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DNA‑influenced automated 
behavior detection on twitter 
through relative entropy
Rosario Gilmary 1*, Akila Venkatesan1, Govindasamy Vaiyapuri2 & Deepikashini Balamurali1

Twitter is a renowned microblogging site that allows users to interact using tweets and it has almost 
reached 206 million daily active users by the second quarter of 2021. The ratio of Twitter bots has risen 
in tandem with their popularity. Bot detection is critical for combating misinformation and protecting 
the credibility of online disclosures. Current bot detection approaches rely on the Twitosphere’s 
topological structure, ignoring the heterogeneity among the profiles. Moreover, most techniques 
incorporate supervised learning, which depends strongly on large‑scale training sets. Therefore, 
to overcome these issues, we proposed a novel entropy‑based framework to detect correlated 
bots leveraging only user behavior. Specifically, real‑time data of users is collected and their online 
behaviors are modeled as DNA sequences. We then determine the probability distribution of DNA 
sequences and compute relative entropy to evaluate the distance between the distributions. Accounts 
with entropy values less than a fixed threshold represent bots. Extensive experiments conducted 
in real‑time Twitter data prove that the proposed detection technique outperforms state‑of‑the‑art 
approaches with precision = 0.9471, recall = 0.9682, F1 score = 0.9511, and accuracy = 0.9457.

Twitter is a popular microblogging platform that allows users to express their opinions and form social connec-
tions. Because of characteristics like an open platform and anonymity, it has become an ideal medium for the 
growth of  bots1. Twitter bots are software applications that run automated tasks. Although there is a common 
misconception that all bots are malicious, Twitter’s guidelines permit the use of automated bots. However, it 
forbids the use of bots for illegal  purposes2. Some bots such as @big ben clock are benign, which mimics the 
original Big Ben  clock3. There are also other malicious bots that engage in various illegal activities such as spam-
ming, generating fake popularity, publishing misinformation, online harassment, terrorism, and restricting 
free speech  rights4. One of the recent issues with bots is the spread of misinformation regarding the COVID-19 
pandemic. According to an analysis on a known bot dataset, nearly 66% of profiles spreading misinformation on 
COVID-19 are  bots5. They were disseminating conspiracy theories like QAnon and spreading URLs from parti-
san news  sites6. A real-life consequence of such misinformation includes inadequate hydroxychloroquine drug 
because of strong demand from people who believe it will build protection against COVID-197. Also, misleading 
information has a negative effect on people’s intentions to get vaccinated against COVID-198. It is also proven 
that Twitter bots have played a crucial part in different scenarios like public  elections9 and stock  microblogs10. 
Therefore, it becomes essential to remove malicious bots from the Twitter environment. Most of the bot detec-
tion approaches analyze multiple features and incorporate machine learning classifiers trained with known bot 
datasets to determine whether the profile is automated or  not11. However, feature selection is a challenging task 
while using machine learning  classifiers12.

Feature-like user behaviors are modeled and analyzed for different objectives. A contemporary line of research 
has detected bots by analyzing user behaviors using bioinformatics  approaches13–17. In this research, we proposed 
a novel approach to detect correlated bots leveraging only user behaviors. A DNA base (A, C, T, or G) is used to 
define the online user activity performed. Thus, the string of DNA corresponds to the sequence of activities in 
the user’s timeline. The DNA sequences are expressed as probability distributions and, their similarity degrees 
are quantified using relative entropy. Here, the degree of similarity present in the probability distributions acts as 
an indicator of automation. Entropy ranges between 0 and 1, where 0 signifies that the distributions have similar 
 information18. Thus, as the entropy decreases, the probability of the corresponding profile being a bot increases.

The following are the primary contributions of the proposed work.
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• The proposed approach analyses the user behaviors by considering the profile’s timeline and characterizes 
them as DNA sequences.

• We compute relative entropy on the probability distributions corresponding to the DNA sequences and it 
estimates the degree of similarity present. Bots are classified from humans by evaluating the entropy scores.

