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Individualizing deep dynamic 
models for psychological resilience 
data
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Miriam Kampa5,8,9,10, Anita Schick10,11, Alexandra Sebastian5,6, Oliver Tüscher5,6, 
Michèle Wessa5,12, Kenneth S. L. Yuen5,10, Henrik Walter13,14, Raffael Kalisch5,10, 
Jens Timmer2,3,15 & Harald Binder1,2

Deep learning approaches can uncover complex patterns in data. In particular, variational 
autoencoders achieve this by a non-linear mapping of data into a low-dimensional latent space. 
Motivated by an application to psychological resilience in the Mainz Resilience Project, which features 
intermittent longitudinal measurements of stressors and mental health, we propose an approach 
for individualized, dynamic modeling in this latent space. Specifically, we utilize ordinary differential 
equations (ODEs) and develop a novel technique for obtaining person-specific ODE parameters even in 
settings with a rather small number of individuals and observations, incomplete data, and a differing 
number of observations per individual. This technique allows us to subsequently investigate individual 
reactions to stimuli, such as the mental health impact of stressors. A potentially large number of 
baseline characteristics can then be linked to this individual response by regularized regression, e.g., 
for identifying resilience factors. Thus, our new method provides a way of connecting different kinds 
of complex longitudinal and baseline measures via individualized, dynamic models. The promising 
results obtained in the exemplary resilience application indicate that our proposal for dynamic deep 
learning might also be more generally useful for other application domains.

There currently is a renaissance of artificial intelligence techniques where, e.g., deep learning can provide human-
level performance for detecting patterns in images, when trained on large data collections1. Deep learning has 
further been successful with non-image data, where humans cannot directly detect patterns, and also for relatively 
small sample sizes2. Importantly, deep learning has recently been combined with time dynamic techniques such 
as ordinary differential equations (ODEs)3–6, which promises both the advantages of hypothesis-driven modeling 
and detection of potentially complex patterns. This is why we turned to a combination of deep learning and ODEs 
when faced with modeling psychological resilience. We propose a novel approach for combining variational 
autoencoders7 (VAEs)—which offer latent representations—with individualized ODEs, i.e., a common system 
of differential equations where each individual receives an own set of ODE parameters. This approach serves to 
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obtain individualized, anticipated mental health responses to stressor exposure. Empirically, we found imputa-
tion and prediction challenging due to the sample size and signal-to-noise ratio. Considering this data situation, 
our primary goal is to showcase that deep learning approaches can learn individual dynamics even in small-data 
settings and subsequently identifying associated predictive factors from additional baseline measurements.

Psychological resilience is the maintenance or rapid recovery of a healthy mental state during and after times 
of adversity8. One element of the definition is that both mental health and adversity can change over time and 
may even do so permanently. Seminal resilience studies9 investigated how mental health changes in response 
to a single potentially-traumatic life event and identified common mental health trajectory patterns such as for 
resilient individuals (showing stably good or improving mental health in the months or years after the event) and 
more vulnerable individuals (showing stably poor or worsening mental health). These studies implicitly assume 
that the observed temporal changes in mental health are due to only a single stressor event and that individual 
differences in the mental health trajectory can be explained by some baseline individual characteristic. However, 
most individuals are continuously exposed to more or less severe stressors. These may include macrostressors 
(severe life events) but also more “mundane” microstressors, or daily hassles10, which are also known to have 
an impact on mental health11,12. Hence, both macro- and microstressors can constitute the relevant adversity in 
response to which individuals show more or less resilient responses. Further, major life events are likely to be 
followed by other macro- or microstressors13,14. For instance, this means that deteriorations in mental health in 
the aftermath of a trauma may also have other causes than the trauma. Conversely, not developing long-term 
mental health problems may be a consequence of only moderate stressor exposure after the trauma. In this case, 
a resilient trajectory would not result from some protective baseline characteristics but benign life circumstances. 
The necessity to consider the ongoing, more or less continuous nature of stressor exposure is even more obvious 
when trying to understand resilience to longer-lasting or chronic adversity, such as adverse life circumstances 
or life transition phases. In short, investigating resilience should ideally involve repeated longitudinal measure-
ments of stressors and mental health8,9,13,15.

