Abstract
Although loneliness itself is a natural emotion, prolonged loneliness is detrimental to human health. Despite its detrimental effect, few loneliness-related neuroimaging studies have been published and some have limitations on the sample size number. This study aims to find the difference in resting-state functional connectivity associated with loneliness within a big sample size via the seed-based approach. Functional connectivity analysis was performed on a large cohort of young adults (Nā=ā1336) using the seed-based functional connectivity approach to address the concern from previous studies. The analysis yielded statistically significant positive correlations between loneliness and functional connectivities between the inferior frontal gyrus and supplementary motor area, precentral gyrus, and superior parietal lobule. Additionally, the analysis replicated a finding from a previous study, which is increased functional connectivities between the inferior frontal gyrus and supplementary motor area. In conclusion, greater loneliness is reflected by stronger functional connectivity of the visual attention brain area.
Introduction
Loneliness is defined as the subjective feeling of being socially isolated. Loneliness itself is different from being alone; a person can feel happy and not distressed alone, while the same person can also feel lonely and distressed despite being surrounded by many people another time. Although loneliness is a common experience across all age1, it is specifically highly prevalent in the young adult population2. The prevalence is concerning as the young adult period is defined as the transitional period of the life course that a decision taken in this period will strongly affect long-term life trajectories3. Moreover, loneliness is also associated with poorer human health, specifically mental health4.
A model of loneliness proposed by Cacioppo and Hawkley in 2010 proposes that due to the social pain inflicted from perceived social isolation, lonely individuals exert unconscious surveillance for potential social threats labeled as implicit hypervigilance. The implicit hypervigilance consists of attentional bias and confirmatory behavior that cause the individuals to view the social world as threatening leading to expecting and displaying negative social behavior and affect4,5. Attentional bias refers to the increased attention toward negative social information that potentially causes rejection6. Confirmatory behavior consists of inappropriate social and withdrawal behaviors that could elicit negative responses and rejection from others, thus, confirming the initial negative belief about the interaction5,7. Consequently, these manifestations of negative social interaction trigger perceived social isolation feeling repeating the cycle4.
Neural correlates may explain the underlying mechanism why the behaviors related to loneliness manifest. Previously, structural magnetic resonance imaging (MRI) studies demonstrated that loneliness is associated with smaller white matter structures in general8,9 and higher and lower grey matter volumes depending on the area10,11,12. Moreover, functional MRI (fMRI) studies also demonstrated that loneliness is associated with differences in brain activation13,14,15. However, although many studies show that loneliness is correlated with brain structures and functions8,9,10,11,12,13,14,15,16, limited studies have been performed on the resting-state functional connectivity related to loneliness17,18,19,20. Applying functional connectivity analysis during a resting state can reveal brain intrinsic organization and information processing21. Therefore, applying the resting-state fMRI approach on loneliness will be appropriate to find the intrinsic brain organization.
As previously stated, the hypervigilance of loneliness consists of attentional and confirmatory bias4. Both studies by Layden et al. and Tian et al. in 2017 support the attentional bias of hypervigilance. Increased functional connectivity among cinguloopercular network areas, such as inferior frontal gyrus (IFG) and supplementary motor area (SMA)17, and lower causal flow of dorsal to ventral attention network, such as superior parietal lobule (SPL) to IFG20, may contribute to the increased social monitoring for potential social threat. However, despite supporting the theory, those previous studies have a limited sample size, which is less than a hundred. Although a small sample size can be a good starting point for a study22, those studies may overestimate the magnitude of the findings and become surrogate markers. These results may have a relationship but not a guaranteed one23. Certainly, this limitation has been addressed as a critical concern according to the recent review of fMRI studies24. To resolve the limitation, the current study recruited a large number of participants. Therefore, this study is a conceptual replication of prior research to confirm the relationship between loneliness and functional connectivity among the visual attention areas.
