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Reaching alignment‑profile‑based 
accuracy in predicting protein 
secondary and tertiary structural 
properties without alignment
Jaspreet Singh1*, Kuldip Paliwal1*, Thomas Litfin1, Jaswinder Singh1 & Yaoqi Zhou2,3,4*

Protein language models have emerged as an alternative to multiple sequence alignment for enriching 
sequence information and improving downstream prediction tasks such as biophysical, structural, and 
functional properties. Here we show that a method called SPOT‑1D‑LM combines traditional one‑hot 
encoding with the embeddings from two different language models (ProtTrans and ESM‑1b) for the 
input and yields a leap in accuracy over single‑sequence‑based techniques in predicting protein 1D 
secondary and tertiary structural properties, including backbone torsion angles, solvent accessibility 
and contact numbers for all six test sets (TEST2018, TEST2020, Neff1‑2020, CASP12‑FM, CASP13‑FM 
and CASP14‑FM). More significantly, it has a performance comparable to profile‑based methods for 
those proteins with homologous sequences. For example, the accuracy for three‑state secondary 
structure (SS3) prediction for TEST2018 and TEST2020 proteins are 86.7% and 79.8% by SPOT‑1D‑LM, 
compared to 74.3% and 73.4% by the single‑sequence‑based method SPOT‑1D‑Single and 86.2% 
and 80.5% by the profile‑based method SPOT‑1D, respectively. For proteins without homologous 
sequences (Neff1‑2020) SS3 is 80.41% by SPOT‑1D‑LM which is 3.8% and 8.3% higher than SPOT‑1D‑
Single and SPOT‑1D, respectively. SPOT‑1D‑LM is expected to be useful for genome‑wide analysis 
given its fast performance. Moreover, high‑accuracy prediction of both secondary and tertiary 
structural properties such as backbone angles and solvent accessibility without sequence alignment 
suggests that highly accurate prediction of protein structures may be made without homologous 
sequences, the remaining obstacle in the post AlphaFold2 era.

Recently, Alphafold2 has achieved what was thought impossible: predicted protein structures at experimental 
accuracy for the majority of target proteins in critical assessment of structure prediction techniques (CASP14)1. 
This revolution was built on accumulating improvement in predicting backbone secondary  structure2–6 and 
residue-residue contact  maps7–9 along with advances in deep learning techniques. This success, however, does 
not mean the protein structure prediction problem is solved, as AlphaFold2 requires a minimum of 30 effective 
homologous sequences to achieve an accurate structure  prediction1 and a large portion of proteins lacks homolo-
gous  sequences10. Moreover, sequence-homology search requires increasingly intensive computing time. Thus, 
it is essential to develop accurate structure prediction methods without relying on homologous sequences. To 
do this, the first step is to develop accurate prediction of protein backbone and other 1D-structural properties 
for proteins with few homologous sequences.

To date, only a few single-sequence-based methods have been developed for protein secondary structure 
prediction. Examples are PSIPRED-Single11, SPIDER3-Single12,  ProteinUnet13, and SPOT-1D-Single14. PSIPRED-
Single predicts the secondary structure only while SPIDER3-Single, ProteinUnet, and SPOT-1D-Single predicts 
secondary structure, Accessible Surface Area (ASA)15, Half-Sphere Exposure (HSE)16 and Backbone torsion 
angles ( ψ , φ , θ , and τ ). SPIDER3-Single employed iterative learning on a two-layer Bidirectional Long-Short-
Term-Memory(LSTM)  cells17 on a training set of approximately 10000 proteins. ProteinUnet followed the same 
strategy except replacing the Bi-LSTM model with a convolution-based Unet  architecture18, which achieved a 
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similar performance but with a smaller computational requirement. More recently, SPOT-1D-Single improved 
over all previous predictors by taking advantage of a high sequence identity training set and an ensemble of 
Convolution and LSTM based hybrid to improve the performance on completely independent test sets. Although 
these single-sequence models do improve over profile-based methods for proteins with a low number of effec-
tive homologous sequences (Neff), there is above 10% gap for those sequences with higher Neff values: 74% for 
three-state secondary structure prediction, compared to  86% by profile-based  techniques14.