This necessity of longitudinal stressor and mental health measurements poses considerable challenges to data 
acquisition. Usually, mental health and stressor data are acquired intermittently, and not always are measurements 
equally spaced. The Mainz Resilience Project12 (MARP) also faces these problems; self-report measurements are 
made using online questionnaires every three months ± two weeks. Additionally, a relevant number of observa-
tions (13.7%) are missing and the individual time series differ considerably in the numbers of observations (on 
average 9.1 observations, with a min = 2 , max = 14 , and sd = 3.5 in the data set used for learning the individual 
trajectories). Further, the three-monthly microstressor assessment of daily hassles only covers the past week. In 
this empirical context—which is prototypical for many longitudinal studies—the challenge is to transform the 
irregularly sampled mental health and stressor exposure data into continuous time series that are amenable to 
dynamic analysis.

In the current application, we learn the long-term individual mental health and stressor trajectories in the 
latent space, obtained from a VAE, with a system of ODEs that allows for encoding assumptions on the interplay 
of stressors and mental health. The ODE system is parameterized by another neural network, which receives 
longitudinal summary statistics as input, which also allows for different numbers of potentially irregularly spaced 
observation time points. On a more abstract level, our proposed new method showcases the versatility of com-
bining deep learning techniques with modeling based on domain knowledge and underlines the usefulness of 
this particular new method in an application of practical relevance.

A brief sketch of the algorithm is provided next. After this, we show how these individualized models can 
be linked to baseline measurements for identifying resilience factors, before concluding with a discussion and 
outlook. In the Methods section, we provide more technical details of the proposed method, in particular on 
how the challenging estimation problem is addressed, and describe the MARP study on psychological resilience, 
which motivated methods development and is used for illustration. We also provide a Jupyter Notebook (https://​
gitlab.​imbi.​uni-​freib​urg.​de/​koeber/​iddm_​resil​ience) that shows how our approach can recover structure from 
exemplary simulated data, and can be used as a starting point for adapting the approach to other applications.

Related work.  Dynamic techniques, such as differential equations, have already been proposed for mod-
eling resilience16. Montpetit et al.17 presented a coupled version of the multivariate latent differential equation 
model18 for resilience, which estimates the actual values of the latent variable, as well as the slope and curva-
ture simultaneously. Driver and Voelkle19 also allow for individualized differential equations. However, both 
approaches use relatively simple linear transformations for mapping from observed values to latent space. Fur-
thermore, they also require rather strong assumptions on the distribution of differential equation parameters, 
which may be problematic with respect to the topology in parameter space. In contrast, our proposal strives to 
combine the advantages of potentially complex non-linear transformations and individualized differential equa-
tions, making as little distributional assumptions as possible, as made possible by a combination of VAEs and 
individualized ODEs.

Numerous deep learning approaches have been developed for longitudinal data; increasingly, they are 
extended to process data with irregular time intervals, e.g., by using exponential decay functions in the recurrent 
layers20–22. The initial Neural ODE approach3 was extended in various directions, also for irregular time series23,24. 
For enforcing smoothness across time, convolutional inference nets have been proposed, which also can find the 
lower-dimensional representations and connect them via Gaussian processes25. Still others included the temporal 
information into the VAEs26–28 (see Girin et al.29 for a comprehensive overview). Yet, neither Gaussian processes 
nor dynamic VAEs provide an explicit model, i.e., they cannot determine the anticipated stress response. Neural 
ODEs have been proven successful in learning the dynamics in the latent space in a recent benchmark study30 for 
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medical data, which suggests the suitability of ODEs also for our application. To our knowledge, no deep learning 
approaches were suggested to identify the individualized trajectories in the latent space and continuous time.

