance of RFAmyloid and iAMY-SCM were obtained by feeding protein sequences 
from the independent dataset to their web servers (accessed on 7 July 2021).

Method ACC Sn Sp MCC

RFAmyloid 0.390 0.656 0.282 -0.061

iAMY-SCM 0.818 0.606 0.909 0.549

AMYPred-FRL 0.873 0.848 0.883 0.710

http://pmlabstack.pythonanywhere.com/AMYPred-FRL
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effectiveness and generalization ability. A user-friendly web server of AMYPred-FRL is freely available at http:// 
pmlab stack. pytho nanyw here. com/ AMYPr ed- FRL. It is anticipated that the proposed AMYPred-FRL would 
enable biologists to rapidly identify amyloid proteins.

Data availability
All the data used in this study are available at http:// pmlab stack. pytho nanyw here. com/ AMYPr ed- FRL.

Received: 11 September 2021; Accepted: 3 May 2022

References
 1. Rambaran, R. N. & Serpell, L. C. Amyloid fibrils: Abnormal protein assembly. Prion 2(3), 112–117 (2008).
 2. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).
 3. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148(6), 1188–1203 (2012).
 4. Vrana, J. A. et al. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical 

biopsy specimens. Blood 114(24), 4957–4959 (2009).
 5. Sipe, J. D. & Cohen, A. S. Review: History of the amyloid fibril. J. Struct. Biol. 130(2–3), 88–98 (2000).
 6. Chiti, F. et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl. Acad. Sci. U.S.A. 96(7), 

3590–3594 (1999).
 7. West, M. W. et al. De novo amyloid proteins from designed combinatorial libraries. Proc. Natl. Acad. Sci. U.S.A. 96(20), 11211–

11216 (1999).
 8. Lopez De La Paz, M. et al. De novo designed peptide-based amyloid fibrils. Proc. Natl. Acad. Sci. U.S.A. 99(25), 16052–16057 

(2002).
 9. Conchillo-Solé, O. et al. AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. 

BMC Bioinform. 8(1), 1–17 (2007).
 10. Orlando, G., Silva, A., Macedo-Ribeiro, S., Raimondi, D. & Vranken, W. Accurate prediction of protein beta-aggregation with 

generalized statistical potentials. Bioinformatics 36(7), 2076–2081 (2020).
 11. Palato, L. M. et al. Amyloidogenicity of naturally occurring full-length animal IAPP variants. J. Pept. Sci. 25(8), e3199 (2019).
 12. Maurer-Stroh, S. et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. 

Methods 7(3), 237–242 (2010).
 13. Fernandez-Escamilla, A.-M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects 

on the aggregation of peptides and proteins. Nat. Biotechnol. 22(10), 1302–1306 (2004).
 14. Tartaglia, G. G., Cavalli, A., Pellarin, R. & Caflisch, A. Prediction of aggregation rate and aggregation-prone segments in polypeptide 

sequences. Protein Sci. 14(10), 2723–2734 (2005).
 15. Thangakani, A. M., Kumar, S., Nagarajan, R., Velmurugan, D. & Gromiha, M. M. GAP: Towards almost 100 percent prediction 

for β-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics 30(14), 1983–1990 (2014).
 16. Prabakaran, R., Rawat, P., Kumar, S. & Gromiha, M. M. ANuPP: A versatile tool to predict aggregation nucleating regions in 

peptides and proteins. J. Mol. Biol. 433(11), 166707 (2021).
 17. Gasior, P. & Kotulska, M. FISH Amyloid—A new method for finding amyloidogenic segments in proteins based on site specific 

co-occurrence of aminoacids. BMC Bioinform. 15(1), 1–8 (2014).
 18. Walsh, I., Seno, F., Tosatto, S. C. & Trovato, A. PASTA 2.0: An improved server for protein aggregation prediction. Nucleic Acids 

Res. 42(W1), W301–W307 (2014).
 19. Prabakaran, R., Rawat, P., Kumar, S. & Gromiha, M. M. Evaluation of in silico tools for the prediction of protein and peptide 

aggregation on diverse datasets. Brief. Bioinform. 22(6), bbab240 (2021).
 20. Niu, M., Li, Y., Wang, C. & Han, K. RFAmyloid: A web server for predicting amyloid proteins. Int. J. Mol. Sci. 19(7), 2071 (2018).
 21. Charoenkwan, P., Kanthawong, S., Nantasenamat, C., Hasan, M. M. & Shoombuatong, W. iAMY-SCM: Improved prediction and 

analysis of amyloid proteins using a scoring card method with propensity scores of dipeptides. Genomics 113(1), 689–698 (2021).
 22. Li, Y., Zhang, Z., Teng, Z. & Liu, X. Predamyl-mlp: Prediction of amyloid proteins using multilayer perceptron. Comput. Math. 

