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In silico mutational analysis 
of ACE2 to check the susceptibility 
of lung cancer patients 
towards COVID‑19
Zumama Khalid1*, Abeedha Tu‑Allah Khan1, Radwan Alnajjar2,3, Eman Santali4 & 
Abdul Rauf Shakoori1

Being the second major cause of death worldwide, lung cancer poses a significant threat to the health 
of patients. This worsened during the era of pandemic since lung cancer is found to be more prone to 
SARS‑CoV‑2 infection. Many recent studies imply a high frequency of COVID‑19 infection associated 
severe outcome. However, molecular studies are still lacking in this respect. Hence the current study 
is designed to investigate the binding affinities of ACE2 lung cancer mutants with the viral spike 
protein to find the susceptibility of respective mutants carrying patients in catching the virus. Quite 
interestingly, our study found lesser binding affinities of all the selected mutants thus implying that 
these cancer patients might be less affected by the virus than others. These results are opposed to the 
recent studies’ propositions and open new avenues for more in‑depth studies.

Lung cancer is the second cause of death in males and females after cardiovascular diseases  worldwide1. Among 
cancers, lung cancer is the first leading cause of death among men and the second leading cause of death among 
 women2. Deaths due to lung cancer in women of developed countries are higher as compared to developing 
 countries3. The worldwide annual estimate of people diagnosed with lung cancer is 1.8–2.0 million, and 1.6 mil-
lion people fail to  survive4. Lung cancer is considered one of the deadliest diseases due to its delayed diagnosis, 
disease setback, and lack of curative  medication5.

Lung cancer has been one of the widely malignant cancers in the entire world because of its diagnosis at 
advanced stages. Multiple steps are involved in the mechanism of metastasis of such wide-spreading cancer. 
These steps require crucial mechanisms such as angiogenesis, the transition of cells from endothelial form to 
mesenchymal form (EMT) by the interruption in cell to cell and cell to matrix attachment, apoptosis, and move-
ment of cells to a secondary site. Genetic involvement in these mechanisms and pathways ensures lung cancer 
to be invasive and highly  metastatic6. Lung cancer is a multifactorial disease; hence together, environmental and 
genetic elements play a vital role in its  susceptibility7. Various genome-wide association studies have pointed out 
the multiple single nucleotide polymorphisms (SNP) in association with lung carcinoma, especially on 6p21.33, 
15q25.1, and 5p15.338,9.

In November 2019, a novel virus emerged from Wuhan (China). This virus was labeled as Severe acute respira-
tory syndrome coronavirus 2(SARS-CoV-2) by the International Committee on Taxonomy of  Viruses10. The viral 
infection starts from the binding of viral spike protein to the receptor site on the surface of the host. For spike 
protein (SARS-CoV-2 glycoprotein) of COVID-19, the identified receptor is ACE2 (Angiotensin Converting 
Enzyme 2) (Fig. 1A)11. Spike protein has two subunits S1 and S2; the S1 subunit bears the receptor-binding-
domain (RBD). RBD binds directly to the peptidase domain of the ACE2 receptor. After this binding site on the 
S2 subunit exposes, which gets cleaved by the host protease, and viral infection is initiated (Fig. 1B)12. ACE2 
enzyme catalyzes the conversion of angiotensin to other different  forms13,14.

Cancer patients are seen to be more prone to COVID-19 than normal people due to their immunocompro-
mised health status. Another reason found of being lung cancer patients more prone to COVID-19 infection 
is the healthcare system where contact with COVID-19 infection was more during cancer  treatment15. There is 
a high frequency of severe symptoms due to COVID-19 in patients with having lung carcinoma, hematologic 
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cancer, and metastatic  cancer11. A high fatality rate was observed in lung cancer patients as compared to other 
cancer patients having COVID-1916–19. Although recent studies have stated that COVID-19 patients who have 
cancer have a high possibility of severe outcomes than patients without cancer, but there is no study pointing 
towards the possible molecular mechanism behind it. However, Yu et al. reported that lung cancer patients have 
more severity of the viral disease than other patients as the major entry route for the virus is through the lungs, 
and that too with reasons  unknown16–19.