• The performance of the proposed approach is computed in the real-time Twitter dataset and compared with 
the state-of-the-art techniques.

This paper is structured as follows. Section 2, discusses the literature survey in brief. Section 3 presents the 
proposed entropy-based automation detection on Twitter using DNA modeling. Section 4 describes the experi-
mental design and discussions and highlights an overview of selection of decision threshold, empirical outcomes 
of the proposed model, and comparison with state-of-the-art approaches. It also explains the real-world Twitter 
dataset collection and baseline dataset considered for performance evaluation. Section 5 concludes the paper.

Related work
The literature presents the research that has achieved intriguing outcomes related to our proposal. Related works 
are discussed under two broad categories. The first deals with the entropy-based methods. The second reviews 
DNA modeling-based approaches for bot detection.

Entropy based methods. Multiple research works have paid attention to entropy-based features to detect 
automated behavior on Twitter. Inspired by them, a bot detection approach using the approximate entropy and 
sample entropy has been  proposed19. The number of tweets posted periodically by a user is the primary temporal 
feature considered. The amount of regularity present in the data is quantified using an entropy estimate which 
functions as an indicator of the bot. Experiments on real-time datasets show that approximate entropy and sam-
ple entropy have provided significant outcomes of 85% accuracy and 80% accuracy, considering only a single 
feature. The significance of entropy in bot detection is proven by the strong negative correlation between entropy 
and class of profile (bot or human), using point-biserial correlation.

Chu et al.20 analyzed features like tweeting behavior, tweet content, user features and classified them as a bot, 
cyborg, or human. The modal uses entropy estimate and a bot detection element. The entropy is computed on 
the time-based feature, and the bot detection component employs a Bayesian classification to examine tweet 
content. Further, the random forest method classifies the account as bot or human. Their results showed that the 
entropy achieved the highest discriminating score among the features investigated, with an accuracy of 82.8%. 
Besides, the model achieved a 96% True Positive Rate.

Gia et al.21,22 used entropy in supervised machine learning classifiers to detect chatbots from human accounts. 
The modal consists of two elements: an entropy-based classifier and a machine learning classifier. The entropy-
based classifier examines the time between messages and its size to evaluate the complexity of the chat flow. 
Whereas, the Bayesian machine learning classifier analyses the content of the messages. The evaluation is con-
ducted based on both supervised training and entropy classifier-based training. This model achieved 99% True 
Positive Rate.

Goesh et al.23 emphasized retweeting dynamics and embedded URLs to detect bots. The model computed the 
entropies of the time interval distribution and user distribution in retweeted URLs. The time-interval entropy 
increases as the time intervals between two consecutive retweets differ. Similarly, the user entropy increases if 
every user retweets a particular tweet only once. In addition, the model uses a Support Vector Machine classifier 
for training and achieved an F measure of 61% in performance evaluation.

Entropy is used in disaster-based event detection where the technique involves computing hashtag entropy, 
time interval entropy, user entropy, and location entropy from tweets and  retweets24. The automation is detected 
by exploiting the profile’s retweeting activities with time interval entropy as human accounts have different inter-
arrival rates. This indicates that they are likely to be equally distributed. Contrarily, the frequency of retweeting 
bots showed significant distributions as they retweeted at regular time intervals.

Perdana et al.25 introduced an unsupervised entropy-based bot detection technique that uses time interval 
entropy and tweet similarity as the key features. The Uni-gram matching method of similarity computes the 
similarity in tweets. The final score that classifies bots from humans is determined from the aggregation of the 
time interval entropy and tweet similarity measure with their weighting factor. The proposed modal yields a 
True Positive Rate of 94.74%.

