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The bromodomain inhibitor JQ1 
up‑regulates the long non‑coding 
RNA MALAT1 in cultured human 
hepatic carcinoma cells
Hae In Choi1, Ga Yeong An1, Eunyoung Yoo1, Mina Baek2,3, Bert Binas2, Jin Choul Chai4, 
Young Seek Lee4, Kyoung Hwa Jung5* & Young Gyu Chai1,2*

The epigenetic reader, bromodomain‑containing 4 (BRD4), is overexpressed in hepatocellular 
carcinoma (HCC), and BRD4 inhibition is considered as a new therapeutic approach. The BRD 
inhibitor JQ1 is known to inhibit the enrichment of BRD4 at enhancer sites. Gene network analyses 
have implicated long non‑coding RNAs (lncRNAs) in the effects of JQ1, but the precise molecular 
events remain unexplored. Here, we report that in HepG2 cells, JQ1 significantly reduced various 
proliferation‑related lncRNAs, but up‑regulated the known liver tumor marker, MALAT1. Using ChIP‑
sequencing data, ChIP‑qPCR, luciferase reporter assays, and chromatin conformation capture (3C), we 
characterized the MALAT1 gene locus. We found that JQ1 elicited a rearrangement of its chromatin 
looping conformation, which involved the putative enhancers E1, E2, E3, the gene body, and the 
promoter. We further found that the forkhead box protein A2 (FOXA2) binds to E2 and the promoter; 
suppression of FOXA2 expression resulted in MALAT1 up‑regulation and increased cell proliferation. 
These results suggest that the inhibition of MALAT1 may improve the effect of BET inhibitors as an 
anti‑cancer therapy and that FOXA2 would be a suitable target for that approach.

Abbreviations
HCC  Hepatocellular carcinoma
DEmRNAs  Differentially expressed mRNAs
DElncRNAs  Differentially expressed lncRNAs
GRO-seq  Global run-on sequencing
H2K27ac  Acetylated H3 lysine 27
Chr  Chromosome
qRT-PCR  Quantitative reverse transcription-polymerase chain reaction
3C  Chromatin conformation capture

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. HCC is prevalent cancer 
globally and a leading cause of cancer-related  death1,2. Significant epigenetic alteration exists in  HCC3. There-
fore, epigenetic transcriptional regulators may be considered as potential therapeutic targets for anti-cancer 
 treatment4. The epigenetic reader, BRD4, a member of the bromodomain and extraterminal (BET) proteins 
(BRD2, BRD3, BRD4, and BRDt) family, recognizes acetylated lysine residues of H3 tails with two tandem 
bromodomains (BD1 and BD2). Accumulation of BRD4 in hyper-acetylated chromatin regions, promoters, and 
enhancers facilitates their interaction and activates  transcription5. In HCC, BRD4 is overexpressed and promotes 
gene expression related to cell migration, invasion, and  apoptosis6,7. For example, BRD4 is closely associated 
with the overexpression of the key oncogene MYC; thus, inhibition of BRD4 is considered as a therapeutic 
 strategy8–10. JQ1, a pan-bromodomain inhibitor with a high affinity to BRD4, enables the study of the antitumor 
effect of BRD4  inhibition11,12. Previous studies showed that JQ1 inhibits cancer cell proliferation and promotes 
apoptosis in various cancer cells by inhibiting BRD4 binding to super-enhancers of target  genes13. Several studies 
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were performed on transcriptome analysis to identify mechanisms and potential targets of BET inhibitors in the 
treatment of  cancer13. More generally, the inhibition of BET proteins has been highlighted as a new therapeutic 
strategy for cancer, neurological, and inflammatory  disease14,15

lncRNAs play diverse roles in regulating gene transcription, translation, post-transcriptional, and epige-
netic  modification16. Notably, lncRNAs play a role in tumor suppression (e.g., GAS5, LINC-PINT, MEG3) and 
tumorigenesis (e.g., HOTAIR, RCAR4, MALAT1). The abnormal expression of lncRNAs affects the malignity, 
growth, proliferation, and migration of cancer  cells17. Thus, a role for lncRNAs in cancer has been established. 
However, the underlying mechanisms are poorly understood. Most reports are limited to genetic changes, mainly 
related to MYC18,19, while epigenetic mechanisms have received comparatively less attention. Here, we explored 
the mechanism of tumor-related lncRNA expression by inhibiting the BET protein, BRD4, in HepG2 cells, an 
established model for HCC.