Recently, unsupervised deep learning methods inspired by Natural Language Processing were introduced to 
extract features from protein  sequences19–22. These methods were trained on extensive protein databases such 
as  Uniref23,  Uniclust24,  Pfam25, and  BFD26,27. One state-of-the-art protein language model (LM) is  ProtTrans22 
trained on the Uniref50 dataset. It employs a transformer-based auto-encoder model T5 to generate the embed-
ding. Another protein language model also trained on Uniref50 dataset is ESM-1b, which uses a 34 Transformer 
 model21. Both ProtTrans and ESM-1b trained downstream models for predicting secondary structure with sig-
nificant improved performance. However, they did not provide comprehensive benchmark testing. Moreover, 
they did not examine other one-dimensional properties such as ASA, Half-Sphere Exposure and Backbone 
torsion angles.

In this work, we explored the combined use of ProtTrans and ESM-1b generated embedding to train a 
downstream predictor of secondary structure and other 1D tertiary structural properties. We demonstrated that 
the new alignment-free model can achieve a performance comparable to or better than sequence-profile-based 
prediction of 1D structural properties for both high and low Neff proteins without searching for homologous 
sequences.

Results
Feature analysis. Our model was built on a combination of three main input features: single-sequence one-
hot, ESM-1b, and ProtTrans encodings. We trained three individual neural network models (Two-Layer LSTM, 
MS-ResNet, and MS-Res-LSTM) with different combinations of these three input features. Results are shown 
in Fig. 1 for three-state (SS3) secondary structure prediction on independent test sets of TEST2018, TEST2020, 

Figure 1.  Performance in secondary structure prediction by using different input features as labelled for three 
different model architectures on three test sets (TEST2018, TEST2020, and Neff1-2020).
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and Neff1-2020 datasets. The accuracy on the easy TEST2018 (86.5% by three features) is significantly higher 
than on the hard set TEST2020 (80%) as expected. At the single feature level, both ESM-1b and ProtTrans 
encodings are significantly better than one-hot encoding in predicting secondary structure. ProtTrans has com-
parable performance to ESM-1b in TEST2018 but a better performance in the more difficult TEST2020 and 
Neff1-2020 sets. Adding one-hot encoding to ProtTrans makes marginal improvement over ProtTrans alone on 
TEST2018 but a larger improvement in TEST2020 and Neff1-2020. On the other hand, adding one-hot encod-
ing to ESM-1b makes a comparable performance on TEST2018 but worse performance on TEST2020. Similar 
trends are also visible for eight-state (SS8) prediction (Supplementary Fig. S1). What is the most important is 
that combining three features makes a consistent improvement in all three datasets and three networks although 
adding one-hot-encoding only leads to minor improvement over ProtTrans+ESM-1b embedding but is statisti-
cally significant (P-value of 1.81× 10

−2 on all test sets combined). The improvement is the largest for the difficult 
case (TEST2020 and Neff1-2020). Overall, the three-state (SS3) secondary structure accuracy for all test sets 
improves 7-10% from 73-76% for a single-sequence-based method (one-hot-encoding) to 80-86% after com-
bining three features. Moreover, the performance on TEST2020 and Neff1-2020 is nearly identical, indicating 
that, unlike profile-based models, the performance of the current alignment-free method is independent of how 
many homologous sequences a protein has. Similar trends were observed for eight-state (SS8) structure predic-
tion (Supplementary Fig. S1), ASA, and HSE (Supplementary Table S1), and backbone torsion angle prediction 
(Supplementary Table S2).

Ensemble learning. The individual models were combined into an ensemble to further improve model 
performance. To demonstrate the advantage of ensemble learning over individual models, Table 1 presents the 
results of the selected three models and the results of the ensemble on TEST2018 and TEST2020. As we can see, 
for all properties tested, the trends we observed in this table is similar to what we observed in our previous work 
SPOT-1D-Single. The ensemble performance drops the error for ψ , φ , θ , and τ over the best individual model by 
0.90%, 0.89%, 1.20%, and 0.87% on TEST2018, respectively. For secondary structure prediction three-state (SS3) 
and eight-state (SS8) the ensemble accuracy is 86.74% and 76.47%, which is 0.27% and 0.52% better than the 
best individual model. Similar improvement is also visible in Pearson’s Correlation Coefficient (PCC) for ASA, 
HSE-U, and CN predictions. The same trend is observed for TEST2020.