Therefore, this work has been designed to investigate the binding affinities of the viral spike protein toward 
mutated ACE2 proteins to decipher the susceptibility and probable molecular mechanism of the COVID-19 
infection concerning ACE2.

Materials and methods
ACE2 mutants and SARS‑CoV2 spike protein. The 3D structures of ACE2 and SARS-CoV2 spike pro-
tein were retrieved from RCSB-PDB. The RCSB-PDB code for the structures of SARS-CoV2 spike protein and 
ACE2 is  6M1720, Missense mutations and frameshift mutations in the ACE2 gene in lung tissues were curated 
from the COSMIC cancer database. All the mutations in the study were used in accordance with the database 
regulations and guidelines (https:// cancer. sanger. ac. uk/ cosmic). These mutations were induced in the 3D struc-
ture of ACE2 through mutagenesis in  PyMOL21. Structures were visualized via UCSF Chimera Version 1.1422.

Protein–protein docking. Protein–protein docking was performed on the HADDOCK server (https:// 
wenmr. scien ce. uu. nl/ haddo ck2.4/), a web server for the docking of biomolecular structures, and the obtained 
binding affinities of the docked poses of the spike glycoprotein of SARS-CoV-2 with all the cancer mutants of 
ACE2 were  analyzed23. Binding residues of ACE2 (24,27,28,30,31,34,35,37,38,41,42,79,82,83,330,353,354,355,3
57,393) were docked with binding residues of RBD (Receptor Binding Domain) of SARS-CoV2 spike protein 
(486,487,489,456,455,475,417,493,453,505,501,449,496,502,500,496,446) along with wild type ACE2 and spike 
 protein24. The docking postures of ACE2 cancer mutants and spike glycoprotein were visualized using PyMOL 
and UCSF Chimera Version 1.1421,22.

Analysis of docking. Based on HADDOCK scores, the top 5 docked complexes of ACE2 cancer mutants 
and spike protein with higher docking scores were assessed for stability and binding affinity (kcal  mol−1). This 
analysis was performed on Protein Binding Energy Prediction (PRODIGY)  server25,26. PRODIGY predicts sta-
bility and binding affinity of docking complex based on structural properties of both interacting molecules in 
complex. Binding affinity was demonstrated by ΔG (kcal   mol−1) and stability by the dissociation constant Kd 
(M). Analysis was done at different temperature ranges. Docked complexes with higher binding affinity were 
subjected to molecular dynamics simulation.

Molecular dynamic simulation and MM‑GBSA. The molecular dynamic simulations were carried out 
using the Desmond simulation package of Schrödinger  LLC27. Molecular dynamic simulations and MM-GBSA 
calculations were described in detail in the supplementary information, and it was conducted according to pre-
vious  work28–30

Figure 1.  The structure of SARS-CoV-2 and the ACE2 receptor (Created with BioRender.com).

https://cancer.sanger.ac.uk/cosmic
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
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Ethical declaration. Ethical approval was not required since no animal or human subjects were used 
directly in the current study. Online public computational data was used in accordance with the guidelines of 
the COSMIC cancer database (https:// cancer. sanger. ac. uk/ cosmic).

Results and discussion
ACE2 mutants. Mutations found in ACE2 were of different types, including deletion, substitution, and 
insertion. The COSMIC database provided a set of mutations in the ACE2 gene in lung tissues, as depicted 
in Table 1; out of them, only missense and frameshift mutations were curated because they lead to change the 
resultant protein.

Predicted structures of SARS‑CoV‑2 spike protein. The 3D model of SARS-CoV-2 spike glycoprotein 
and ACE2 were derived from RCSB PDB (6M17), Fig. 2. The spike protein contains the receptor-binding domain 
(RBD) in either the open or closed conformations. RBD of SARS-CoV-2 spike glycoprotein was further used for 
docking purposes (Fig. 3).

Protein to protein docking. Docking results from the HADDOCK were derived. Since minimum HAD-
DOCK scores depict the more binding affinity of two interacting proteins, so the best poses of the docking were 
obtained (Figs. 4 and 5). The top five complexes out of the 5 complexes were selected based on their high HAD-
DOCK scores than others (Table 2). Inter and intra hydrogen bonds were visualized between SARS-CoV-2 spike 
glycoprotein and ACE2 mutant in docking complexes.