Naturally, there are many other techniques—neither based on differential equations nor deep learning—that 
could potentially be used. For example, growth mixture models identify average starting levels and trajectories 
and allow for normally distributed deviation from the overall intercept and slope. However, these require an 
initial dimension reduction step (e.g., calculating a sum score or a factor solution), which is not informed by the 
longitudinal model and frequently based on rather simple linear transformations. By contrast, our method is 
designed to solve the problem of dimension reduction and trajectory modeling iteratively. Latent class mixture 
modeling has also been employed in resilience research9 to identify subgroups in the mental health response 
to trauma, to thereby derive categorical prediction targets (i.e., class membership); we expand on this by pro-
viding a set of continuous prediction targets. Psychometric network models have been recently extended to 
latent variables with autocorrelation31. Similarly, dynamic structural equation models32 (DSEM) were developed 
for “intensive” longitudinal data, i.e., data with many observations, and allow for a measurement model and 
normally-distributed auto-regressive parameters. DSEM also offers analytical tools to investigate the (linear) 
mappings into the latent space. To our knowledge, neither DSEM nor psychometric network models allow for 
non-linear mappings into the latent space or joint optimization of the mapping into the latent space and trajec-
tory information. All models in this paragraph, importantly, work by default in discrete time t = 1, 2, . . . ,Ti and 
are not readily applicable to continuous time. In our case, models in discrete time are problematic, considering 
the missing data patterns and varying observation intervals.

Results
An overview of the algorithm, data structure, and training procedure.  Figure 1 shows how the 
data flows through the algorithm. We map observations into a latent space using two separate VAEs7 (Fig. 1a). 
Separating the dimensionality reduction step for mental health and stressor load is a pragmatic decision that 
introduces some structure onto the learning problem, leaving the modeling of their interaction to the ODE sys-
tem. The VAEs reduce the number of dimensions to one for each type of measurement (see MARP data section 
below for operationalization). The encoder weights, i.e., the parameters that determine the non-linear mapping, 
and the decoder weights, which specify the mapping from the latent space back to the level of original measure-
ments, are trained by minimizing the evidence lower bound7 based on a Poisson log-likelihood to reflect the 
count character of the inputs.

The mapping of the observed values in the latent space is performed for all observations with one set of VAE 
parameters. Afterward, we reimpose the individual and temporal structure, which is essential for further calcula-
tions and allows getting first impressions of the latent trajectories (Fig. 1b). Subsequently, each individual time 
course is aggregated into several summary statistics, again separately for the latent mental health and stressor 
values. These summary statistics, e.g., include the integral over an interpolated step function and the differ-
ence of the first and last values (see Table 1 for a full list), and are chosen such that they do not require fixed 
observation time points or the same number of measurements for all individuals. These summary statistics then 
serve as inputs to a feed-forward ODEnet (Fig. 1c), which provides parameters for an ODE system. Thus, opti-
mal combinations and transformations of the summary statistics are determined empirically. For the resilience 
application, we chose a rather simple ODE system, to reduce complexity when faced with a limited number of 
individuals and observations. Specifically, the parameters of the ODEnet are trained to minimize the squared 
distance between the solution of the ODE system and the latent values at the point in time when measurements 
were obtained from the individuals. We allow the stressor time course to additionally incorporate abrupt external 
inputs (i.e., sudden changes in the life situation). Accordingly, new observations can override the current state 
obtained from the ODE. For this purpose, the ODE solver is stopped at the measurement time points, and the 
latent values for stressors (but not for mental health) are updated. Subsequently, the individualized solutions 
of the ODE systems are visualized together with the latent values (Fig. 1d). For details beyond what follows, we 
refer to the online Supplementary Information.

ODE system to model resilience trajectories in the latent space.  Figure 1d) shows an exemplary 
solution of an individualized ODE system, which connects expected values of the distributions in the latent 
space. We use an ODE system that couples the latent representations of mental health and stressor load. More 
precisely, we modeled the means of the latent representations depending on the input vectors µ(xi) of the latent 
distributions with the ODE; these µ(xi) correlate strongly ( r ≥ .9 ) with other methods of dimensionality reduc-
tion (see Supplementary Fig. S1 online) and, hence, can be interpreted as valid latent constructs similar to, e.g., 
more usual sum or factor scores.