Results
JQ1 treatment leads to the upregulation of MALAT1. To study the role of BRD4 in the HepG2 cells, 
we treated them with JQ1. This led to a significantly reduced proliferation within 24 h, and the effect increased 
further until at least 72 h (Fig. 1A; Supplementary Fig. S1A). We used the 24 h-time point for RNA-seq analysis. 
Of a total of 856 differentially expressed lncRNAs (DElncRNAs), 333 were up-regulated and 523 down-regulated 
by JQ1 (Fig. 1B). Heatmaps of the top 40 up- and down-regulated DElncRNAs are shown in Fig. 1C (numerical 
values are listed in Supplementary Table S1).

Figure 1.  Differential lncRNA expression in JQ1-treated HepG2 cells. (A) HepG2 cells were treated with JQ1 
(5 µM) or vehicle (DMSO) for the indicated durations, and cell proliferation was determined using a WST-1 
assay. The data represent three biological indenpendent experiments. **p < 0.01. (B) Pie chart displaying the 
number of up-regulated (yellow) and down-regulated (green) lncRNAs. (C) Heat map representing the top 
40 up- and down-regulated DElncRNAs.  (D)  Log2 fold changes of 9 selected lncRNAs affected by JQ1 and 
previously known to be over-activated in HCC. (E) qRT-PCR analysis of 6 selected DElncRNAs levels. The data 
represent three independent experiments. The values are mean ± SD of triplicate wells. **p < 0.01.
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At least some of the downregulated lncRNAs (Fig. 1D, E) were previously found to be highly expressed 
in liver cancer and to promote proliferation and metastasis (AOC4P, PVT1, DANCR, DBH-AS1, HOXD-AS1, 
HNF1A-AS1, ANRIL)20–24. These lncRNAs probably are also important for HepG2 cells: When we randomly 
subjected one of them (DANCR) to RNA interference (Supplementary Fig. S2A), this resulted in a markedly 
decreased number and proportion of EdU-positive HepG2 cells (Supplementary Fig. S2B,C), in line with the 
known oncogenic role of DANCR.

In contrast, we could not make an obvious physiological link for an up-regulated lncRNA (Fig. 1D, E; 
MALAT1 and TUC338). Interestingly, one of them was MALAT1 (Fig. 2A, B), which appeared paradoxical 
because MALAT1 is known to be highly expressed in liver  cancer25, in line with our own bioinformatics analysis 
using The Atlas of non-coding RNA in Cancer (TANRIC; https:// ibl. mdand erson. org/ tanric/ design/ basic/ main. 
html)26 (Supplementary Fig. S3). However, the stimulation of MALAT1 expression was observed not only with 
JQ1 but also with other BET inhibitors (OTX015 and ABBV-075) (Fig. 2A, B, obtained by RNA-seq and qRT-
PCR, respectively). Furthermore, an antisense oligonucleotide (ASO) directed against MALAT1 (Supplementary 
Fig. S4) increased the anti-proliferative effect of JQ1, although the oligo alone did not affect cell proliferation 
(Fig. 2C). This result indicated that the up-regulation of MALAT1 dampened the anti-proliferative effect of JQ1 
(Fig. 1A). We, therefore, decided to take a closer look at the MALAT1 gene regulation in JQ1-treated HepG2 cells.

Identification of putative MALAT1 enhancers. We examined ENCODE ChIP-seq and global run-
on sequencing (GRO-seq) data to localize the potential MALAT1 enhancers (Fig.  2D). Using the GRO-seq 
peaks (GSE92375), H3K27ac ChIP-seq peaks (GSE29611), and p300 ChIP-seq peaks (GSE32465) at the UCSC 
Genome browser, we analyzed the upstream regions of MALAT1. In region (chr11: 65,487,241–65,488,714), 
we found enrichment for H3K27ac that co-localized with the lncRNA gene LINC02736, whose expression was 
decreased by JQ1 (Supplementary Fig. S5). In addition, we identified three putative enhancer loci (E1, E2, and 
E3) further upstream (Fig. 2D; Table 1). We observed an approximately 20-fold increased luciferase reporter 
gene expression by the E2 region but not the E1 or E3 regions (Fig. 2E). From these results, we hypothesized that 
the increased MALAT1 expression in JQ1-treated HepG2 cells might be regulated by enhancer E2.