Methods Med. 2020, 8845133 (2020).
 23. Sofi, M. A. & ArifWani, M. Improving prediction of amyloid proteins using secondary structure based alignments and segmented-

PsSm. In 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), 87–92 (IEEE, 2021).
 24. Dao, F.-Y. et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 

35(12), 2075–2083 (2019).
 25. Feng, C.-Q. et al. iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 35(9), 

1469–1477 (2019).
 26. Li, W.-C., Deng, E.-Z., Ding, H., Chen, W. & Lin, H. iORI-PseKNC: A predictor for identifying origin of replication with pseudo 

k-tuple nucleotide composition. Chemom. Intell. Lab. Syst. 141, 100–106 (2015).
 27. Charoenkwan, P. et al. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring 

card method. Sci. Rep. 11(1), 1–13 (2021).
 28. Charoenkwan, P., Kanthawong, S., Nantasenamat, C., Hasan, M. M. & Shoombuatong, W. iDPPIV-SCM: A sequence-based predic-

tor for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory peptides using a scoring card method. J. Proteome 
Res. 19(10), 4125–4136 (2020).

 29. Charoenkwan, P., Kanthawong, S., Schaduangrat, N., Yana, J. & Shoombuatong, W. PVPred-SCM: Improved prediction and analysis 
of phage virion proteins using a scoring card method. Cells 9(2), 353 (2020).

 30. Chou, K.-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 273(1), 236–247 
(2011).

 31. Charoenkwan, P., Chotpatiwetchkul, W., Lee, V. S., Nantasenamat, C. & Shoombuatong, W. A novel sequence-based predictor for 
identifying and characterizing thermophilic proteins using estimated propensity scores of dipeptides. Sci. Rep. 11(1), 1–15 (2021).

 32. Charoenkwan, P. et al. iBitter-fuse: A novel sequence-based bitter peptide predictor by fusing multi-view features. Int. J. Mol. Sci. 
22(16), 8958 (2021).

 33. Charoenkwan, P. et al. UMPred-FRL: A new approach for accurate prediction of umami peptides using feature representation 
learning. Int. J. Mol. Sci. 22(23), 13124 (2021).

 34. Charoenkwan, P., Nantasenamat, C., Hasan, M. M. & Shoombuatong, W. Meta-iPVP: A sequence-based meta-predictor for improv-
ing the prediction of phage virion proteins using effective feature representation. J. Comput. Aided Mol. Des. 34(10), 1105–1116 
(2020).

 35. Li, Z.-R. et al. PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from 
amino acid sequence. Nucleic Acids Res. 34(suppl 2), W32–W37 (2006).

http://pmlabstack.pythonanywhere.com/AMYPred-FRL
http://pmlabstack.pythonanywhere.com/AMYPred-FRL
http://pmlabstack.pythonanywhere.com/AMYPred-FRL


13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7697  | https://doi.org/10.1038/s41598-022-11897-z

www.nature.com/scientificreports/

 36. Dubchak, I., Muchnik, I., Holbrook, S. R. & Kim, S.-H. Prediction of protein folding class using global description of amino acid 
sequence. Proc. Natl. Acad. Sci. 92(19), 8700–8704 (1995).

 37. Chen, Z. et al. iFeature: A python package and web server for features extraction and selection from protein and peptide sequences. 
Bioinformatics 34(14), 2499–2502 (2018).

 38. Xiao, N., Cao, D.-S., Zhu, M.-F. & Xu, Q.-S. protr/ProtrWeb: R package and web server for generating various numerical repre-
sentation schemes of protein sequences. Bioinformatics 31(11), 1857–1859 (2015).

 39. Shen, H.-B. & Chou, K.-C. Using ensemble classifier to identify membrane protein types. Amino Acids 32(4), 483–488 (2007).
 40. Chen, Z. et al. iFeature: A python package and web server for features extraction and selection from protein and peptide sequences. 

Bioinformatics 1, 4 (2018).
 41. Qiang, X. et al. CPPred-FL: A sequence-based predictor for large-scale identification of cell-penetrating peptides by feature rep-

resentation learning. Brief. Bioinform. 21(1), 11–23 (2020).
 42. Wei, L., Zhou, C., Chen, H., Song, J. & Su, R. ACPred-FL: A sequence-based predictor using effective feature representation to 

improve the prediction of anti-cancer peptides. Bioinformatics 34(23), 4007–4016 (2018).
 43. Rao, B., Zhou, C., Zhang, G., Su, R. & Wei, L. ACPred-Fuse: Fusing multi-view information improves the prediction of anticancer 