The exact design of such an ODE system is a crucial modeling decision since it governs how each component 
changes and, accordingly, requires domain expertise. Given our sample size and sampling frequency, we work 
with a rather simple ODE system to keep the number of estimated ODE parameters ηi small. Specifically, we 
use the system

where changes in zmh
i,t  , the latent value reflecting mental health problems, and zsli,t , the latent value reflecting 

stressors load, are driven by the current own value. Additionally, mental health changes in response to stressor 

(1)

dfzmh
i,t

dt
= ηi,1 × zmh

i,t + ηi,2 × zsli,t

dfzsli
dt

= ηi,3 × zsli,t
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load. Separate parameter values ηi,1 − ηi,3 for each individual i allow for individualized trajectories of mental 
health and stressors.

Negative values for ηi,1 and ηi,3 effectively realize system-inherent damping16, where high mental health and 
stressor values, respectively, are more quickly driven back to low latent mental health and stressor values. Thus, a 
high negative ηi,1 in particular reflects good recovery from mental health problems (since the majority of observa-
tions are mapped into the positive valued latent space or close to zero, see Fig. 1c). Positive values for ηi,2 realize 
the adverse effect of stressors on mental health. A low positive ηi,2 value thus reflects a low mental health impact 
of stressors in the individual. Thus, in the model, resilient individuals—understood as individuals showing only 
mild or only temporary mental health impairments in response to stressor exposure—are characterized by a 
combination of a small ηi,2 and a negative ηi,1 value.

At each realized measurement, the value of the integrator of the latent stressor load fzsli  is updated to the 
mapping of the actually observed value zsli,t . This reflects the obvious notion that stressor levels are only partly 
driven by an endogenous property of the ODE system (i.e., damping) but mainly reflect exogenous forces, that 
is, the sudden occurrence or absence of stressors that lead to abrupt changes in the latent stressor values (see 
above).

The benefits of such an ODE system in comparison to discrete-time models like regression are crucial for 
analyzing the data from the MARP study at hand. Most importantly, differential equations take all available 
information at the precise time into account. Thereby, irregular sampling intervals and entirely (or partly) missing 
observations are dealt with by the properties of our dynamical system (assuming non-informative missingness).

Person‑specific ODE parameters.  The ODE parameters for every respondent are estimated in an unre-
stricted manner, i.e., without explicit constraints regarding their distribution or direction. This approach allows 

Figure 1.   The proposed new method has two essential parts, dimensionality reduction and individualized 
trajectory estimation. Both tasks are performed using neural networks (upper row). We train two VAEs—one 
for mental health (blue) and one for stressor load (red)—to estimate the distribution in the latent space for 
each observation. The variance of these distributions is expressed as size of the dots and reflects uncertainty. 
Summary statistics of the temporal pattern of latent values are used as inputs to a feed-forward neural network 
(the “ODEnet”) which is trained to provide ODE parameters that minimize the squared distance of the ODE 
solution and the latent values, where latent stressor load values are updated at each measurement time point.
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for widely different dynamics, which we refer to as individual dynamic models while the models’ overall struc-
ture stays stable. This is accomplished by estimating the parameters of a fixed ODE system ηi,1 to ηi,3 with the 
ODEnet—a feed-forward neural network—with 16 summary statistics as inputs (see Fig. 1c and Table 1 for 
details). While we are using linear ODE system for the specific resilience application, i.e., also an analytical 
solution exists, the proposed approaches enables more complicated non-linear systems. Also, the non-linear 
mapping to the latent space via the VAEs may pick up some non-linearity in the trajectories, helping to model 
the latent dynamics with this reasonably simple ODE system adequately. Importantly, the summary statistics are 
selected with data availability in mind. Since some MARP participants just started recently to provide data, all 
summary statistics need to be computable with only two observations of mental health and stressors (not neces-
sarily at the same time), which is the minimum requirement to be included in the longitudinal analysis.