DNA modeling based methods. Inspired by genetics, previous  studies13–17 have modeled the behavio-
ral activities of Twitter users using DNA sequences that were generated from the tweets posted by the user 
accounts. The metric for detecting automation in the profiles is sequence similarity. The similarity among the 
DNA sequences is evaluated using the Longest Common Substring (LCS). Analyzing the LCS curves developed 
from the type and content of tweets implies that modeling based on the type provides more  efficiency13,14. DNA 
modeling is integrated with genetic algorithms to create evolved DNA sequences of new  bots15. Mutation and 
crossover are the genetic algorithms employed to develop modern bots. The evolved bot behaviors tested by the 
advanced bot detection system prove that they succeed in evading the detection. In addition, the research exam-
ines the distributions in human behaviors, which are proven to be intensely  heterogeneous16,17.

Inference. Previous studies by Chu et al.20 and Gilmary et al.19 proved that entropy accurately reflects the 
difference between bot and human behaviors. Although entropy estimate is significant in bot detection, there 
are not many studies on it. The existing entropy-based supervised approaches addressed in the literature have 
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many shortcomings. These techniques employ a broad range of features wherein extracting certain features from 
Twitter is time-consuming and  expensive12. A labelled dataset that includes the entropy-based properties and 
behavior of a diverse population of  bots26 is required to train supervised machine learning algorithms. It is dif-
ficult to detect generic bots with a limited training set that has a specific type of bots like fake followers or social 
bots. Furthermore, bots  evolve15, machine learning classifiers learned with outdated data fail to detect evolved 
 bots27. Besides, these data do not reflect the current features of bots, which are the result of updated Twitter 
policy  202028. The drawbacks of supervised bot detection strategies can be improved by using semi-supervised 
approaches.

Bot detection based on DNA modeling is a relatively new field of study. It is sufficiently versatile to identify 
bot behaviors without relying on specific attributes. Thus there are more opportunities for improvement. LCS is 
presently being used to recognize bots, and it only detects a group of bots that follow the same pattern. Hence, 
bots that follow unique patterns go undetected.

The proposed technique addresses the shortcomings of the literature. Based on the DNA profiling paradigm, 
we extract DNA sequences that characterize the user’s timeline. We then detect the correlated bots from the 
similarity index computed using the relative entropy in DNA sequences. Through this technique, correlated bots 
that follow different patterns are accurately detected by using only a single feature.

The main advantages of this research are only a single feature: the account timeline is used. Further, the 
modal does not use any traditional supervised classifiers. Thus, there is no requirement for the training phase. 
Implementation through a semi-supervised approach lessens the requirement of the manually labelled dataset. 
Thus, annotated data used in the experiments are reduced. With the usage of minimal resources, the proposed 
approach detects generic correlated bots rather than any particular type of bots as in supervised techniques.

Proposed work
In our previous work, we calculate entropy on the temporal feature of user accounts to detect bots through 
auto-correlation19. In this paper, we extend our previous work to detect correlated bots by computing relative 
entropy on user behaviors. Figure 1 explains the framework of the proposed bot detection approach. The designed 
approach includes the collection of real-time datasets followed by three main phases. In the initial phase, we 
model the user behaviors as DNA sequences, as explained in Sect. 3.1. Section 3.2 gives a detailed overview of 
constructing the corresponding probability distributions. Finally, in Sect. 3.3, we use relative entropy to analyze 
the similarity, which acts as a parameter to detect bots.

Modeling user behavior as DNA sequence. The user behaviors are modeled as DNA sequences by 
assigning a DNA base to each activity performed by a user. Thus, the DNA sequence signifies the user’s timeline. 
The number and interpretations of the DNA bases can be modified based on the requirement. We define a user 
profile (U) as a string of DNA bases,

where, the DNA bases (bi) in U  are the elements from the finite set F.

Each user activity is encoded by assigning an Fi element. We obtain the user’s DNA sequence by scanning 
their timeline chronologically and assigning appropriate DNA bases. In the proposed method, we assign DNA 
bases based on the types and content of tweets shared. Since, these features are proved effective in detecting 
 bots13,14,29,30, each tweet posted by a user is assigned a unique DNA base as presented in Table 1 (i.e.) A-plain 

(1)U = {b1, b2, . . . , bn}bi ∈ F∀i = 1, 2, . . . n

(2)F = {F1, F2, . . . , FN }Fi �= Fj∀i, j = 1, 2, . . . ,Ni �= j

Figure 1.  Experimental design of proposed work.
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tweet, T- plain mention, G- plain retweet, C- tweet with media/URLs). For each profile, we can extract a DNA 
sequence of length 3200 tweets as the Twitter API limits 3200 tweets.