Protein to protein docking analysis. Due to simple scoring methods, protein docking is not reliable 
enough for the prediction of binding affinity between two interacting proteins in  complexes41. The binding affin-
ity of two proteins in a complex relies on dissociation constant (Kd), temperature and pH  also42. These fac-
tors are not included in docking scoring methods of docking servers. Therefore, the binding affinity of frontier 
complexes (top 5) of interacting partners with the lowest docking scores was checked through the PRODIGY 
server (Tables 3, 4, 5, 6), binding affinity of all 5 complexes at core body temperature (37 ℃) is represented in 
Table 3. High stability and strong binding affinity between two interacting proteins in a complex are indicated 
by a smaller Kd  value43. Spike protein-ACE mutants showed high stability and binding affinity as the tempera-
ture rises, and at the optimum temperature, stability and binding affinity became constant. Whereas the lowest 
protein stability and binding affinity were seen at 25℃, and highest on the optimum temperature (Table 3, Tables 

Table 1.  Mutations for the ACE2 gene curated from the COSMIC database.

Serial no. Position Mutation (CDC) Mutation (AA) Mutation type References

1 34 c.39T>C p.H34N Substitution—missense 31

2 47 c.140 C>G p.S47C Substitution—missense 32

3 60 c.178 C>G p.Q60E Substitution—missense 31

4 84 c.250 C>G p.P84A Substitution—missense 33

5 99 c.295 G>T p.A99S Substitution—missense 31

6 147 c.440 G>T p.G147V Substitution—missense 31

7 190 c.568 A>T p.M190L Substitution—missense 32

8 211 c.631 G>T p.G211W Substitution—missense 31

9 219 c.656 G>C p.R219P Substitution—missense 31

10 253 c.757 C>A p.P253T Substitution—missense 32

11 256 c.768 C>G p.I256M Substitution—missense 31

12 320 c.958 C>T p.L320F Substitution—missense 31

13 357 c.1071 G>T p.R357S Substitution—missense 34

14 394 c.1180 A>G p.N394D Substitution—missense 35

15 395 c.1184 G>T p.G395V Substitution—missense 36

16 398 c.1192 G>A p.E398K Substitution—missense 37

17 44 c.1330 C>T p.L444F Substitution—missense 38

18 477 c.1429 T>C p.W477R Substitution—missense 36

19 491 c.1471 G>T p.V491L Substitution—missense 36

20 670 c.2008 G>T p.V670L Substitution—missense 31

21 693 c.2077 G>A p.D693N Substitution—missense 39

22 710 c.2082 C>A p.R710C Substitution—missense 40

23 720 c.2128 C>T p.N720D Substitution—missense 32

24 768 c.2303 G>T p.R768L Substitution—missense 34

25 798 c.2392 A>C p.T798P Substitution—missense 39

https://cancer.sanger.ac.uk/cosmic
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SI 3–8). Other type of interactions which may affect the binding affinity (Kd), and stability (ΔG) of docked com-
plexes are also represented in Table 4.

A change in the dissociation constant of different mutants was noted. While a decrease of 1 log fold was 
observed for V491L, an increase of 2 log folds was present in L320F and Q60E. However, the Kd for mutants P84A 
and D693N were similar to those of controls (Table 3). Moreover, a slight increase in the Kd was also observed 
with increasing temperatures for mutants D693N, V491L, L320F, and Q60E (Tables SI 3–8). The reason for this 
might be increased energy imparted with the increasing temperatures, which might be making the complexes 
less stable, hence an increase in Kd. Another important point to infer from these is the change in binding affini-
ties with physiological temperatures of the human body under different states, such as normal hypothermic and 
hyperthermic conditions. The results also imply the less binding affinities of these ACE2 mutants under hyper-
thermic conditions, such as fever, and vice versa. A similar study has been performed by Basit and colleagues, 
where the binding affinity of ACE2 was shown to be constant at different temperatures; however, the dissociation 
constant was shown to be increased as the temperature  increased44.

Figure 2.  ACE2 and SARS-CoV-2 spike glycoprotein (6M17) (Cyan: ACE2; Green: RBD).