Methods comparison. The performance for three-state (SS3) secondary structure prediction given by 
our ensemble method named SPOT-1D-LM is compared with four single-sequence-based methods PSIPRED-
Single, SPIDER3-Single, ProteinUnet and SPOT-1D-Single along with two profile-based methods SPOT-1D 
and NetSurfP-2.0 on six different test sets (TEST2018, TEST2020, Neff1-2020, CASP12-FM, CASP13-FM, and 
CASP14-FM) in Fig.  2. The result confirms a large leap from 72-74% by single-sequence-based methods to 
80-86% by alignment-profile-based methods for the prediction accuracy for TEST2018, TEST2020, CASP12-
FM, CASP13-FM, and CASP14-FM. The performance of profile-based methods is worse than the performance 
of single-sequence-based methods only for Neff1-2020, confirming the previous finding that profile-based meth-
ods lose their accuracy when lacking homologous sequences. Importantly, our language-model-based method 
achieves a comparable performance to the profile-based methods for all test sets. Furthermore, it improves over 
single-sequence-based methods even for Neff1-2020. For example, SPOT-1D-LM performs 0.66%, 1.6%, and 
17% better than SPOT-1D, NetSurfP-2.0, and SPOT-1D-Single, respectively, for SS3 prediction for TEST2018. 
Its performance on TEST2020, CASP12-FM and CASP13-FM is comparable to that of the profile-based SPOT-
1D and better than that of the profile-based NetSurfP-2.0. Similar trends are also observed for SS8 prediction, 
as shown in Supplementary Fig. S2. The improvement over profile-based methods on Neff1-2020 and single-
sequence-based methods on all test sets is further confirmed by the statistical significance analysis in Supple-
mentary Table S3. The matching performance of SPOT-1D-LM with profile-based models on backbone torsion 

Table 1.  Individual model performance as compared to the ensemble performance on TEST2018 and 
TEST2020 set for prediction of secondary structure in three (SS3) and eight (SS8) states, solvent accessibility 
(ASA), half-sphere-exposure-up (HSE-u), half-sphere-exposure-down (HSE-d), contact number (CN), 
backbone angles ( ψ , φ , θ , and τ ). Performance measures are accuracy for SS3 and SS8, correlation coefficient 
for ASA, HSE-u, HSE-d, and CN, and mean absolute errors for the angles.

Model

TEST2018 TEST2020

SS3 SS8 ASA HSE-u HSE-d CN ψ φ θ τ SS3 SS8 ASA HSE-u HSE-d CN ψ φ θ τ

2-Layer-
LSTM 86.50 76.07 0.804 0.745 0.755 0.788 23.964 16.139 6.540 24.821 79.57 66.44 0.708 0.516 0.591 0.612 36.792 20.671 8.738 36.149

Multi-
Scale 
ResNet

86.33 75.57 0.799 0.748 0.748 0.786 24.285 16.216 6.577 25.114 79.59 66.32 0.700 0.510 0.588 0.607 37.040 20.879 8.793 36.193

Multi-
Scale 
ResNet 
LSTM

86.49 75.85 0.799 0.749 0.748 0.778 24.396 16.426 6.617 25.280 79.48 66.33 0.702 0.512 0.584 0.606 36.877 20.849 8.725 36.118

Ensem-
ble (This 
work)

86.74 76.47 0.814 0.759 0.761 0.690 23.748 15.990 6.461 24.600 79.82 66.68 0.731 0.522 0.597 0.623 36.574 20.672 8.674 35.795
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angles are also illustrated in Tables 2, 3 for TEST2020, Supplementary Table S4 for CASP12-FM and Supplemen-
tary Table S5 for CASP13-FM. In order to compare to the downstream secondary structure prediction models 
from ProtTrans and ESM-1b, we compared our model SPOT-1D-LM on CASP12 and NEW364 test set used in 
ProtTrans, and SPOT-1D-LM outperforms both as shown in Supplementary Table S6.