Figure 2.  MALAT1 expression and putative MALAT1 enhancers in JQ1-treated HepG2 cells. (A) RNA-seq 
read densities (left) and corresponding  log2 fold changes (right) of the MALAT1 gene transcripts in BET 
inhibitor-treated vs. control HepG2 cells. (B) qRT-PCR analysis of MALAT1 levels. The data represent three 
independent experiments. The values are mean ± SD of triplicate wells. **p < 0.01.  (C) Cell proliferation was 
determined using WST-1 assay in MALAT1 ASO- and/or JQ1-treated HepG2 cells. The data represent three 
biologically independent experiments. *p < 0.05 and **p < 0.01. (D) USCS genome browser view of the GRO-
seq peaks, H3K27ac enrichment, p300 binding sites, and BRD4 binding sites along the MALAT1 locus (chr11: 
65,468,400–65,509,628). The potential MALAT1 enhancer regions E1, E2, and E3 upstream of the MALAT1 
gene are denoted. MALAT1 expression from RNA-seq read densities is represented with black (untreated) and 
green (JQ1-treated) peaks. (E) Verification of putative MALAT1 enhancers by luciferase reporter gene assays. 
The data represent three independent experiments. **p < 0.01.

https://ibl.mdanderson.org/tanric/design/basic/main.html
https://ibl.mdanderson.org/tanric/design/basic/main.html
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FOXA2, but not FOS, is involved in MALAT1 expression and HepG2 cell proliferation. Next, we 
searched for potential regulators, especially transcription factors (TFs), that might be involved in the JQ1-caused 
MALAT1 gene upregulation. Using RNA-seq, we found that 274 mRNAs were up-regulated and 737 down-
regulated by JQ1 (Supplementary Fig. S6A). The heatmaps of the top 40 up- and down-regulated differentially 
expressed mRNAs (DEmRNAs) are shown in Fig. 3A (numerical values are listed in Supplementary Table S2). 
The DEmRNAs were associated with cancer, hepatic system disease, cell death and survival, and cellular growth 
and proliferation (Fig. 3B). Many down-regulated genes were related to angiogenesis and negative regulation of 
apoptosis (Supplementary Fig. S6B). IPA network analysis highlighted known tumor cell apoptosis-related genes 
(Fig. 3C), some of which we validated by qRT-PCR (Fig. 3D). More to the point, we found that several TFs were 
also altered, including the apoptosis-associated genes of Fig. 3C (Fig. 3E). Of these, we validated four up-regu-
lated (FOS, EGR1, ZFP36, ID2, JUND) and two down-regulated (FOSL1 and FOXA2) TFs by qRT-PCR (Fig. 3F).

Bioinformatics analysis (by IPA) suggested that one of the upregulated TFs, FOS, regulates MALAT1 (Sup-
plementary Fig. S7A), in line with DNA sequence analysis that revealed the co-localization of FOS binding sites 
and putative MALAT1 enhancers (Supplementary Fig. S7B). However, both in the absence and presence of JQ1, 
the levels of MALAT1 were not significantly changed by a FOS siRNA, neither was the JQ1-caused increment of 
MALAT1 expression (Fig. 4A; Supplementary Fig. S7C). Furthermore, JQ1 did not increase the binding of FOS 
to the promoter and putative enhancer regions of MALAT1 (Supplementary Fig. S7D). These results indicate that 
contrary to expectation, FOS is not involved in the regulation of MALAT1 in the HepG2 cells.

Next, we focused on the down-regulated TF, FOXA2 (Fig. 3E, F). Bioinformatics analysis of published HepG2 
ChIP-seq data indicates that FOXA2 binds to the putative enhancer E2 (X-3) and the promoter (X-P) regions of 
the MALAT1 gene (Fig. 4B), as validated by our ChIP-qPCR analysis. These bindings were significantly reduced 
by JQ1 (Fig. 4C). In contrast, the binding of FOXA2 to X-1 and X-2 did not co-localize with E1 or E3 (Fig. 4B), 
and the JQ1 treatment did not elicit a statistically significant change of FOXA2 binding to X-1 and X-2 (Fig. 4C). 
These results suggest that the direct binding of FOXA2 to the MALAT1 promoter and enhancer E2, but not E1 or 
E3, interferes with the transcription of MALAT1, thus mirroring the effect of E2, but not E1 or E3, on luciferase 
reporter gene expression (compare with Fig. 2E).