The ODEnet provides the individual parameters of the ODE system as outputs. Accordingly, the overall 
structure of how mental health and stressors change is the same for all respondents and specified by the ODE 
system. Yet, the values of the summary statistics—included in the ODEnet—differ from person to person. There-
fore, each individual receives an own variant of the ODE system. The ODEnet is trained to minimize the squared 
difference between the ODE solutions fzmh

i
 and fzsli  and the latent values zmh

i,t  and zsli,t , using a standard neural 
network backpropagation algorithm. In contrast to previous methods (e.g., growth mixture models), the indi-
vidual parameters do not obey any predefined distribution; they can be estimated in the absence of such restric-
tions by optimizing the fit to the data.

Quantification and prediction of resilience.  In addition to longitudinal measurements of mental 
health and stressor load, the MARP study incorporates a large battery of additional baseline measurements for 
identifying potential resilience factors, i.e., characteristics of individuals that might predict reduced reactivity of 
mental health to stressor load. For identifying such resilience factors, we can either predict the individual param-
eters ηi directly or apply an artificial stress test to each individual (see Fig. 2). This artificial stress test means that 
the latent mental health value of an individual is initialized to an average value, and the latent stressor load value 
is set to an initial value that corresponds to a high stressor level. The stress reaction pattern of each individual 
then is characterized by how the latent values develop according to the individualized ODE system, if no further 
external input is provided. Predicting each of the ODE parameters separately allows for investigating the differ-
ent dimensions of resilience in our model (i.e., recovery of mental health ( ηi,1 ) and reactivity of mental health 
to stressors ( ηi,2 )) independently. In contrast, the artificial stress test considers all parameters jointly, to obtain 
a holistic picture of resilience. A more resilient individual here is an individual that responds to the artificial 
stressors with a less severe and less lasting increase in mental health problems. This also serves as a diagnostic 
tool to investigate whether the training of the algorithm succeeded. We choose four points in time (after 5, 9, 15, 
and 20 months) and predict the individual mental health values with measurements from the baseline battery, 
covering proteomics, behavioral measures, and questionnaires.

Specifically, we use the lasso, a regularized regression approach that provides variable selection33. The amount 
of regularization is chosen according to prediction performance, specifically by 6-fold cross-validation. For a 
robust result, this procedure is repeated 1000 times on resampling data sets, obtained by sampling with replace-
ment, resulting in inclusion frequencies34. Thus, a baseline measurement would receive inclusion frequency 

Table 1.   We include 16 summary statistics—gathered from the individual mappings of mental health (mh) 
and stressor load (sl) to the latent space (see Fig. 1c)—as inputs to the ODEnet. We additionally scale them 
according to their range and type (Observation, Difference, Integral, and AutoCorrelation) for achieving 
numerically similar inputs.

Input Type Scaled by

First obs of mh O 1

First obs of sl O 1

First obs mh—last obs mh D 1

First obs mh—first obs sl D 1

First obs mh—last obs sl D 1

First obs sl—last obs sl D 1

First obs sl—last obs mh D 1

Last obs mh—last obs sl D 1

Integral of mh I 10

Integral of sl I 10

Integral of mh2 I 10

Integral of sl2 I 10

Integral of mh (absolute value) I 10

Integral of sl (absolute value) I 10

Mean of autocorrelation mh AC 100

Mean of autocorrelation sl AC 100



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8061  | https://doi.org/10.1038/s41598-022-11650-6

www.nature.com/scientificreports/

equal to or close to zero, if there would be no connection between the baseline measurement and our proposed 
quantification of resilience by the stress test. Quite in contrast, we find rather strong relations between our derived 
quantification of resilience and some baseline measurements, which may thus be considered to be potential 
resilience factors (see Fig. 3). Since the present paper has its focus on the proposed new method, and not on 
resilience research, we do not report the selected variables. We compare the prediction targets derived with the 
artificial stress test to those of an auto-regressive random effects model (see online Supplementary Fig. S2) with 
other latent variable models. The number of prediction targets of our approach is comparable to the most suc-
cessful competitor. We find some overlap between the different approaches, which indicates that our approach 
serves as a complement to conventional methods to quantify individual differences.