On the other hand, studies by Mwilambwe-Tshilobo et al. in 2019 and Spreng et al. in 2020 tackled the sample size limitation. Both studies used the independent component analysis (ICA) approach to construct the resting-state network. Although the ICA approach is less prone to noise and does not need a prior assumption, it suffers the disadvantages of run-to-run variability on the resting-state network due to iterative optimization and arbitrary model order25. Considering the disadvantages of the ICA approach and the prior assumption on visual attention areas, the seed-based approach would be used to construct the resting-state network. Moreover, both studies also supported the confirmatory behavior of loneliness. Increased functional connectivity density between default mode and frontoparietal network areas may contribute to prolonged negative affect18 while increased functional connectivity among default mode network areas may be suggested for increased mental simulations of social events with distorted social functioning19. Negative affect and distorted mental simulation are some examples of confirmatory behaviors of loneliness5. For these reasons, social functioning areas, such as dorsomedial prefrontal cortex (DMPFC)26 and temporoparietal junction (TPJ)27, become the secondary interest of this study.
The objective of this study is to find the difference in resting-state functional connectivity related to loneliness within a large sample size. Moreover, this study is aĀ conceptual replication to ensure the replicability of the previous studiesā findings. The hypotheses of this study are: (1) positive correlations between loneliness score and functional connectivity among IFG, SMA, and SPL; (2) aĀ negative correlation between loneliness score and functional connectivity between DMPFC seed and TPJ will be observed. The mentioned brain areas play a role in visual attention28,29,30 and social functioning26,27 respectively. These results are expected due to the previous studies6,14,15 and the neural finding of the previous resting-state functional connectivity study17,18,19,20 suggesting that loneliness is associated with increased monitoring and inappropriate social behavior. This study is a conceptual replication in a large sample to confirm the functional connectivity related to visual attention and social brain areas. Therefore, this is the first study that observes the neural correlates of loneliness using the seed-based approach in a large young adult population.
Results
Descriptive result
267 participants data were excluded from all participants due to excessive head motion shown by framewise displacement (FD) Power greater than 0.20 leaving 1336 eligible participants data (F:Mā=ā581:755) for this study analysis. The data with FD value greater than 0.20 are excluded to maximize the removal of motion artifacts and minimize the removal of non-motion signals31. For statistical analysis purposes, females were coded as 1 and males as 0. The descriptive statistics of age, loneliness score, and Ravenās advanced progressive matrices test score (RAPMT) of eligible participants are shown in Table 1. RAPMT was used to assess the general intelligence level to rule out the general intelligence effect on resting-state fMRI measures32. The Pearsonās correlation coefficients among these measures are shown in Table 2.
The loneliness score of participants ranged from 20 to 76 with an average of 37.13 (SDā=ā8.92). The distribution of loneliness in the participants is positively skewed. The distribution of loneliness is shown in Fig.Ā 1.
Functional connectivity
Of the four connectivity seeds: anterior insula, DMPFC, IFG, and TPJ, used in the functional connectivity analysis, only two seeds yielded findings. The seeds are IFG and DMPFC, which are expected from the prior assumption of this study. After regressing out age, sex, RAPMT, and FD and undergoing 5000 permutations, a second-level multiple regression analysis between functional connectivity and loneliness yielded three significant positive correlations and a trend of negative correlation between resting-state functional connectivity and loneliness score was found. The table of functional connectivity findings is presented in Table 3.
Multiple regression analysis between functional connectivity coefficient with IFG seed and loneliness score showed three significant increased functional connectivities. The functional connectivity between IFG and SMA (x, y, zā=ā0, āā15, 64; Threshold-free cluster enhancement (TFCE)ā=ā299.10; pā<ā0.05 familywise error corrected (FWE)), IFG and precentral gyrus (PreCG) (x, y, zā=āāā23, -19, 79; TFCEā=ā276.54, pā<ā0.05 FWE), and IFG and SPL (x, y, zā=ā15, āā60, 56; TFCEā=ā278.24, pā<ā0.05 FWE) are positively correlated with loneliness score. These findings are consistent with the first hypothesis. Additionally, one of the findings replicated the previous study finding17. Functional connectivity between IFG and SMA is shown in Fig.Ā 2A. Functional connectivity between IFG and PreCG and IFG and SPL are shown in the Fig.Ā 2B.