Secondary structure is dominated by local interactions. How about structural properties that are based on 
tertiary structures? Fig. 3 examines the performance of different predictors for ASA prediction on six different 
test sets (TEST2018, TEST2020, Neff1-2020, CASP12-FM, CASP13-FM, and CASP14-FM). Again, we observe 
that profile-based methods perform far better than single-sequence-based methods in ASA prediction except 
when Neff=1 (Neff1-2020). More importantly, SPOT-1D-LM performs the best for all test sets. It outperforms 
the profile-based method NetSurfP-2.0 by 4%, 4%, 10%, 0.9% and 9% on TEST2018, TEST2020, Neff1-2020, 
CASP12-FM, and CASP13-FM, respectively. Comparing to SPOT-1D, its improvement is 3%, 6%, 19%, 1%, 
and 9%, respectively. Better or comparable performance is also observed for other tertiary structural properties 

Figure 2.  Comparing the accuracy of secondary structure prediction of SPOT-1D-LM (this work) with single 
sequence methods (SPIDER3-Single, ProteinUnet, and SPOT-1D-Single) and sequence-profile-based methods 
(SPOT-1D and NetSurfP-2.0) on six test sets (TEST2018, TEST2020, Neff1-2020, CASP12-FM, CASP13-FM, 
and CASP14-FM) for three-state (SS3) secondary structure prediction.

Table 2.  Comparing the performance of SPOT-1D-LM with single-sequence-based methods (SPIDER3-
Single, ProteinUnet, and SPOT-1D-Single) and sequence-profile-based methods (SPOT-1D and NetSurfP-2.0) 
in the prediction of secondary structure in three (SS3) and (SS8) states, solvent accessibility (ASA), half-
sphere-exposure-up (HSE-u), HSE-down (HSE-d), contact number (CN), backbone angles(ψ , φ , θ and τ ) for 
TEST2018. Performance measures are accuracy for SS3 and SS8, correlation coefficient for ASA, HSE-u, HSE-
d, and CN, and mean absolute errors for the angles.

Model SS3 SS8 ASA HSE-u HSE-d CN ψ φ θ τ

SPIDER3-Single 72.57 59.81 0.647 0.523 0.487 0.547 43.05 23.78 11.07 45.38

ProteinUnet 72.57 60.30 0.620 0.537 0.510 0.545 42.93 23.42 10.28 44.94

SPOT-1D-Single 74.28 72.17 0.665 0.573 0.563 0.585 40.58 22.16 9.35 42.32

NetSurfP-2.0(profile) 85.35 73.48 0.783 – – – 26.63 17.90 – –

SPOT-1D (profile) 86.18 75.41 0.787 0.732 0.737 0.777 24.87 16.88 6.91 25.94

SPOT-1D-LM (This work) 86.74 76.47 0.814 0.759 0.761 0.690 23.74 15.99 6.46 24.60

Table 3.  Comparing the performance of SPOT-1D-LM with single-sequence-based methods (SPIDER3-
Single, ProteinUnet, and SPOT-1D-Single) and sequence-profile-based methods (SPOT-1D and NetSurfP-2.0) 
in the prediction of secondary structure in three (SS3) and eight (SS8) states, solvent accessibility (ASA), 
half-sphere-exposure-up (HSE-u), HSE-down (HSE-d), contact number (CN), backbone angles ( ψ , φ , θ and 
τ ) for TEST2020. Performance measures are accuracy for SS3 and SS8, correlation coefficient for ASA, HSE-u, 
HSE-d, and CN, and mean absolute errors for the angles.