Figure 3.  Receptor binding domain of SARS-CoV-2 spike protein.
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Molecular dynamic simulations. Docking procedures consider rigid and lack the free movement of 
the protein; thus, molecular dynamics simulation was conducted on the best six Spike-ACE2 complexes in an 
attempt to better understanding and validation of the docking results. The MD (Molecular Dynamics) simula-
tions were running for a period of 500 ns, and the root means square deviation RMDS for the complex, the 

Figure 4.  Spike–ACE2 protein interactions.

Figure 5.  The interactions of Spike–ACE2 with highlighted hydrogen bonds.

Table 2.  Docking results of control complex (ACE2 and SARS-CoV2 spike protein) and top 5 docked 
molecules (different AC2 mutants and normal SARS-CoV-2 spike protein). Docking scores are represented by 
HADDOCK scores (the more negative docking scores, the better the binding affinity of two proteins).

Complex HADDOCK score Cluster size RMSD from the overall lowest-energy structure Z-Score Van der Waals energy

CNT − 141.4 ± 6.6 38 0.9 ± 0.5 − 1.0 − 67.3 ± 5.7

P84A − 143.7 ± 9.5 135 1.3 ± 0.7 − 1.7 − 64.9 ± 8.1

D693N − 139.2 ± 3.2 133 0.8 ± 0.7 − 1.1 − 58.5 ± 4.5

V491L − 138.0 ± 2.6 90 1.7 ± 1.4 − 1.3 − 61.7 ± 9.3

Q60E − 136.8 ± 6.7 66 0.7 ± 0.6 − 1.1 − 55.9 ± 5.7

L320F − 136.3 ± 6.6 133 1.2 ± 1.3 − 1.6 − 57.6 ± 8.1
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SARS-CoV-2 Spike, and the ACE2 were reported and analyzed. The total energy along with the potential energy 
of each system was monitored during the simulation and the average was reported in Table S1.

Proteins and complex Root Mean Square Deviation (RMSD) analysis. To monitor the impact of 
simulation on the stability of the SARS-CoV-2 Spike–ACE2 complexes, the root mean square deviations values 
were reported as a function of time for all  Cα atoms of the proteins with respect to their initial positions. The 
RMSD results for SARS-CoV-2 Spike–ACE2 complexes were plotted as a function of simulation time and pre-
sented in Fig. 6, while the RMSD for the SARS-CoV-2 spike protein was presented in Fig. 7; finally, the RMSD 
of the ACE2 was plotted in Fig. 8. As it can be seen from Fig. 6, most complexes showed a stable most complexes 
showed stability with RMSD around 3–4 Å except for CNT-complex and L320F-complex. The CNT-complex, 
D693N-complex, and the L320F–complex fluctuated till around 100 ns, 180 ns, and 450 ns, respectively. Other 

Table 3.  Binding affinity of docking complex and its dissociation constant (Kd) at 37 ℃. The binding affinity 
and stability of docked proteins are calculated in the form of ΔG (kcal  mol−1) and Kd (M), respectively. Smaller 
Kd value is showing high stability and strong binding affinity between two proteins.

Temperature (℃) Protein–protein complex ΔG (kcal  mol−1) Kd (M)

37 CNT − 11.5 7.8 ×  10–9

37 P84A − 11.8 5.0 ×  10–9

37 D693N − 12.0 3.6 ×  10–9

37 V491L − 12.9 8.3 ×  10–10

37 L320F − 10.9 2.1 ×  10–8

37 Q60E − 10.9 1.9 ×  10–8

Table 4.  Type of interactions affecting the binding affinity (Kd), and stability (ΔG) of docked complexes at 
37 ℃.

Protein–protein 
complex

Number of interfacial contacts (ICs) per property
Non interacting surface (NIS) per 
property

ICs charged-
charged ICs charged-polar

ICs charged-
apolar ICs polar-polar ICs polar-apolar ICs apolar-apolar NIS charged (%) NIS apolar (%)

CNT 2 10 22 6 20 16 26.7 24.83

P84A 2 12 31 7 20 19 25.39 38.08

D693N 3 12 26 4 20 12 25.46 37.98

V491L 5 11 22 2 23 22 25.78 37.46

L320F 3 11 25 8 19 17 25.78 37.61

Q60E 3 11 26 7 18 16 26.07 37.46

Table 5.  The average of H-bond interactions between the SARS-CoV-2 spike and ACE 2 in the last 50 ns of 
simulation time.