Significant positive effects of loneliness on resting-state functional connectivity with IFG as the seed region. The color represents the strength of the TFCE value. (A) The result was corrected within SMA. (B) The result was obtained using the TFCE of pā<ā.05 based on 5,000 permutations. The result was corrected within the right SPL.
Another multiple regression analysis between functional connectivity coefficient with DMPFC seed and loneliness score also showed a marginally significant decreased functional connectivity with loneliness score. This finding is also consistent with the second hypothesis, albeit reaching marginal significance. Moreover, this finding has not been found in the previous studies. Please see the Supplementary material.
Discussion
This is the first large-scale neuroimaging study researching the resting state correlates of loneliness in the young adult population using the seed-based approach. The participantsā loneliness score was lower than a previous survey study on Japanese young adults to elderly33. Additionally, this study addresses the limitations of the previous functional connectivity study with the larger sample size.
This study investigated the association between functional connectivity and loneliness in the general population of young adults. The findings of this study match the hypotheses. Whole-brain analysis revealed four notable findings of functional connectivity associated with loneliness score, three increased functional connectivities and one decreased functional connectivity. Young adults with higher loneliness have stronger functional connectivity between seed area right IFG and SMA, PreCG, and SPL. Among these results, increased functional connectivity between right IFG and SMA is consistent with the previous study17. All increased functional connectivities reached the significant value FWE less than 0.05. On the other hand, the young adult with higher loneliness has weaker functional connectivity between DMPFC and left TPJ. However, the decreased functional connectivity reached the marginally significant value FWE less than 0.10. The current findings can update the findings of the previous functional connectivity study17.
The functional connectivity between the seed IFG and SMA extending to the right PreCG is significantly correlated with the loneliness score. IFG plays roles in executive control34, social cognition35, and selective and spatial attention28,30. On the other hand, SMA is activated during voluntary movement36,37 and temporal coordination in sequential movement38. Moreover, a part of SMA called the supplementary eye field plays a role in oculomotor control38. Increased functional connectivity between both areas may imply that lonely individuals are cautious about negative cues by actively observing their surroundings. The same finding is also found between the IFG and left PreCG. PreCG is the area of the primary motor cortex, which plays a role in voluntary planning39 and pain appraisal40. With actively observing their surroundings, it may also suggest that lonely individuals are also carefully planning and appraising potential threats against themselves.
The IFG and SMA functional connectivity was also observed in the previous study17. Layden et al. in 2017 performed functional connectivity of loneliness and depressive symptoms. The study suggested that increased functional connectivity between IFG and SMA may underlie the implicit hypervigilance of loneliness by sustained and maintained tonic alertness17. Implicit hypervigilance is a loneliness theory suggesting that lonely individuals see the social world as more threatening by exerting over-attention over negative social information4,41. Finding the same functional connectivity with the same seed indicates successful replication of the previous studyās finding. Moreover, the other findings also support the replicated finding.
Alternatively, increased functional connectivity between IFG and SMA may also be interpreted as the desire to reconnect with others. IFG is also an area for mirror neurons fundamental to human social interaction42. Dysfunction in the mirror system consequently leads to social skill deficits, similar to autism spectrum disorders and schizophrenia43. With oculomotor control, mirroring behavior may be carried out, hoping to increase affiliation and liking between people44. Therefore, the increased connectivity of IFG and SMA may potentially imply the elevated desire to reconnect with others by mirroring othersā behavior. However, this interpretation remains speculative and should be interpreted cautiously because no previous study showed similar findings related to social reconnection. A previous study showed the ventral tegmental area and orbitofrontal cortex play a role in social craving after long-hour of isolation45. Because of the difference between the loneliness state used as the condition in the previous study45 and the loneliness trait of this study, further research needs to be performed to confirm the speculation and the relation between social craving and desire to reconnect.