Model SS3 SS8 ASA HSE-u HSE-d CN ψ φ θ τ

SPIDER3-Single 71.31 57.57 0.596 0.358 0.417 0.434 45.64 23.48 11.52 46.04

ProteinUnet 72.20 58.71 0.555 0.366 0.426 0.441 44.87 23.19 10.49 44.95

SPOT-1D-Single 73.80 60.35 0.621 0.400 0.478 0.485 44.25 22.92 9.88 43.67

NetSurfP-2.0(profile) 79.42 66.36 0.702 – – – 35.07 20.70 – –

SPOT-1D (profile) 80.52 67.76 0.691 0.516 0.594 0.600 34.46 20.33 8.50 33.64

SPOT-1D-LM (This work) 79.82 66.68 0.731 0.522 0.597 0.704 36.57 20.67 8.67 35.80
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such as contact number (CN) and half sphere exposures (HSE-u and HSE-d) as shown in Table 2 for TEST2018, 
Table 3 for TEST2020, Supplementary Table S4 for CASP12-FM and Supplementary Table S5 for CASP13-FM.

To enlarge our test sets, TEST2020 contains low-resolution structures. To examine if these low-quality pro-
teins affect our conclusion above, we also obtained TEST2020-HQ. As shown in Supplementary Table S7, we 
found that the performance on TEST2020 is essentially the same as the performance on TEST2020-HQ for all 
structural properties predicted. We also compared SPOT-1D-LM to other predictors on CASP14-FM proteins 
and find that SPOT-1D-LM outperforms other predictors, including profile-based methods for all properties as 
shown in Supplementary Table S8.

Discussions
In this paper, we have developed a new Language-model-based method for predicting one-dimensional struc-
tural properties of proteins, including secondary structure, solvent accessible surface area, and backbone torsion 
angles. We employed an ensemble of three network variants of ResNet and LSTM models, trained on approxi-
mately 40000 proteins with embedding generated from ESM-1b and ProtTrans. The model is then compared 
to other predictors on independent and non-redundant test sets created by removing any remote homologs 
(TEST2020, CASP12-FM, and CASP13-FM) or by 25% sequence identity cutoff (TEST2018). The large improve-
ment of our method over any single-sequence-based methods for all structural properties is observed for all six 
test sets (TEST2018, TEST2020, Neff1-2020, CASP12-FM, CASP13-FM, and CASP14-FM). More importantly, 
we demonstrated that an alignment-free method can match or improve over an alignment-based method in pre-
dicting 1D structural properties, regardless if it is secondary-structure or tertiary-structure-based 1D properties.

The alignment-free method proposed here can skip the intensive computing time required to search for 
homologous sequences from an exponentially expanding sequence database. As shown in Supplementary 
Table S9, generating PsiBlast sequence profiles and HMM models will require 9.3 hours and 6.9 hours, respec-
tively, for 250 proteins in TEST2018 by utilizing 16 cores of Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz 
machine. After that, it takes additional 0.23 hours by NetSurfP-2.0 or 1.1 hours by SPOT-1D to complete the 
prediction. SPOT-1D, an ensemble of six different models, uses SPOT-Contact, SPIDER3, CCMpred and DCA as 
input. This makes the pipeline for SPOT-1D extensively time-consuming. By comparison, SPOT-1D-LM takes a 
total 0.29 hours on the same 16-core CPU for complete prediction with the same or better accuracy. The single-
sequence method SPOT-1D-Single is quicker than SPOT-1D-LM (0.04 hours) but with poorer performance. 
Moreover, SPOT-1D-LM can complete the whole prediction on a Titan X GPU for 0.04 hours only. Thus, it is now 
feasible for making highly accurate genome-scale prediction on protein secondary and tertiary structural features.

This method is limited to a protein of ≤1024 amino-acid residues. This should not hamper the analysis of 
protein sequence features because the largest structural domain found so far contains 692 amino acid  residues28,29 
with the majority < 200 residues. Large (long) proteins usually are made of multiple, mostly independent struc-
tural domains connected by intrinsically disorder regions. Thus, it is possible to divide a protein into shorter 
domains prior to make secondary structure or other structural property prediction by using protein domain 
prediction  tools30.