The reduction of FOXA2 mRNA (Supplementary Fig. S7E) and protein (Supplementary Fig. S7F) by RNA 
interference led to a significant increase of MALAT1 expression (Fig. 4D) and an increase in the proliferation of 
the HepG2 cells (Fig. 4E). Of note, we observed the same reciprocal relationship between FOXA2 and MALAT1 
in Huh7 cells, another human HCC line (Supplementary Fig. S8). This result suggests that MALAT1 expression 
stimulates cell proliferation under negative control by FOXA2.

JQ1 treatment reconfigures the MALAT1 locus. To better understand the mechanism of how JQ1 
affects MALAT1 expression, we performed a 3C assay. Using the promoter region as the anchor (P), we assessed 
the relative positions of E1, E2, and E3 in the absence and presence of JQ1. Figure 5A shows that in the absence 
of JQ1, E2 (amplicon C2-P3) and the gene body M (amplicon M-P2), but neither E1 (amplicon C1-P3) nor E3 
(amplicon C3-P1), associated with the promoter. Upon the addition of JQ1, all three putative enhancers became 
associated with the promoter, while the gene body was no longer associated (Fig. 5A). These interactions were 
confirmed by sequencing the agarose gel bands (Fig. 5B).

Discussion
This study found that when HepG2 cells were treated with JQ1, the long non-coding RNA MALAT1, which has 
been positively correlated with malignancy, was up-regulated. Our data suggest the down-regulation of the tran-
scription factor FOXA2 and a reconfiguration of the associated chromatin complex as an underlying mechanism.

The JQ1-caused up-regulation of MALAT1 appears paradoxical because BET inhibitors are being consid-
ered as anti-cancer agents. However, MALAT1 is highly expressed in various cancers, including liver, lung, and 
breast cancer, and plays a role in cancer  progression27. In addition, the MALAT1 expression level is negatively 
correlated with the survival rate in cancer  patients28. MALAT1 induces cell proliferation and metastasis via the 
MAPK/ERK and PI3K/AKT signaling pathways in retinoblastoma and ovarian cancer,  respectively29,30, and it is 
known to enable the high expression of the key oncogene MYC in thymic epithelial  tumors31. Interestingly, in 
HepG2 cells, MALAT1 was also found in mitochondria, and its knockdown limited ATP synthesis and tumor 
cell  invasion32. In addition, MALAT1 causes chemotherapy resistance by regulating miR-216b in  HCC23. Taken 
together, literature strongly suggests that MALAT1 expression should be considered as an undesired feature of 
HCC and other tumors.

We have recently shown that JQ1 down-regulates MYC in HCC  cells33, which is in line with the anti-cancer 
effects of JQ1 in other tumors. Similarly, JQ1 reduced the expression of pro-apoptotic BCL2L11 in  HCC9. How-
ever, in prostate cancer, JQ1 inhibited the transcriptional repressor FOXA1, thereby increasing the expression 
of invasion  genes34 or even activating the DNA damage  response35. The increased expression of MALAT1 after 

Table 1.  MALAT1 putative enhancer regions.

Putative enhancer h38_DNA range

E1 chr11:65,481,488–65,482,092

E2 chr11:65,477,162–65,477,840

E3 chr11:65,471,480–65,471,854
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the JQ1 treatment that we described here may also contribute to the unwanted effects of JQ1. These findings 
collectively emphasize the need to learn more about the mechanisms of BET inhibitors as potential anti-cancer 
agents. Hence, investigating the mechanisms regulating the overexpression of MALAT1 by JQ1 treatment may 
contribute to understanding the unwanted side effects of the BET inhibitors.