Another finding, increased functional connectivity between IFG and SPL is also observed. SPL plays roles in working memory46 and attention and visuospatial perception29. Together with the previously mentioned findings, this functional connectivity may reinforce the attention and threat monitoring of surroundings, thus, further enhancing the attention.
The implication of the trend of decreased functional connectivity between DMPFC and left TPJ is discussed in the supplementary discussion. Please see the Supplementary material.
Despite the strength of this paper on the sample size and replication of previous findings, there are some limitations found in this study. First, this study is a cross-sectional study. The findings of this study are observed at a time point. The progression of connectivity across periods is currently still unavailable. Longitudinal studies on loneliness are needed to better understand how loneliness develops, including the direction of causality between the neural organization and feeling lonely. Second, this study is observational. This study is not an intervention study that manipulates variables. All interpretations above are based on previous studiesā assumptions. Although it is tempting to use causation, correlation is not equal to causation. On the other hand, it will be difficult to conduct an intervention study for loneliness considering the ethical issue of the riskābenefit, which can be similar to Milgramās experiment47. Therefore, the implication of the findings should be interpreted very cautiously. Third, loneliness assessment. The questionnaire of loneliness in this study was the UCLA loneliness scale due to the validity and reliability of the questionnaire48. Although its validity and reliability, UCLA only measures the overall loneliness. Recent studies showed that UCLA loneliness consists of multiple subcomponents depending on the criteria used for categorization49,50. Loneliness also manifests several factors, such as social vigilance, social avoidance, depressive mood, anxiety trait, and cognitive bias4,51. Future studies using behavior tasks or specific psychological measurements followed by loneliness assessment can understand loneliness better.
In conclusion, this study showed significant associations between resting-state functional connectivity and loneliness from a large dataset in the young-adult age category. Those associations are shown between right IFG seed and SMA, left preCG, and right SPL, and DMPFC seed and left TPJ. The associations between the right IFG seed and the respective brain regions were positive correlations. Moreover, the positive correlation between right IFG and SMA is consistent with the previous study. On the other hand, the association between DMPFC and left TPJ was observed as a negative correlation, albeit reaching marginal significance. These findings suggest that greater loneliness is reflected by significantly stronger functional connectivity among areas that play a role in visual attention and marginally significantly weaker functional connectivity between areas that play a role in social functioning.
Methods
Participant
The present study is a part of an ongoing project investigating the associations among brain imaging, cognitive function, and aging52. 1603 healthy right-handed participants (688 female, 915 males) were recruited. Those who had a history of neurological or psychiatric illness were excluded. The sex ratio difference of this study participants was due to the unbalanced sex ratio in the participant pool. The sex variable was dummy coded as one for females and zero for males. The mean age of participants is 20.77 (SDā=ā1.73, age-rangeā=ā18ā27). All participants were undergraduate and post-graduate students at Tohoku University. Written informed consent was obtained from each participant in accordance with the Declaration of Helsinki (1991). The study was approved by the Ethics Committee of Tohoku University.
Participants were instructed to get sufficient sleep, maintain body fitness, and consume a normal diet, including caffeinated food and drinks, on the day of the study. However, Participants were instructed to avoid alcohol consumption the night before the study. The description in this subsection is mostly reproduced from our previous study52,53.
Loneliness assessment
The revised University of California, Los Angeles (R-UCLA) Loneliness Scale version 3 was used to assess the perceptions of social isolation and loneliness. The questionnaire was proven as a consistent (Cronbachās α: 0.89ā0.94) and a reliable (testāretest r: 0.73) measure for loneliness over a two-month period48. It consists of 20 items rated from 1 (never) to 4 (often) resulting in the loneliness score ranging from 20 to 80. The higher the score the greater the loneliness. Some examples of the items are āHow often do you feel that you lack companionship?ā and āHow often do you feel left out?ā. In this study, the Japanese version of the questionnaire was used as some previous studies had reported it as reliable and valid54. The description in this subsection is mainly reproduced from our previous study9.