The successful matching performance between alignment-free and alignment-based methods highlights the 
potential of using a similar combination of language models for other structural properties such as proteins intrin-
sic  disorder31 and distance-based contact  maps8,32 as well as for end-to-end tertiary structure  prediction1,33,34. In 
particular, AlphaFold2 has successfully predicted protein structures at an experimental accuracy in CASP14 for 
those proteins with a minimal of 30 homologous  sequences1. Our results indicated the possibility that the success 
of AlphaFold2 can expand to the proteins without homologous sequences by using a combination of language 
models as input, rather than the multiple aligned homologous sequences as an  input35,36.

Methods
Datasets. The training and test datasets employed in this work are from our previous work for developing 
SPOT-1D-Single. Briefly, we started with the dataset prepared by ProteinNet at the highest sequence identity 
cutoff of 95% according to mmseqs2  tool37 to maximize the training data. This leads to 50914 proteins submitted 
to PDB before the year 2016 with resolution < 2.5Å.

To avoid overfitting and achieve an effective validation, we randomly selected 100 proteins one by one from 
the training set and compared their Hidden Markov Model (HMM) against the HMM of all other proteins in 
the training set at an e-value cutoff of less than 0.1. Any proteins that were remotely similar to the 100 validation 

Figure 3.  As in Fig. 2 but for prediction of tertiary structure proteins (solvent accessibility).
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proteins were removed from the training set. In addition, we removed any proteins with length more than 1024. 
This led to 38913 proteins for training and 99 proteins for validation.

The first test set employed is  TEST20185 with 250 proteins released between January 01, 2018 and June 17, 
2018 with resolution < 2.5Å and R-free < 0.25 , and have sequence similarity less than 25% to all pre-2018 pro-
teins. We further obtained a hard test set TEST2020 that includes all proteins released between May 2018 and 
April 2020 with removal of close and remote homologs using HMM models to all proteins released before 2018 
on PDB. Due to the limitation of the language model used, we further removed the proteins with lengths greater 
than 1024. The final TEST2020 contains 671 proteins. A further resolution constraint of < 2.5Å and R-free< 0.25 
led to 124 proteins forming TEST2020-HQ. Separating the proteins without homologs (Neff=1) from TEST2020, 
Neff1-2020 dataset was curated with 46 proteins.

Apart from the above-mentioned test sets, we also employed independent test sets CASP12-FM (released in 
year 2016) CASP13-FM (released in year 2018) and CASP14-FM (released in year 2020). These test sets include 
22, 17, and 15 free-modelling proteins released during CASP12, CASP13, and CASP14, respectively. Free mod-
eling targets are those proteins without known structural templates in the protein databank at the time of releases, 
which are after all proteins in the training and validation sets.

Input features. As shown in Fig. 4, we employed the one-hot encoding from the protein sequence concat-
enated to the language model embeddings generated using ESM-1b and ProtTrans models. The one-hot encod-
ing has a dimension of L × 20, where L is the length of the protein. The embedding from ESM-1b is generated 
from a model trained on the Uniref50 dataset and has a dimension of L × 1280. The ProtTrans model was also 
trained on the Uniref50 and employed the T5-XL model to generate an embedding of dimension of L × 1024. 
Concatenating all these features yielded the final input features of dimension L × 2324. This input was utilized 
for both classification and regression models.

Outputs. The outputs of this method have been divided into two main categories: classification and regres-
sion. The classification output is extracted from the classification models with 11 output nodes dedicated for 
protein secondary structure. We use the Dictionary of Secondary Structure of Proteins (DSSP) for assigning 
three-state (SS3) and eight-state (SS8) secondary  structures38. We also predicted 1D structural properties which 
fall under the regression category. They include the solvent accessible surface area (ASA), protein backbone 
angles ( ψ , φ , θ , and τ ), half-sphere exposures (HSE), and contact number (CN). These outputs are identical to 
the predictions in our previous methods SPOT-1D5 and SPOT-1D-Single14.