In our study, contrary to  expectations36, the general TF FOS did not regulate MALAT1. Instead, we identi-
fied the lineage-specific TF FOXA2 as a candidate for the modulation of MALAT1 expression in HepG2 cells. 
The forkhead box (FOX) proteins are transcription factors related to cancer development and progression. 
FOXA1 is a well-studied regulator of estrogen receptor (ER) and androgen receptor (AR) activity in breast and 
prostate  cancer37. In this context, FOX proteins play a crucial role in the rearrangement and reprogramming 
of super-enhancers38,39. FOXA1 and FOXA2 regulate the transcription of liver-specific genes and are known to 
complement each  other40. In addition, the importance of FOXA2, particularly concerning liver disease, has been 
 demonstrated41. Interestingly, FOXA1 and FOXA2 play dual roles as tumor suppressors and  oncogenes42. FOXA1 
is a transcriptional repressor and reduces the viability and motility in liver cancer  cells43, while FOXA2 inhibits 

Figure 3.  Expression of DEmRNAs and selected TFs in JQ1-treated vs. control HepG2 cells. (A) Heat map 
representing the top 40 up- and down-regulated DEmRNAs (p-value < 0.05,  log2-fold change ≥ 1.5,  log2-
fold change ≤  − 1.5). (B) Disease and biofunction analysis of differentially expressed genes using IPA. (C) 
IPA network analysis of tumor cell apoptosis-related genes in JQ1-treated cells. The DEmRNAs are colored 
according to their predicted activation state following JQ1 treatment, activated (red) or suppressed (green). 
The arrows indicate predicted relationships: Red leads to activation; yellow, findings inconsistent with the state 
of downstream molecule. (D) qRT-PCR analysis of selected DEmRNAs. The data represent three independent 
experiments. The values are the mean ± SD of triplicate wells. **p < 0.01. (E) Heat map showing expression of 
eight selected TF mRNAs in JQ1-treated vs. control cells, each in triplicate. (F) Effect of JQ1 on the mRNA levels 
of FOXA2 and other TFs (qRT-PCR). The values are the mean ± SD of triplicate wells. **p < 0.01.
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EMT in HCC, breast cancer, and lung  cancer37,44,45. Hence, our data suggest that a focus on FOXA2 in HCC may 
help address the problem of JQ1’s and potentially other BET inhibitors’ detrimental effects in anti-cancer therapy.

In the present study, we associated the JQ1-promoted MALAT1 expression with decreased binding of FOXA2 
to the promoter and E2 along with the formation of an (E1, E2, E3)-promoter complex, where E1, E2, and E3 
are putative enhancers that we identified. JQ1 has been shown to directly bind to FOXA1, which neutralizes the 
repressor function of that  TF34. Our finding that JQ1 reduced the binding of FOXA2 to the MALAT1 gene locus, 
along with an increase of MALAT1 expression, points to a similar mechanism.

Our data show that JQ1 affects MALAT1 expression by two mechanisms. The first mechanism is indirect and 
is mediated by the reduced expression of FOXA2, probably caused by the interference of JQ1 with the activity 
of BRD4 at the FOXA2 locus. This mechanism would be similar to the typical effects of JQ1 on other genes. It 
leads to the increased expression of MALAT1, as supported by our findings that FOXA2 binds to E2 and that a 
knockdown of FOXA2 increased the expression of MALAT1. These data reveal that FOXA2 is a repressor of the 
MALAT1 gene in the HepG2 cells. The second mechanism directly affects MALAT1 expression, as indicated by 
our finding (by ChIP-qPCR) of a reduced association of BRD4 with the MALAT1 promoter region upon JQ1 
treatment. However, the outcome (stimulation versus inhibition of MALAT1 expression) is not yet certain. In 
general, one might expect that the reduced BRD4 availability reduces the expression of MALAT1 just like it 
reduces the expression of FOXA2 and other genes. Such a mechanism would counteract the indirect, FOXA2-
mediated effect. However, our 3C analysis of the MALAT1 promoter and upstream region points to the opposite 
possibility. We found that JQ1 treatment, which implies a reduced BRD4 level, led to a re-organization of the 
enhancer-containing chromatin loops associated with the MALAT1 promoter. We note that even reduced levels 
of BRD4/mediators by BET inhibitors are sufficient to maintain enhancer-promoter  interaction46. In addition to 
E2 (now free of its repressor), the putative enhancers E1 and E3 became directly associated with the promoter, 
suggesting the possibility of a stimulatory effect on MALAT1 gene expression. Future experiments will need to 
determine the direct effect of JQ1 on MALAT1 gene expression and the relative contributions of the indirect vs. 
direct mechanisms. It is worth mentioning that we observed the reciprocal relationship between the FOXA2 and 
MALAT1 also in the independently derived Huh7 human HCC cell line (Supplementary Fig. S8), indicating that 
the mechanistic relationships that we studied in the HepG2 cells are not a cell line-specific artifact.