Probability distribution of DNA sequence. Initially, we assign four vector values correspond-
ing to the four bases between 0 and 1 to obtain probability distributions. The values are assigned in accord-
ance with the significance of a particular DNA base in bot detection. In this paradigm, we have assigned −→
T = 0.2,

−→
A = 0.4,

−→
G = 0.6, and

−→
C = 0.8. Larger vector values are given to the DNA base representing 

retweets and tweets with media/URLs because most bots spread retweets/media/URLs. Then the DNA sequences 
are expressed as discrete probability distributions 31.

We define the probability distribution of the DNA sequence of length n as ( p1, p2, p3, . . . , pn),

where (αi ,βi) represents the position of ith base in DNA sequence and 
−→
β i represents the vector value of the cor-

responding ith  base.βn is calculated by summing the vectors which represent the bases in the DNA sequence. 
For example, the probability distribution of the DNA sequence (ATGC) is,

Proof of discrete probability distribution:

(1) 
∑n

i=1 pi =
∑n

i=1
αi−

−→
β i

1
2
n(n+1)−βn

=
∑n

i=1 αi−
∑n

i=1

−→
β i

1
2
n(n+1)−βn

(2) Since 0 <
−→
β i < 1and1 ≤ αi ≤ n, αi −

−→
β i ≤ αi ≤ n.

Thus,

Therefore, if n ≥ 3, 0 < pi < 1.

From (1) and (2), we can prove ( p1, p2, p3, . . . , pn) is a discrete probability distribution.

(3)pi =
αi − �βi

1
2
n(n+ 1)− βn

A : �β1 = 0.4,T : �β2 = 0.2,G : �β3 = 0.6,C : �β4 = 0.8, andβn = (0.4+ 0.2+ 0.6+ 0.8 = 2)

(p1, p2, p3, p4) =
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= (0.0750, 0.2250, 0.3000, 0.4000).

=
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n
∑
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1

2
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1
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2
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<
n

1

2
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=
1

(n+ 1/2)− 1
=

2

n− 1

So, ifn ≥ 3, pi < 1.

αi −
−→
β i > 0, and

1

2
n(n+ 1)− βn >

1

2
n(n+ 1)− n =

n(n− 1)

2
> 0when n ≥ 3.

So, pi > 0.

Table 1.  Labelling and descriptions of DNA base in user profile.

Base Description

b1 A ← plain tweet

b2 T ← plain mention

b3 G ← plain retweet

b4 C ← tweet with media / URLs
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Similarity measure by relative entropy. Entropy is a metric that measures the degree of randomness in 
a  dataset32. In DNA, entropy quantifies the repeatability in the  sequences33. We compute the probability distribu-
tions of all DNA sequences corresponding to individual user profiles. Finally, we estimate the relative  entropy34,35 
between all pairs of distributions to determine the similarity index. In this research, we use the similarity meas-
ure as an indicator to identify bots. All entropy measures have the same property where complete random data 
gets the highest entropy score. And a low entropy score indicates the sequence comprising of repeating patterns. 
Thus, if the entropy of a pair of distributions is low, the probability of the corresponding profiles being correlated 
bots is high.

Problem definition: Given the discrete probability distributions µ1 = (p1, p2, . . . , pn) and µ2 = (q1, q2, . . . , qn) 
on a universe X for a pair of DNA sequences,

The relative entropy Ren(µ1,µ2) of µ1 with respect to µ2 is defined as follows,

The relative entropy Ren(µ2,µ1) of µ2 with respect to µ1 is defined as follows,

The similarity index is defined as follows,

Thus, we can compute the similarity index between a pair of DNA sequences. Based on the d(µ1,µ2 ) score, 
the pair of user accounts corresponding to the probability distributions are classified as either a bot or human. 
The algorithm for computing relative entropy and similarity index is discussed in Algorithm 1.