General intelligence assessment
RAPMT was used to assess the general intelligence level55. RAPMT score was used to rule out the general intelligence effect on resting-state fMRI measures32. The test is performed to rule out the possible confounding factor from general intelligence in the association between resting-state functional connectivity and loneliness.
Image acquisition
The imaging acquisition procedures mainly were reproduced from the previous study53. All MRI image acquisition was performed by using a 3-T Philips Achieva scanner. 160 functional volumes of axial gradient-echo images (64āĆā64 matrix, 34 slices, voxel size: isotropic 3.75Ā mm, TRā=ā2000Ā ms, TEā=ā30Ā ms, flip angleā=ā70°, FOVā=ā24Ā cm) were acquired by using an echo-planar imaging (EPI) sequence for the resting-state fMRI analyses, which took 5Ā min 20Ā s. Participants were instructed to keep still with their eyes closed, not to sleep, and not to think anything particular. Pads and tapes were used to prevent movements of participantsā heads.
Prior to the resting-state fMRI scan, other functional images and diffusion-weighted data were acquired for the normalization of resting-state functional imaging data. The functional images were acquired from the N-back working memory task, performed before the structural scans. Diffusion-weighted data were acquired by using a spin-echo EPI sequence. Fractional anisotropy and mean diffusivity maps were constructed from the acquired diffusion-weighted images56. The description in this subsection is mainly reproduced from our previous study52,53.
Preprocessing
Resting-state fMRI image preprocessing was performed using Data Processing Assistant for Resting-State fMRI (DPARSF), which is a part of the Data Processing and Analysis of Brain Imaging (DPABI) toolbox57 (http://rfmri.org/dpabi). DPARSF preprocessing is based on SPM12.
The skull of each participantās first image was removed by masking the image using the signal threshold from the spatially smoothed BOLD images (8Ā mm FWHM). The skull removal procedure was performed so that these parts were not treated as the outer edge of the brain parenchyma in the pre-processing procedures. The functional images were slice timing corrected and realigned to fit the mean image of the series.
The rsfMRI functional Images were non-linearly registered to the N-back task functional image and coregistered to the diffusion-weighted images without gradient (bā=ā0). All functional images were subsequently normalized with voxel size isotropic 3.75Ā cm and using a validated two-step new segmentation algorithm and diffeomorphic anatomical registration of diffusion images through the exponentiated lie algebra-based registration process similar to the previous study58.
All 26 nuisance covariates, including Friston 24 motion parameters and the mean time-course of signals from the voxels within the white matter and CSF mask, were regressed from the functional images. The Friston 24-parameter model includes six head motion parameters, six head motion parameters (one-time point before), and the 12 corresponding squared items was used to regress head motion effects59. Additionally, the global signal was regressed out considering the merits, such as motion effect mitigation31,60. The processed images were spatially smoothed with 6-mm FWHM. After smoothing, the processed images were detrended and temporally band-pass filtered (0.01ā<āfā<ā0.08Ā Hz) to reduce low-frequency drift and high frequency. Seed-based functional connectivity analysis was performed after band-pass filtering. The description in this subsection is mostly reproduced from our previous study52,53,61.
First-level analysis
Correlation maps were produced by extracting and computing the correlation coefficient of the BOLD time course of seed regions and that of all other brain voxels. This study examined the functional connectivity between all other brain voxels and four region-of-interest (ROI) seeds. Anterior insula, IFG, and TPJ are used as the seeds of the previous functional connectivity study17. Additionally, the DMPFC is also added as a seed region as it is related to social stimuli processing14. The examined seeds were all sphere-shaped with a radius of 6Ā mm. The coordinates of seed regions are shown in Table 4. All correlation values were transformed to Fisherās Z-value for normalization purposes. The functional connectivity maps were acquired by subtracting the mean value within the whole-brain mask and dividing by the standard deviation of the whole-brain mask62.