In conclusion, our study suggests a regulatory model for the up-regulation of the lncRNA MALAT1 due to JQ1 
treatment (Fig. 5C). The model predicts that manipulating MALAT1 expression could improve the therapeutic 
effect of BET inhibitors in HCC. Firstly, JQ1 inhibits the binding of FOXA2, a repressor of MALAT1 expression, 
to the MALAT1 enhancer E2 and the promoter. Secondly, alteration of chromatin looping recruits the enhancers 

Figure 4.  Effects of FOXA2 on MALAT1 transcription and proliferation. (A) qRT-PCR analysis of MALAT1 
levels in JQ1- and FOS siRNA-treated HepG2 cells. The values are the mean ± SD of triplicate wells. **p < 0.01. 
(B) Analysis of FOS (GSM2797520) and FOXA2 (ENCSR066EBK) binding to the MALAT1 locus. H3K27ac 
enrichment and TFs binding (gray lines) from published ChIP-seq data in HepG2 cells. (C) ChIP-qPCR analysis 
of FOXA2 binding in JQ1-treated HepG2 cells. X-P, X-1, X-2, X-3, amplicons (B red lines). Enrichment was 
calculated relative to input DNA from three independent experiments. The values are the mean ± SD of triplicate 
experiments. *p < 0.05 and **p < 0.01. (D) qRT-PCR analysis of MALAT1 levels in FOXA2 siRNA-treated cells. 
The values are the mean ± SD of triplicate wells. **p < 0.01. (E) Cell proliferation assay of FOXA2 siRNA-treated 
cells. The data represent three biologically independent experiments. **p < 0.01.
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E1 and E3 to the promoter site. Thus, further analysis of the MALAT1 promoter-associated chromatin looping 
is likely to suggest additional approaches to improve the BET-based therapy.

Experimental procedures
Cell culture and BET inhibitor treatment. The HCC cell line HepG2 was purchased from the Korean 
Cell Line Bank. HepG2 cells were cultured in Minimum Essential Medium supplemented with 10% fetal bovine 
serum (FBS) and penicillin (100 units/ml)/streptomycin (100 mg/ml) (Thermo Fisher Scientific, Waltham, MA, 

Figure 5.  JQ1 reconfigures the MALAT1 gene locus. (A) 3C analysis of MALAT1 gene locus in JQ1-treated 
and control HepG2 cells. Top, diagram of the MALAT1 gene locus showing the restriction enzyme sites used for 
3C. Bottom, PCR results of 3C experiment. E1, E2, E3, putative enhancers; M, P1, P2, P3, C1, C2, C3, primers. 
(B) Sequencing of the MALAT1 enhancer and promoter intrachromosomal loop products. Green and red lines 
indicate the sequences of each fragment marked on the right. (C) Schematic interpreting the 3C analysis. In 
untreated HepG2 cells (left), the E2 enhancer and FOXA2 and BRD4 are key components of the promoter-
associated chromatin complex, in contrast with E1 and E3. In JQ1-treated HepG2 cells (right), the reconfigured 
chromatin complex also involves E1 and E3 but loses FOXA2 and a significant portion of the BRD4. These 
changes result in an increased expression of MALAT1.
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USA). The medium was replaced every 3–4 days. The cells were cultured in a humidified incubator at 37 °C with 
a 5%  CO2 atmosphere. JQ1 was purchased from MedChemExpress (Monmouth Junction, NJ, USA). JQ1 was 
present at a concentration of 5 μM for 24 h.

Total RNA sequencing. RNA sequencing (RNA-seq) was performed as previously  described47. Total RNA 
was extracted from HCC cells using RNAiso Plus (Takara, Shiga, Japan) and a Qiagen RNeasy Mini kit (Qiagen, 
Hilden, Germany). RiboMinus Eukaryote kit (Invitrogen, Carlsbad, CA, USA) was used for Ribosomal RNA 
(rRNA) depletion. An RNA library was created by a NEBNext Ultra directional RNA library preparation kit 
from Illumina (New England BioLabs, Ipswich, MA, USA). RNA library sequencing was performed on the Illu-
mina HiSeq2500 platform (Macrogen, Seoul, Korea). Transcriptome sequencing was performed on independent 
RNA samples from DMSO-treated (3 samples) and JQ1-treated (3 samples) HepG2 cells in biological triplicate.