Experimental design and discussions
This section discusses the experimental setup of the proposed work. As presented in Fig. 1, the proposed bot 
detection approach consists of four components: data collection and annotation, modeling user behaviors as DNA 
sequences, constructing probability distribution of every DNA sequence, and computation of relative entropy.

Data collection and annotation. For a plethora of reasons, the proposed research makes use of a new 
real-world Twitter dataset. The primary reason being that the research centres on Indian bots. Thus, we collected 
bots from India’s most popular  hashtags. Secondly,  academics  acknowledged that there are limited human-
labelled Twitter datasets for bot  detection36. Previous research used bot datasets with certain bot types, such as 
social  bots27 or fake  followers12. For efficient bot detection, the training dataset should reflect the behavior of a 
broad range of bots rather than a single type. Furthermore, datasets collected with the Twitter API must comply 
with the latest developer  policies28. Finally, Twitter deactivates millions of bots every month. As a result, several 

(4)Ren(1,2) =
∑

x∈X

p1(x)log
p1(x)

q2(x)

(5)Ren(2,1) =
∑

x∈X

q1(x)log
q1(x)

p2(x)

(6)d(1,2 ) =
Ren(1,2)+ Ren(2,1)

2
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accounts of old datasets are banned, deleted, or made  private37. Figure 2 explains the flow chart of data col-
lection through the Twitter API. Since most bots target trending stories, hashtag selection is critical. In this 
study, the hashtags considered are #corona vaccine, #FarmBills2020, #Indian stock market, #jallikattu, #nepo-
tism, #NRC, #Rights, #sterlite, #Tamil, #Tamil Nadu, #Against Modi, #Farmers protest, and #Narendramodi. 
These hashtags were active at different periods assuring that the analyses conducted are not biased. A Twitter 
crawler collects the screen names of profiles that tweet on particular hashtags using the Standard Search API. 
Then, the user_timeline REST API extracts datasets of individual profiles by examining the indexed keywords 
and delivers twitter posts that match the search criteria. The dataset (≈7,353,600 tweets) was extracted between 
August 2020 and July 2021 in English employing the Twitter Standard API language parameter: lang = “es”. Using 
statuses_count and created _at API attributes, profiles that share at least 2-tweets/day are filtered as research 
stated that genuine profiles share between 2 and 500 tweets/day38.

We build the ground truth of the data collected through  crowdsourcing39 which labels an account as a bot 
or human. Crowdsourcing is conducted by a group of Computer Science postgraduates as testers who manu-
ally annotate each profile. Each tester inspects 80 profiles and segregates them as a bot or human based on the 
timeline, account features, photo albums, and profile photos. The group is divided into four teams, and all four 
teams analyse each profile to increase the classification accuracy. The outcomes of the four teams are aggregated, 
and the mode of the aggregation is the resultant classification. Twitter also has bots that pose no  threat40, such 
profiles are excluded using the Twitter API Is-Verified feature. The final dataset comprises ≈2300 profiles of 1094 
bots and 1204 humans, each with the following fields: Tweet-Id, Timestamp, and Tweet.

Baseline dataset. The baseline dataset contains 800 profiles as training data and 1500 profiles as testing 
data from the complete dataset. We consider two limited datasets: Group_1 and Group_2, of size 400 each, bal-
anced with bots and humans as training datasets. They are used for fixing decision thresholds. We validate the 
empirical results of the proposed modal in the test datasets. Using the Bootstrap technique, we extract 5 test 
datasets from 1500 profiles: Test_1, Test_2, Test_3, Test_4, and Test_5 of size 600 each, with 36.8% new  profiles41. 
The baseline dataset includes 800 accounts balanced with bots and humans for analyzing DNA patterns and 1200 
accounts as testing data from the original data collected. We evaluate the empirical results of the proposed modal 
in the test datasets. We extract 5 test datasets from 1200 profiles Test_1, Test_2, Test_3, Test_4, and Test_5 using 
Bootstrap  technique41.