Discussion
We combine deep generative learning with a system of ODEs to obtain individual parameters of a dynamic 
model, and illustrate this novel approach in an application on psychological resilience. The proposed method 
can handle problems typical for real-world applications, specifically irregular measurement time points and 
limited sample size. In particular, the augmentation of neural networks with ODEs allows us to incorporate 
domain expertise, which can dramatically reduce the sample size requirements of deep learning6. An important 
ingredient of this approach is differential programming35,36, i.e., automatic differentiation in complex models, 
which allows for tailoring algorithms to particular needs, such as combining neural networks with ODEs. This 
framework is more specifically used in our proposed method to allow the integrator of the ODE solver to jump 
to updates of the latent stressor load values.

We show that this flexible, non-linear, and versatile combination of scientific modeling and machine learn-
ing can be utilized to quantify resilience and identify resilience factors, and agree with others3,6 that neural 
differential equations promise considerable opportunities for this particular field and other disciplines working 
with longitudinal data.

From a subject matter point of view, the most substantial benefit of our approach are the resulting individual 
parameters of the dynamic model. The approach builds upon the overall structure of stress research, according 

t (in months)
5 9 15 20-1

0

1

2

Figure 2.   The artificial stress test induces a considerable amount of stress ( zsli,0 = 2 ) on each individualized 
ODE system and captures how the mental health (blue) and stressor load (red) are predicted to develop in 
the latent space (y-axis) over time (x-axis). Prediction targets are derived from the values of mental health at 
predefined time points (ptp 1-4) of 5, 9, 15 and 20 months.

Potential resilience factors

Questionnaire Behavioral Proteomics

Figure 3.   Inclusion frequencies of potential resilience factors in % (shades of gray) using a cross-validated 
lasso analysis ( n = 88 ; p = 350 ; 1000 repetitions) predicting mental health at predefined time points (ptp) 
of the artificial stress test, i.e., the intersection of the blue lines with the vertical, dotted lines in Fig. 2). We 
identified potential resilience factors in all three data modalities (i.e., questionnaires, behavioral measures, and 
proteomics).
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to which mental health problems change due to stressor load, and incorporate the main lesson from resilience 
research that there are significant individual differences in how people deal with stressors and recover after 
stressful episodes. In fact, these individual differences are what resilience research is investigating. Instead of 
reporting population-level prevalence (like, e.g., what percentage of people can be labeled as resilient) we are 
interested in modeling the mental health trajectory of each person in response to his or her stressor load. This 
perspective on each individual also addresses the needs of health professionals who are interested in personal-
ized predictions tailored to their particular client, strongly informed by his or her unique history. Hence, we are 
interested in the most flexible approach that allows for capturing personal nuances best. Compared to this, we 
argue that it is of secondary interest (at most) to assign people to categorical labels like resilient and vulnerable 
or force individual deviations from the grand mean to be aligned with predefined distributions. In this regard, 
we argue that the continuous individual differences—expressed here as ODE parameters and harnessed with 
an artificial stress test—are meaningful quantifications of resilience and help to identify resilience factors from 
large baseline batteries. This also is in contrast to supervised learning approaches, e.g., predicting mental health 
sum scores by stressor information, which would not provide us with individual-specific parameter values that 
reflect the interplay between perceived stress and mental health on equal footing.