Complex CNT D639N L320F P84A Q60E V491L

Average H-bonds 6.1 10.6 18.9 12.8 15.6 4.7

H-bond at 500 ns 5 11 14 12 15 4

Table 6.  Prime MM-GBSA energies for Ligands binding at the active site of COVID-19 main protease. 
Coulomb Coulomb energy, Covalent Covalent binding energy, VdW Van der Waals energy, Lipo Lipophilic 
energy, Solv_GB Generalized Born electrostatic solvation energy, H-bond Hydrogen-bonding energy.

Complex ΔG binding Coulomb Covalent H-bond Lipo Packing Solv_GB VdW

CNT − 87.62 − 58.59 4.64 − 5.87 − 25.38 − 2.32 101.79 − 102.82

D693N − 69.30 − 65.86 5.37 − 6.76 − 9.70 − 1.35 99.72 − 92.29

Q60E − 79.59 − 69.59 11.16 − 7.70 − 20.11 − 2.97 108.04 − 98.95

V491L − 72.51 − 7.00 3.72 − 4.90 − 20.73 − 2.61 53.28 − 94.95

L320F − 86.61 − 46.38 0.19 − 6.54 − 20.96 − 2.84 80.00 − 90.16

P84A − 75.96 − 28.72 6.28 − 7.48 − 20.32 − 4.02 64.48 − 86.32
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Figure 6.  The RMSD for Cα atoms (Å) with respect to the initial structure as a function of simulation time (ns) 
for the six complexes.
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complexes showed stability at an early stage of the simulation and held that stability during the simulations; at 
around 470–490 ns. A jump in the RMSD for V491L was observed and due to the movement of the ACE domain.

Further, the RMSD of each chain was studied individually with respect to its original position within the 
complex. Figure 7 shows the fluctuation of the spike domain of the protein–protein complex; as it can see most 
spike domains are at around 3 Å, which is acceptable fluctuations for proteins with such size. The only notable 
change occurs within the D693N Spike, and this fluctuation is due to the movement of the nonstructural part 
(loops) of the protein Figure SI1 (“Supplementary information”).

Figure 8 presents the RMDS of the ACE2 protein moiety; again, most proteins reached a plateau at around 
200 ns, with an RMSD of ~ 3.5 Å. ACE2–D693N showed a high fluctuation at about 20–180 ns due to the insta-
bility of the tail (N-terminal) of the ACE2 during simulation, Fig. SI2 (“Supplementary information”). Figure 4 
shows the position of the SARS-CoV-2 Spike with regard to ACE 2 at the beginning of the simulation (0 ns) and 
the end of the simulations (500 ns). In general, all ACE 2 hold position to the SARS-CoV-2 Spike; the hydrogen 
bonding breaking, and formation was monitored during the simulation and will be discussed later.

Figure 9 shows a surface presentation of the first and last frame of the trajectories for a better presentation of 
the movement of the two proteins with respect to simulation time, and the residuals interactions will be discussed 
later through the course of the manuscript.

Root mean square fluctuation (RMSF). The RMSF helps characterize local changes along the protein 
chain. The RMSF plot peaks indicate the part of the protein that fluctuates the most during the simulation. 
Typically, the N- and the C- terminal fluctuates the most. Also, secondary structures like α-helices and β-strand 
consider more rigid than the unstructured part of the protein and fluctuate less than loops regions. Figure 10 
presents the RMSF of all complexes, residue index from 0 to 182 corresponding to the SARS-CoV-2 Spike, while 
the residue index from 183 to 890 corresponding to ACE 2. The fluctuations between 15 and 65 corresponding 
to residuals ARG357 to PHE400 of the SARS-CoV-2 Spike, and the peak at 182 presents the C- terminal of the 
SARS-CoV-2 Spike. The peak at 298 refers to the fluctuation of ASN134, PRO135, and ASP136 of the ACE 2 
protein, and the peak at 790 is due to the fluctuations of the following residuals ALA627, LEU628, and GLY629. 
The RMSF of L320F is provided in the supplementary information for the residual numbering example. Protein 
secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the simula-
tion for all complexes and reported in SI 9–20.