Extraction of DNA sequences and probability distributions. In this phase, the DNA sequence cor-
responding to each Twitter user is extracted, a string encoding the user’s timeline. Each activity performed by 
the user is encoded with a unique DNA base (i.e.) A-plain tweet, T-plain mention, G-plain retweet, C-tweet with 
media (photos and URLs). Finally, we define the probability distributions of each DNA sequence as discussed 
in Sect. 3.2.

Fixing decision threshold for relative entropy. Twitter bot detection is a binary classification, where 
the decision threshold dichotomizes the profile as either a class bot or class human. Here, the decision threshold 
is a d(µ1,µ2 ) value in the range between 0 and 1.

d(µ1,µ2) ≤ decision threshold = class bot

Figure 2.  Flow diagram of data collection.
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d(µ1,µ2) > decsion threshold = class human

The analyses have been conducted in three dimensions: (bots, bots), (bots, humans), and (humans, humans). 
Table 2 explains the experiments conducted on Group_1 and Group_2 to determine the decision threshold. In 
each dataset, we perform four iterations with varying number of accounts as shown in Table 2. In every iteration, 
we calculate d(µ1,µ2 ) for all pairs of combinations within bot set (bots, bots), human set (humans, humans), and 
bot and human set (bots, humans). We then consider their means as final outcomes. The average d(µ1,µ2 ) score 
of (bots, bots) is significantly lesser than (bots, humans) and (humans, humans). This certainly proves that bots 
are correlated and exhibit similar behavioral patterns. Moreover, the average d(µ1,µ2 ) scores of (bots, humans) 
and (humans, humans) are relatively higher because of their heterogeneous patterns. This variation proves that 
similarity index computed through relative entropy shares a significant relationship with class of Twitter account 
and, entropy is negatively correlated with bots.

The strong candidate splitting point of classification is the threshold value that detects all correlated bots (i.e.) 
(bots, bots). The optimal decision threshold is determined considering the sample maxima of d(µ1,µ2 ) from 
all iterations of (bots, bots). As a result, correlated bots that follow multiple patterns can be detected. Observing 
the readings from Table 2, the optimal decision threshold obtained was 0.12.

Performance evaluation . The performance of the proposed method is analyzed based on the metrics: 
Precision, Recall, Miss Rate, Accuracy (ACC), F1 score (harmonic mean of recall and precision), and Mat-
thews Correlation Coefficient (MCC). Table  3 illustrates the performance of the proposed technique on the 
following test datasets: Test_1, Test_2, Test_3, Test_4, and Test_5. Our technique is compared with the entropy-
based approach on temporal  patterns19, the DNA modeling-based  research13,14,16, and the bot detection tool, 
 Botometer42,43.

The proposed approach is compared with our previous work that emphasizes on the computation of approxi-
mate entropy and sample entropy in temporal patterns. The technique involves autocorrelation analyses and 
considers only a single feature. Here, individual bots are detected by analyzing the amount of regularity present in 
the temporal patterns. Further, the relationship between bot accounts and entropy is proven using point-biserial 
correlation. We examined the performance of approximate entropy and sample entropy in the test_datasets. 
The outcomes illustrate that approximate entropy detects bots better than sample entropy with the F1 meas-
ure = 0.8759 and accuracy = 0.8561. While, Sample entropy produces F1 measure = 0.8349 and accuracy = 0.8033.

We also compared our research with the DNA modeling-based approach. Social  Fingerprint13,14,16 is the 
primary concept used in DNA modeling-based research. In their base study, the user activities are character-
ized as DNA sequences considering three features: tweet, retweet and reply. Lastly, Twitter bots are identified by 
analysing the similarity in the sequences using the Longest Common Substring (LCS) algorithm.