Differentially expressed genes analysis using RNA‑seq data. For mRNA analysis, FASTQ files from 
RNA-seq were clipped and trimmed of adapters, and low-quality reads were removed using  Trimmomatic48. 
These FASTQ files were aligned using STAR (version 2.7.8) aligner software with a UCSC hg38  reference49. 
Differentially expressed mRNAs (DEmRNAs) were analyzed using DESeq2 with the default  parameters50. For 
lncRNA analysis, the raw data were trimmed with Trimmomatic (version 0.36)48 and processed using Bow-
tie2 (version 2.3.5)51 or STAR (version 2.7.8)49 aligner software with a GenCode GRCh38 reference (https:// 
www. genco degen es. org/ human/) or an LNCipedia reference (https:// lncip edia. org/; version 5.2)52. RNAs that 
exhibited an absolute  log2-fold change larger than 1.5 or smaller than − 1.5  (log2-fold change ≥ 1.5 and  log2-fold 
change ≤ −1.5, p-adjusted < 0.05) were designated as DEmRNAs or DElncRNAs. The dataset accession number 
GSE158552 was deposited in the Gene Expression Omnibus  database53.

Gene and lncRNA expression analysis using quantitative reverse transcription‑PCR 
(qRT‑PCR). Total RNA was extracted from HepG2 cells using RNAiso Plus (Takara, Shiga, Japan) accord-
ing to the manufacturer’s instructions. cDNA was synthesized by PrimeScript reverse transcriptase (Takara, 
Shiga, Japan) and amplified using gene-specific primers (Supplementary Table S4). The primers were designed 
by BLAST (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi). qRT-PCR was performed with TBGreen Premix Ex Taq II 
(Takara, Shiga, Japan). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or RNU6-1 (U6) were used as an 
internal control. After performing qRT-PCR, the results were analyzed using the critical threshold (△CT) and 
the comparative critical threshold (△△CT) methods in ABI 7500 (Applied Biosystems, Foster City, CA, USA) 
software with the NormFinder and geNorm PLUS algorithms. The data represent three independent experi-
ments (n = 3).

Cell proliferation assay. Cell proliferation was assessed using a premixed water-soluble tetrazolium salt 
(WST-1) cell viability test (Takara, Shiga, Japan) according to the manufacturer’s instructions. The cells were 
seeded at a density of 5 ×  103 cells per well and treated with JQ1 for different durations (0 h, 24 h, 48 h, and 72 h). 
WST-1 was added to each well. After an additional 4 h incubation, absorbances were measured at 450 nm. The 
data represent three independent experiments (n = 3).

Ethynyldeoxyuridine (EdU) analysis was performed using an EdU Cell Proliferation Assay kit (Invitrogen, 
CA, USA), following the manufacturer’s instructions. After that, the cells were washed with phosphate-buffered 
saline, mounted with a 4’,6-diamidino-2-phenylindole (DAPI)-containing mounting solution (Vectashield, Vec-
tor Laboratories, Burlingame, CA, USA), and imaged by microscopy (Nikon Eclipse 80i, Tokyo, Japan). The 
percentage of EdU-positive cells was assessed using ImageJ (Bethesda, MD, USA) software. The data represent 
three independent experiments (n = 3).

Knockdown of gene expression using siRNA treatment. Knockdown (KD) of gene expression was 
performed using small interfering RNA (siRNA). After seeding, the cells were transfected with siRNA constructs 
and scrambled siRNAs using the RNAiMax transfection agent (Thermo Fisher Scientific, Waltham, MA, USA) 
according to the manufacturer’s instructions. FOS siRNA (siFOS-1 ID: 115631 and siFOS-2 ID: VHS41046), 
DANCR siRNA (siDANCR-1 ID: n505292 and siDANCR ID: n272702), FOXA2 siRNA (siFOXA2-1 ID: s6691 
and siFOXA2-2 ID: s6692), and Silencer Negative Control siRNA (AM4611) were purchased from Thermo 
Fisher Scientific. The siRNAs were used at a concentration of 10 nM for 48 h in the growth medium.