Hydrogen bond analysis. Hydrogen bonds consider the most important interactions in protein chemis-
try; the protein structure depends on this interaction, including 2D, 3D, and quaternary structures. The hydro-
gen bond between the SARS-CoV-2 Spike and the ACE 2 was monitored during the simulation time and plot-
ted as a function of time (Fig. 8). As can be seen from Fig. 6, the H-bond between the two proteins fluctuated 
between 0 and 25 H-bonds, the average hydrogen bond interaction for the last 50 ns was calculated and reported 
in Table 5. L320F showed the most H-bond interactions with an average of 18.9 H-bonds, followed by Q60E 
and P84A with H-bonds interactions of 15.6 and 12.8, respectively. The number of H-bond interactions in the 
last frame was also reported in Table 5, and some of the residuals involved in these H-bonds were reported 
in Table SI 2. H-bond interactions between the SARS-CoV-2 Spike and ACE 2 during simulations, as seen 
in Fig. 11. Using Ligplot, all the complexes were examined for hydrogen bonding interactions between 0 and 
500 ns. (Fig. 11 and SI 3–8).

MM‑GBSA calculations. Schrodinger software has a python script called thermal_mmgbsa.py, which was 
used to calculate the MM-GBSA from the trajectories and extract the average binding energies, including the 
average MM-GBSA binding energy, average Coulomb energy, average Covalent binding energy, average Van der 
Waals energy, average Lipophilic energy, average Generalized Born electrostatic solvation energy, and average 
Hydrogen-bonding energy. All the obtained energies are shown in Table 6.

As it can be seen from Table 6, CNT and L320F showed the highest binding energy with − 87.62 and 
− 86.61 kcal  mol−1, respectively, while D693N showed the lowest binding energy − 69.30 kcal  mol−1. Coulomb 
energy is associated with electrostatic forces of the system and reflects the ionic interactions of the system. CNT, 
D693N, and Q60E showed good ionic interactions, with Q60E having the highest value, while V491L seem to 
lose ionic interactions. Most complexes showed good H-bond energies, as well as good Van der Waals energies.

Conclusion
In this research, the relationship between lung cancer and COVID-19 was addressed at a molecular level through 
computational study. The binding affinity of the viral spike protein of the SARS-CoV-2 glycoprotein towards a 
mutate ACE2 was investigated, using both docking and molecular dynamic simulation approaches. Among 25 
selected mutations, it was found that five mutations have higher binding energies than others from a docking 
perspective. These five complexes’ stability was studied and investigated further considering molecular dynam-
ics simulations. Finally, the binding free energy calculations using the MM-GBSA approach were implemented 
and showed that these mutations have a binding energy of the following order CNT > L320F > Q60E > P84A > 
V491L > D693N. These findings suggest that some cancer patients will be less affected than others, even though 
most reported mutations were not within the active site of interactions; the binding energy was affected by these 
mutations. These results somehow oppose those clinical studies which state that lung cancer patients are more 
prone to COVID-19 infection based on the healthcare scenario they have observed. That might be due to the 
contact of healthcare system with COVID-19 to lung cancer patients during treatment. However, more in-depth 
studies are needed to be performed to reach at a valid endpoint.
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Figure 9.  Snapshot of each complex (ACE 2, white; SARS-CoV-2 spike, red) at 0 ns and 500 ns.
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Figure 11.  H-bonds interactions between the SARS-CoV-2 Spike and ACE 2 during simulations.
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Data availability
COSMIC Cancer Database (https:// cancer. sanger. ac. uk/ cosmic) was used to curate ACE2 lung cancer mutations. 
These mutations were publicly available on the website of database to be used for research work. These mutations 
were further analyzed to check their susceptibility for COVID-19. Throughout the manuscript used mutations 
were cited properly (Table 1). According to the rules and regulations of the database, data can be used for research 
purposes and correct citation is required, and so it was the done the same.
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