Lastly, we compared our model with  Botometer42,43, which was used in various  studies44–46 as a key feature of 
their analysis. Thus, it is reasonable to conclude that Botometer is a de-facto bot detection paradigm. It calculates 
a probability value between 0 and 1 by evaluating 1000 features. The classification accuracy for various thresholds 
is computed on the datasets Group_1 and Group_2, and the threshold with the best accuracy is considered ideal. 
According to the empirical findings, we selected threshold = 0.43, which is in line with the Botometer team.

The performance comparison of the proposed DNA-influenced bot detection using relative entropy and other 
state-of-the-art approaches are shown in Figs. 3, 4, 5, 6, 7 and 8 for various metrics. The proposed modal outper-
forms other techniques by achieving an average F1score = 0.9511 and average accuracy = 0.9457 . It surpasses 
the Botometer  tool18,19 by employing only a single feature (i.e.) profile’s timeline. Social  Fingerprinting13,14,16 uses 
LCS which results in detecting only the bots that follow identical patterns. The recall = 0.9681 achieved by the 
proposed approach confirms our claim that even correlated bots that follow unique patterns are detected. Also, 
our technique does not analyze extensive features or a training phase to give higher performance.

Alternatively, we use only the profiles’ timeline. Based on the interesting results, the potency of the entropy-
based approach to be deployed in advanced bot detection is foreseen. Relating different entropy modals with 

Table 2.  Analysis conducted to set decision threshold in Group_1 and Group_2.

Datasets No. of accounts d (Bots, Bots) d (Bots, Humans) d (Humans , Humans)

Group_1

50 0.0093 0.3501 0.4011

100 0.0282 0.4209 0.4591

150 0.0829 0.4526 0.4973

200 0.1054 0.4803 0.5291

Group_2

50 0.0157 0.3690 0.4179

100 0.0328 0.4259 0.4358

150 0.0978 0.4531 0.4939

200 0.1191 0.4950 0.4969

Mean 0.0614 0.4308 0.4663

Inference d(Bots, Bots) < d(Bots, Humans) < d(Humans, Humans)

Decision threshold Sample Maxima d (Bots, Bots) = 0.12
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compression statistics on user behaviors modeled as DNA sequences is a promising research direction to detect 
correlated bots.

Conclusion
In this research, a novel bot detection framework has been designed by using only a single feature: the user’s 
timeline. The experiments were conducted in real-time Twitter datasets collected through updated Twitter API 
with 2020 Twitter developer policies. The dataset includes 1094 bots and 1204 humans, each with the following 
fields: Tweet-Id, Timestamp, and Tweet. The study focuses only on the tweet posted on the user’s timeline. For 
every Twitter profile, their DNA sequence is extracted with four bases A (plain tweet), T (plain mention), G (plain 
retweet), and C (tweet with media/URLs), and expressed them as probability distributions. Lastly, we compute 

Table 3.  Comparison of performance calculated by different techniques on test datasets.