Neural network architecture. The model utilized in SPOT-1D-LM follows the neural networks utilized 
in SPOT-1D-Single14. In brief, we employed an ensemble of three neural network architectures: 2-layer BiLSTM, 
multi-scale-ResNet (MS-ResNet), and multi-scale-Res-LSTM (MS-Res-LSTM). The ensemble of LSTM-BRNN 
and ResNet-based models help the models to identify short- and long-range context throughout the  sequence5. 
In total, we trained three models to form an ensemble of three for the classification tasks and regression tasks, 
respectively. Similar to SPOT-1D-Single, both classification and regression models were trained on a batch size 
of ten with cross-entropy loss and L1-loss, respectively. The ensemble of classification models employed the 
mean of the classification probabilities from each model. The mean was also employed for the ensemble of the 
ASA, HSE-u, HSE-d and CN regression models. For the angle prediction, we utilized the median as in SPOT-1D5 
to avoid forbidden angle regions.

The first model we trained is a two-layered bidirectional-LSTM with hidden dimension of 1024 followed by 
two fully connected layers of size  100017. A dropout rate of 0.5 after each LSTM layer was used to avoid overfit-
ting. The second model we trained is a MS-Resnet, which is made of three parallel stacks of ResNet architectures 
with a great performance for similar  tasks5,8. The three stacks differ from each other in terms of the kernel size. 
The first, second, and third stacks of the ResNets have the kernel sizes of three, five, and seven, respectively. Each 
parallel stack has 15 blocks of ResNet for which the sizes of convolutional layers vary after every five blocks from 

Figure 4.  Overview of the model architecture.
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64-256. At the end, the output from all three stacks is then concatenated and passed through the output layer. 
In every ResNet block, we normalized and activated the output of each convolutional layer by applying batch 
normalization and ReLU activation  function39,40. We also applied a dropout rate of 0.5 in each block. The third 
model we trained is MS-Res-LSTM. This model is a hybrid of the first two models. It includes the MS-ResNet in 
which one parallel stack of three is replaced by four bidirectional-LSTM layers of a hidden size of 128. The ResNet 
block stacks have the same configuration as the MS-ResNet stacks with kernel sizes of 5 and 7, respectively. A 
dropout rate of 0.5 was employed in the bidirectional-LSTM layer.

Performance evaluation. The three-state (SS3) and eight-state (SS8) secondary-structure predictions 
were evaluated based on the percentage accuracy by concatenating all the proteins together and making an 
overall assessment. Prediction of ASA, HSE-u, HSE-d, and CN was evaluated by calculating the Pearson’s Cor-
relation Coefficient (PCC) between true and predicted values for each protein and then averaged over the whole 
 dataset41. To evaluate the model performance for the backbone angles ( ψ , φ , θ , and τ ), we calculate the Mean 
Absolute Error (MAE) between true angles and predicted angles for the whole dataset concatenated together.

Methods comparison. SPOT-1D-LM developed here was compared with single-sequence-based predic-
tors SPOT-1D-Single, ProteinUnet, SPIDER-Single3, and PSIPRED-Single. We also compared our method 
against profile-based methods SPOT-1D, and NetSurfP-2.0. All above-stated methods have stand-alone pro-
grams available online at the following links respectively:

• SPOT-1D-Single: https:// github. com/ jas- preet/ SPOT- 1D- Single.
• ProteinUnet: https:// codeo cean. com/ capsu le/ 25211 96/ tree/ v1.
• SPIDER3-Single: https:// serve rs. sparks- lab. org/ downl oads/ SPIDE R3- Single_ np. tgz.
• PSIPRED-Single: http:// bioin fadmin. cs. ucl. ac. uk/ downl oads/ psipr ed/.
• SPOT-1D: https:// serve rs. sparks- lab. org/ downl oads/ SPOT- 1D- local. tar. gz.
• NetSurfP-2.0: https:// servi ces. healt htech. dtu. dk/ servi ce. php? NetSu rfP-2.0.

Data availability
The data used by SPOT-1D-LM is publicly available at https:// github. com/ jas- preet/ SPOT- 1D- LM.

Code availability
SPOT-1D-LM predictor is available as a server at https:// sparks- lab. org/ server/ SPOT- 1D- LM/ and standalone 
software at https:// github. com/ jas- preet/ SPOT- 1D- LM to run on a local computer.
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