peptides. Brief. Bioinform. 21(5), 1846–1855 (2020).
 44. Wei, L., Zhou, C., Su, R. & Zou, Q. PEPred-Suite: Improved and robust prediction of therapeutic peptides using adaptive feature 

representation learning. Bioinformatics 35(21), 4272–4280 (2019).
 45. Hasan, M. M. et al. HLPpred-Fuse: Improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature 

representation. Bioinformatics 36(11), 3350–3356 (2020).
 46. Charoenkwan, P. et al. StackIL6: A stacking ensemble model for improving the prediction of IL-6 inducing peptides. Brief. Bioin‑

form. 22(6), 172 (2021).
 47. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
 48. Schaduangrat, N., Nantasenamat, C., Prachayasittikul, V. & Shoombuatong, W. Meta-iAVP: A sequence-based meta-predictor for 

improving the prediction of antiviral peptides using effective feature representation. Int. J. Mol. Sci. 20(22), 5743 (2019).
 49. Azadpour, M., McKay, C. M. & Smith, R. L. Estimating confidence intervals for information transfer analysis of confusion matrices. 

J. Acoust. Soc. Am. 135(3), EL140–EL146 (2014).
 50. Su, R., Hu, J., Zou, Q., Manavalan, B. & Wei, L. Empirical comparison and analysis of web-based cell-penetrating peptide predic-

tion tools. Brief. Bioinform. 21(2), 408–420 (2020).
 51. Basith, S., Manavalan, B., Hwan Shin, T. & Lee, G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid 

disease screening. Med. Res. Rev. 40(4), 1276–1314 (2020).
 52. Shoombuatong, W. et al. Towards the revival of interpretable QSAR models. In Advances in QSAR Modeling 3–55 (Springer, 2017).
 53. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Confer‑

ence on Neural Information Processing Systems, 4768–4777 (2017).
 54. Li, F. et al. Computational prediction and interpretation of both general and specific types of promoters in Escherichia coli by 

exploiting a stacked ensemble-learning framework. Brief. Bioinform. 22(2), 2126–2140 (2021).
 55. Rawat, P. et al. CPAD 2.0: A repository of curated experimental data on aggregating proteins and peptides. Amyloid 27(2), 128–133 

(2020).
 56. Bhasin, M. & Raghava, G. P. Classification of nuclear receptors based on amino acid composition and dipeptide composition. J. 

Biol. Chem. 279(22), 23262–23266 (2004).
 57. Tomii, K. & Kanehisa, M. Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction 

of proteins. Protein Eng. Des. Sel. 9(1), 27–36 (1996).
 58. Saravanan, V. & Gautham, N. Harnessing computational biology for exact linear B-cell epitope prediction: A novel amino acid 

composition-based feature descriptor. OMICS 19(10), 648–658 (2015).
 59. Wang, M. et al. DeepMal: Accurate prediction of protein malonylation sites by deep neural networks. Chemom. Intell. Lab. Syst. 

207, 104175 (2020).
 60. Lee, T.-Y., Chen, S.-A., Hung, H.-Y. & Ou, Y.-Y. Incorporating distant sequence features and radial basis function networks to 

identify ubiquitin conjugation sites. PLoS One 6(3), e17331 (2011).

Acknowledgements
This work was fully supported by the College of Arts, Media and Technology, Chiang Mai University, and par-
tially supported by Chiang Mai University and Mahidol University. In addition, computational resources were 
supported by the Information Technology Service Center (ITSC) of Chiang Mai University.

Author contributions
Project administration, supervision, conceptualization and investigation: W.S.; methodology, visualization and 
writing—original draft: W.S., P.C. and S.A.; analysis, validation and software: P.C. and S.A.; web server develop-
ment: P.C.; writing—review and editing: P.C., J.M.W.Q, M.A.M, W.S., P.L. and C.N. All authors reviewed and 
approved the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 11897-z.

Correspondence and requests for materials should be addressed to W.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-022-11897-z
https://doi.org/10.1038/s41598-022-11897-z
www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7697  | https://doi.org/10.1038/s41598-022-11897-z

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning
	Materials and methods
	Dataset preparation. 
	Feature extraction. 
	Identification of informative features. 
	Feature representation learning framework. 
	Baseline models generation. 
	Feature representation generation. 
	Feature representation optimization. 
	AMPred-FRL development. 

	Performance evaluation metrics. 

	Results and discussion
	Performance evaluation of different baseline models. 
	Comparison of class, probabilistic and combined information. 
	Contribution of new feature representations. 
	Mechanistic interpretation of AMYPred-FRL. 
	Comparison of AMYPred-FRL and its constituent baseline models. 
	Comparison of AMYPred-FRL with two state-of-the-art methods. 
	Case study. 
	Genome-wide prediction of AMYs in Saccharomyces cerevisiae. 

	Conclusions
	References
	Acknowledgements