Dataset Size Technique

Evaluation metrics

Precision Recall Miss Rate Accuracy F1 MCC

Test_1 600

DNA influenced relative entropy 0.9416 0.9784 0.0216 0.9457 0.9443 0.9010

Approximate  entropy19 0.7686 0.9617 0.0383 0.8483 0.8679 0.7295

Sample  entropy19 0.7028 0.9626 0.0374 0.7926 0.8243 0.6332

DNA  fingerprinting13,14 0.9298 0.7350 0.2650 0.9230 0.9229 0.8470

Botometer42,43 0.6291 0.2911 0.7089 0.4898 0.3690 0.2038

Test_2 600

DNA influenced relative entropy 0.9403 0.9733 0.0267 0.9379 0.9453 0.9042

Approximate  entropy19 0.7704 0.9621 0.0379 0.8500 0.8692 0.7324

Sample  entropy19 0.7044 0.9633 0.0367 0.7963 0.8256 0.6363

DNA  fingerprinting13,14 0.9301 0.8018 0.1982 0.9201 0.9198 0.8590

Botometer42,43 0.6701 0.2967 0.7033 0.4902 0.3897 0.2103

Test_3 600

DNA influenced relative entropy 0.9431 0.9671 0.0329 0.9412 0.9531 0.9137

Approximate  entropy19 0.7773 0.9614 0.0386 0.8558 0.8737 0.7422

Sample  entropy19 0.7125 0.9625 0.0375 0.7997 0.8313 0.6492

DNA  fingerprinting13,14 0.9249 0.7834 0.2166 0.9215 0.9214 0.8530

Botometer42,43 0.6770 0.3048 0.6952 0.5001 0.4089 0.2175

Test_4 600

DNA influenced relative entropy 0.9526 0.9629 0.0371 0.9509 0.9550 0.9200

Approximate  entropy19 0.7859 0.9610 0.0390 0.8599 0.8792 0.7473

Sample  entropy19 0.7249 0.9623 0.0377 0.8089 0.8397 0.6585

DNA  fingerprinting13,14 0.9290 0.7991 0.2009 0.9198 0.9191 0.8390

Botometer42,43 0.6842 0.3057 0.6943 0.5760 0.4190 0.2298

Test_5 600

DNA influenced relative entropy 0.9581 0.9591 0.0409 0.9528 0.9579 0.9273

Approximate  entropy19 0.8013 0.9501 0.0499 0.8665 0.8896 0.7548

Sample  entropy19 0.7459 0.9513 0.0487 0.8190 0.8537 0.6682

DNA  fingerprinting13,14 0.9339 0.8023 0.1977 0.9211 0.9208 0.8495

Botometer42,43 0.6949 0.3091 0.6909 0.5832 0.4281 0.2349
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Figure 3.  Comparison of Precision metric for different state-of-art approaches.
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Figure 4.  Comparison of Recall metric for different state-of-art approaches.
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Figure 5.  Comparison of Miss rate metric for different state-of-art approaches.
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Figure 6.  Comparison of Accuracy metric for different state-of-art approaches.
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the similarity index d(µ1,µ2 ) from the mean of relative entropies, Ren(µ1,µ2) and Ren(µ2,µ1) for all pairs of 
probability distributions to detect correlated bots. The bottom line of our proposed research is to determine the 
similarity degree between probability distributions, which serves as an indicator for bot detection. The Twitter 
profile under examination is classified as a bot or legitimate profile based on the similarity score derived from 
relative entropies. In a nutshell, correlated bots have higher similarities, resulting in low entropy. The resultant 
performance metric scores are the average of outcomes of test_datasets. We have compared the performance 
of DNA-influenced automated behavior detection on Twitter through Relative entropy with the bot detection 
tool,  Botometer42,43 and DNA  fingerprinting13,14. Our technique provided significant results than state-of-the-art 
approaches with F1 measure = 0.9511 and accuracy = 0.9457.

The merits of this research work are multifold. The proposed DNA-influenced automated behavior detection 
on Twitter through Relative entropy detects Twitter bots with better accuracy, F1 score, and recall rate. It has 
enhanced performance by identifying generic bots rather than any specific type. The proposed modal leverages 
only one primary feature: user timeline. It downsizes the amount of annotated data used. Since the modal does 
not use any typical machine learning algorithms, it does not have any training phase. Thus, the proposed tech-
nique detects correlated bots with minimal resources.

For future research, we plan to extend the DNA-based modeling with the temporal dimension of the tweeting 
activity. Both tine-based features and timeline features can be considered together to detect correlated bots that 
are active at particular time periods. The temporal features and timeline features function complementary to 
each other to design a more robust bot detection paradigm. A novel model that uses combination of Tweet rates 
with different sampling periods and timeline activities with entropy estimate is a promising research direction.

Received: 1 December 2021; Accepted: 25 April 2022
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Figure 7.  Comparison of F1 score metric for different state-of-art approaches.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DNA
influenced
relative
entropy

Approximate
entropy

Sample
entropy

DNA
fingerprinting

Botometer

MCC

Figure 8.  Comparison of MCC metric for different state-of-art approaches.
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