Second-level analysis
Second level statistical analysis, multiple regression, was applied to the Z-value of preprocessed images using SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The results were FWE corrected with pā<ā0.05 is classified as significant. The covariates used are age, sex, loneliness score, RAPMT score, and FD. FD Power score was used to rule out the head movement of the participants63. Multiple comparison correction using threshold-free cluster enhancement (TFCE) was applied to the statistical analysis64. Randomized nonparametric permutation testing (5000 permutations) was applied to the calculation by using TFCE toolbox (https://www.fil.ion.ucl.ac.uk/spm/ext/#TFCE). Permutation-based correction for multiple comparisons can be used to control the false positive rate of the brain data65.
Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the consent for the unrestricted release of participantsā personal information was not obtained from participants of this study. It is possible to provide data to third parties for purposes for which the subject has given consent (e.g., meta-analysis) or for which the ethics committee of Tohoku University, school of medicine has given consent. Therefore, any requests for reasons or formats that are not anticipated in advance must first be approved by the Ethics Committee of Tohoku University, school of medicine.
References
Qualter, P. et al. Loneliness across the life span. Perspect. Psychol. Sci. 10, 250ā264 (2015).
Lasgaard, M., Friis, K. & Shevlin, M. āWhere are all the lonely people?ā A population-based study of high-risk groups across the life span. Soc. Psychiatry Psychiatr. Epidemiol. 51, 1373ā1384 (2016).
Stroud, C., Walker, L. R., Davis, M. & Irwin, C. E. Investing in the health and well-being of young adults. J. Adolesc. Health 56, 127ā129 (2015).
Hawkley, L. C. & Cacioppo, J. T. Loneliness matters: A theoretical and empirical review of consequences and mechanisms. Ann. behav. med. 40, 218ā227 (2010).
Spithoven, A. W. M., Bijttebier, P. & Goossens, L. It is all in their mind: A review on information processing bias in lonely individuals. Clin. Psychol. Rev. 58, 97ā114 (2017).
Bangee, M. & Qualter, P. Examining the visual processing patterns of lonely adults. Scand. J. Psychol. 59, 351ā359 (2018).
Koerber, S. & Osterhaus, C. Some but not all aspects of (advanced) theory of mind predict loneliness. Br. J. Dev. Psychol. 38, 144ā148 (2020).
Meng, J. et al. BDNF Val66Met polymorphism modulates the effect of loneliness on white matter microstructure in young adults. Biol. Psychol. 130, 41ā49 (2017).
Nakagawa, S. et al. White matter structures associated with loneliness in young adults. Sci. Rep. 5, 17001 (2015).
Düzel, S. et al. Structural brain correlates of loneliness among older adults. Sci. Rep. 9, 13569 (2019).
Kanai, R. et al. Brain structure links loneliness to social perception. Curr. Biol. 22, 1975ā1979 (2012).
Kong, X. et al. Neuroticism and extraversion mediate the association between loneliness and the dorsolateral prefrontal cortex. Exp. Brain Res. 233, 157ā164 (2015).
Inagaki, T. K. et al. Yearning for connection? Loneliness is associated with increased ventral striatum activity to close others. Soci. Cognit. Affect. Neurosci. 11, 1096ā1101 (2016).
Powers, K. E., Wagner, D. D., Norris, C. J. & Heatherton, T. F. Socially excluded individuals fail to recruit medial prefrontal cortex for negative social scenes. Soc. Cognit. Affect. Neurosci. 8, 151ā157 (2013).
Cacioppo, J. T., Norris, C. J., Decety, J., Monteleone, G. & Nusbaum, H. In the eye of the beholder: Individual differences in perceived social isolation predict regional brain activation to social stimuli. J. Cogn. Neurosci. 21, 83ā92 (2009).
Tian, Y. et al. White matter structure in loneliness: preliminary findings from diffusion tensor imaging. NeuroReport 25, 843ā847 (2014).
Layden, E. A. et al. Perceived social isolation is associated with altered functional connectivity in neural networks associated with tonic alertness and executive control. Neuroimage 145, 58ā73 (2017).
Mwilambwe-Tshilobo, L. et al. Loneliness and meaning in life are reflected in the intrinsic network architecture of the brain. Soc. Cognit. Affect. Neurosci. 14, 423ā433 (2019).