Knockdown of MALAT1 expression using ASO treatment. Knockdown (KD) of MALAT1 gene 
expression was performed using locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs). After 
seeding the cells, transfection was performed using RNAiMax transfection agent according to the manufacturer’s 
instructions with ASO constructs and scrambled ASOs. MALAT1 antisense LNA GapmeR and LNA GapmeR 
Negative control B were purchased from Qiagen. MALAT1 siRNA and scrambled siRNA were used at 10 nM or 
50 nM for 24 h or 48 h in the growth medium.

Chromatin immunoprecipitation quantitative PCR (ChIP‑qPCR). The chromatin immunoprecipi-
tation (ChIP) assay was performed as previously  described54. Briefly, the HepG2 cell chromatin was incubated 
with antibodies against BRD4 (Bethyl; A301-985A50), FOS (SCBT; sc-166940x), FOXA2 (Abcam; ab256493) 
and then precipitated with Dynabeads Protein A beads (Invitrogen, CA, USA); normal rabbit IgG (CST; 2729) 
and normal mouse IgG (Santa Cruz; sc-2025) were used as controls. The immunoprecipitated DNA was ana-

https://www.gencodegenes.org/human/
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lyzed by qRT-PCR, and the expression levels were normalized to the amounts of input DNA. The data represent 
three independent experiments (n = 3). Primers used for ChIP-qPCR are listed in Supplementary Table S5.

Genomic data analysis. We re-analyzed public H3K27ac ChIP-sequencing (seq) data sets in Gene Expres-
sion Omnibus (GEO) (GSE29611) as described  previously55 and global run-on sequencing (GRO-seq) data sets 
in GEO (GSE92375). For the re-analysis, Trimmomatic (version 0.36)48 was used to trim the raw data and pro-
cessed using Bowtie2 (version 2.3.5)51 or STAR (version 2.7.8)49 aligner software with a UCSC hg 38 reference. 
The ChIP-seq and GRO-seq peaks identified were analyzed with Homer (version 4.11)56 and visualized using 
UCSC Genome Browser (https:// www. genome. ucsc. edu).

Western blotting assay. Cells were lysed with RIPA buffer for protein extraction after treatment. Proteins 
were separated using sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to polyvinylidene difluoride membranes (Schleicher & Schuell Bioscience, Inc., Keene, NH, USA). The 
western blotting assay was performed using anti-β-actin (SCBT; sc-8432) and anti-FOXA2 (Abcam; ab256493) 
antibodies, both diluted at 1:1000.

Luciferase reporter assay. Putative enhancer regions (E1, E2, and E3) were amplified with LongAmp Taq 
2X Master Mix (New England Biolabs, Ipswich, MA, USA), using forward and reverse primers that generated 
NheI and XhoI sites, respectively. These amplicons were cloned into the pGL4.26 construct (Promega, Madison, 
WI, USA). The primers used for cloning are listed in Supplementary Table S3. The cells were seeded into 24-well 
plates and transfected with Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA, USA). Luciferase 
activity was measured using the Dual-Glo Luciferase Assay kit (Promega, Madison, WI, USA). PRL-TK (Renilla 
luciferase expression construct; Promega) was used as an internal control. Luciferase activity was normalized to 
Renilla luciferase and the control (empty vector).

Chromosome conformation capture assay. Chromosome conformation capture (3C) assay was per-
formed as previously described, with minor  modifications57. HepG2 cells were cross-linked with 1% formalde-
hyde, and nuclei were prepared from approximately 1–2 ×  106 cells. Five hundred units of BamHI, BglII, and 
EcoRI were used to digest the DNA overnight, followed by ligation and purification. The 3C products were 
quantified by Qubit assay kits (Thermo, Q32851) and amplified by PCR using TB Green Premix Ex Taq (Takara, 
BR420). The ligation of fragments was analyzed using agarose gel electrophoresis. Sequences of primers are 
presented in Supplementary Table S6.

Statistical analysis. Data are presented as the mean ± standard deviation (SD) of the mean. All statistical 
analyses were performed using the IBM SPSS Statistics 26.0 program (IBM corp., Armonk, NY). We used a one-
way analysis of variance followed by Tukey’s honestly significant difference post hoc test. p-values < 0.05 were 
considered significant.

Data availability
The raw data of RNA-sequencing were deposited in the Gene Expression Omnibus (GEO) database with acces-
sion number  GSE15855251.
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