Spreng, R. N. et al. The default network of the human brain is associated with perceived social isolation. Nat. Commun. 11, 6393 (2020).
Tian, Y. et al. Causal interactions in resting-state networks predict perceived loneliness. PLoS ONE 12, e0177443 (2017).
van den Heuvel, M. P. & Pol, H. E. H. Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519ā534 (2010).
Pourhoseingholi, M. A., Vahedi, M. & Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 6, 14ā17 (2013).
Hackshaw, A. Small studies: Strengths and limitations. Eur. Respir. J. 32, 1141ā1143 (2008).
Szucs, D. & Ioannidis, J. P. A. Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990ā2012) and of latest practices (2017ā2018) in high-impact journals. Neuroimage 221, 117164 (2020).
Cole, D. M., Smith, S. M. & Beckmann, C. F. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4, 8 (2010).
Bzdok, D. et al. Segregation of the human medial prefrontal cortex in social cognition. Front. Hum. Neurosci. 7, 232 (2013).
Santiesteban, I., Banissy, M. J., Catmur, C. & Bird, G. Enhancing social ability by stimulating right temporoparietal junction. Curr. Biol. 22, 2274ā2277 (2012).
Chong, T. T. J., Williams, M. A., Cunnington, R. & Mattingley, J. B. Selective attention modulates inferior frontal gyrus activity during action observation. Neuroimage 40, 298ā307 (2008).
Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319ā349 (1999).
Vossel, S., Geng, J. J. & Fink, G. R. dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist 20, 150ā159 (2014).
Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320ā341 (2014).
Song, M. et al. Brain spontaneous functional connectivity and intelligence. Neuroimage 41, 1168ā1176 (2008).
Schumaker, J. F., Shea, J. D., Monfries, M. M. & Groth-Marnat, G. Loneliness and life satisfaction in Japan and Australia. J. Psychol. Interdiscip. Appl. 127, 65ā71 (1993).
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J. & Owen, A. M. The role of the right inferior frontal gyrus: Inhibition and attentional control. Neuroimage 50, 1313ā1319 (2010).
Patriquin, M. A., DeRamus, T., Libero, L. E., Laird, A. & Kana, R. K. Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder. Hum. Brain Mapp. 37, 3957ā3978 (2016).
Hiroshima, S., Anei, R., Murakami, N. & Kamada, K. Functional localization of the supplementary motor area. Neurol. Med. Chir. (Tokyo) 54, 511ā520 (2014).
Zenon, A., Sidibe, M. & Olivier, E. Disrupting the supplementary motor area makes physical effort appear less effortful. J. Neurosci. 35, 8737ā8744 (2015).
Tanji, J. & Shima, K. Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413ā416 (1994).
Purves, D. et al. The Primary Motor Cortex: Upper Motor Neurons That Initiate Complex Voluntary Movements. in Neuroscience. 2nd edition (Sinauer Associates, 2001).
Tomasino, B. & Gremese, M. The cognitive side of M1. Front. Hum. Neurosci. 10, 298 (2016).
Vanhalst, J., Gibb, B. E. & Prinstein, M. J. Lonely adolescents exhibit heightened sensitivity for facial cues of emotion. Cogn. Emot. 31, 377ā383 (2017).
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J. & Frith, C. D. Evidence of mirror neurons in human inferior frontal gyrus. J. Neurosci. 29, 10153ā10159 (2009).
Iacoboni, M. & Dapretto, M. The mirror neuron system and the consequences of its dysfunction. Nat. Rev. Neurosci. 7, 942ā951 (2006).
Aragón, O. R., Sharer, E. A., Bargh, J. A. & Pineda, J. A. Modulations of mirroring activity by desire for social connection and relevance of movement. Soc. Cognit. Affect. Neurosci. 9, 1762ā1769 (2014).
Tomova, L. et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nat. Neurosci. 23, 1597ā1605 (2020).
Koenigs, M., Barbey, A. K., Postle, B. R. & Grafman, J. Superior parietal cortex is critical for the manipulation of information in working memory. J. Neurosci. 29, 14980ā14986 (2009).
Herrera, C. D. Ethics, deception, and āthose Milgram experimentsā. J. Appl. Philos. 18, 245ā256 (2001).
Russell, D. W. UCLA loneliness scale (Version 3): Reliability, Validity, and factor structure. J. Pers. Assess. 66, 20ā40 (1996).
Eglit, G. M. L., Palmer, B. W., Martin, A. S., Tu, X. & Jeste, D. V. Loneliness in schizophrenia: Construct clarification, measurement, and clinical relevance. PLoS ONE 13, e0194021 (2018).
Hawkley, L. C., Browne, M. W. & Cacioppo, J. T. How can i connect with thee? Let me count the ways. Psychol. Sci. 16, 798ā804 (2005).
Yanguas, J., Pinazo-Henandis, S. & Tarazona-Santabalbina, F. J. The complexity of loneliness. Acta Bio Medica Atenei Parmensis 89, 302ā314 (2018).
Takeuchi, H. et al. Regional homogeneity, resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner. Neuroimage 152, 258ā269 (2017).
Takeuchi, H. et al. Degree centrality and fractional amplitude of low-frequency oscillations associated with Stroop interference. Neuroimage 119, 197ā209 (2015).
Kudoh, T. & Nishikawa, M. A study of the feeling of loneliness (I): the reliability and validity of the revised UCLA loneliness scale. JJESP 22, 99ā108 (1983).
Raven, J. C. & Raven, J. Raven progressive matrices. In Handbook of Nonverbal Assessment (ed. McCallum, R. S.) (Springer, 2003).
Takeuchi, H. et al. Verbal working memory performance correlates with regional white matter structures in the frontoparietal regions. Neuropsychologia 49, 3466ā3473 (2011).
Yan, C.-G., Wang, X.-D., Zuo, X.-N. & Zang, Y.-F. DPABI: Data processing & analysis for (Resting-State) brain imaging. Neuroinformatics 143, 339ā351 (2016).
Takeuchi, H. et al. White matter structures associated with empathizing and systemizing in young adults. Neuroimage 77, 222ā236 (2013).
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J. & Turner, R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346ā355 (1996).
Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169ā173 (2017).
Takeuchi, H. et al. The association between resting functional connectivity and creativity. Cereb. Cortex 22, 2921ā2929 (2012).
Yan, C.-G. et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76, 183ā201 (2013).
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142ā2154 (2012).
Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83ā98 (2009).
Silver, M., Montana, G. & Nichols, T. E. False positives in neuroimaging genetics using voxel-based morphometry data. Neuroimage 54, 992ā1000 (2011).
Acknowledgements
This study was supported by a Grant-in-Aid for Young Scientists (B) (KAKENHI 23700306), and a Grant-in-Aid for Young Scientists (A) (KAKENHI 25700012) from the Ministry of Education, Culture, Sports, Science, and Technology. We respectfully thank Teruo Hashimoto for his statistical analysis guidance, Yuki Yamada for operating the MRI scanner, Haruka Nouchi for conducting the psychological tests, all other assistants for helping with the experiments and the study, the study participants, and all our other colleagues at the Institute of Development, Ageing and Cancer (IDAC), Tohoku University for their support.
Author information
Authors and Affiliations
Contributions
D.B.T. wrote the main manuscript supervised by H.T. and R.K. D.B.T. and H.T. performed the analysis. H.T., R.K. conceived the study. R.N., R.Y., Y.K., S.N., S.H., A.S., S.I., K.S., K.H.d.S.K., T.N., S.Y., D.M. performed the experiments.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Brilliant T., D., Takeuchi, H., Nouchi, R. et al. Loneliness inside of the brain: evidence from a large dataset of resting-state fMRI in young adult. Sci Rep 12, 7856 (2022). https://doi.org/10.1038/s41598-022-11724-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-022-11724-5
This article is cited by
-
Social contacts and loneliness affect the own age bias for emotional faces
Scientific Reports (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.