A limitation of the proposed model is the simplicity of the ODE system. There are valid theoretical reasons 
to assume that resilience might be better captured using an additional second-order derivative (i.e., accelera-
tion) of mental health problems. While our first-order ODE system was a deliberative decision in consideration 
of the small number of observations and individuals (for dynamic modeling and deep learning standards at 
least), future research might experiment with more complicated , e.g., non-linear systems of differential equa-
tions which we found hard to train with this approach and data set. Due to our sample size, we also equate the 
expected value � with the dispersion and assume a Poisson distribution in the generative part of both VAEs. 
Loosening this admittedly strong assumption would require us to learn—at least in the VAE setting—thousands 
of additional parameters, which we refrained from. The current application, however, focuses predominantly 
on the trajectories in the latent space. Accordingly, we expect little benefits from learning the dispersion in the 
decoder network. Also, future work might investigate the prediction and imputation capabilities of this approach 
and compare it to existing methods20,25,37,38. Another interesting direction for future research is to soften the 
distinction between mapping the observations in the latent space and learning the trajectories with ODEs; e.g., 
by including trajectory information into generative learning (as, e.g., dynamic VAEs29 do). While we found this 
coupling difficult with the small sample size in the current application, we are confident that simultaneous fitting 
will be feasible and beneficial for applications with larger sample sizes. Also, our approach assumes stationarity 
and accordingly neglects the possibility of long-term learning and plasticity (i.e., temporal changes in resilience). 
While we could extend our model to weaken this assumption, our main focus in this work is on the identifica-
tion of resilience factors based on all available longitudinal measures. While we concentrated on learning the 
individual dynamics, future work might extend this by learning the individual equilibria. Furthermore, we base 
our hyperparameter choice mainly on sample size requirements and conventions. There are, however, more prin-
cipled ways to determine these decisions, especially in the realm of AutoML39. However, such strategies usually 
require data splitting, which we do not apply to tune our deep learning components due to the relatively small 
sample size. We improved interpretability compared to purely black-box approaches due to the specifications in 
our ODE system; however, we lack the interpretability of combinations of classical approaches, e.g., an ARMA 
model based upon confirmatory factor analysis. We argue, however, that we sacrificed some interpretability to 
gain considerable flexibility regarding, e.g., the non-linear mapping of our VAEs and the jump equation of our 
dynamical system. Future work will investigate repeated baseline observations and time-dependent predictors. 
Yet, already the individualized dynamic models enabled by our new method provide an important building block 
for better understanding psychological resilience. Therefore, we are confident that other applications that require 
individualized parameters of dynamic models may benefit from our approach.

Methods
Dimensionality reduction per time point with VAEs for count data.  We choose variational autoen-
coders (VAEs) to find a lower-dimensional latent representation because they provide a flexible framework. Nat-
urally, VAEs will provide the most benefit if there are strong non-linear patterns. However, even if non-linearity 
is not so strong, there are other benefits due to the generative nature of VAEs for downstream applications such 
as multiple imputation40. VAEs comprise a recognition model and a generative model. The purpose of train-
ing the recognition model (aka inference model or encoder) is to find the variational parameters φ of a neural 
network to approximate the posterior distribution of the latent variable z given the inputs x, i.e., qφ(z|x) . The 
parameters of the generative model (aka decoder) θ are trained to increase the log-likelihood of the inputs given 
random samples from the posterior distributions. To train the recognition and generative model simultaneously, 
we maximize the evidence lower bound (ELBO) of the marginal log-likelihood

where the first term of the right hand side is the expectation of the log-likelihood of xi given z with respect to 
q(z|x) . The Kullback-Leibler divergence ( DKL ) penalizes deviations of the posterior from the prior. Temporal 
dependence between the observations is established by the system of ODEs. For computation, we plug in the 
Poisson log-likelihood and the closed form of DKL for a Gaussian prior and posterior. Thereby, our training 
objective becomes

(2)
dfzsli
dt

= ηi,3 × zsli,t
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where µ and σ are the mean and standard deviation of the latent distribution depending on the observed values 
xi . �i is the expected value of the Poisson distribution of each respondent and item. To prevent overfitting, we 
regularized the encoder ( φ ) and decoder ( θ ) weights of both VAEs with �VAE . The Poisson distribution does not 
perfectly fit the data since we found moderate levels of overdispersion for some of our items. Yet, the Poisson 
distribution avoids an additional parameter, which might be difficult to determine, by coupling expected value 
and dispersion. We used J nodes and tanh activation functions in the middle layers. In the final layer, we used a 
ReLU activation function to strictly pass non-negative values to � . All neural networks were trained with Flux.
jl41 and the Adam42 optimizer (see Training section below and online Supplementary Information for details). 
We used this website43 as a basis for drawing the VAEs (in Fig. 1a) and ODEnet (in Fig. 1c).

Individual ODE parameter estimation with the ODEnet.  The parameters of the ODEnet τ were 
trained to minimize the sum of the squared difference of the trajectory fzi (t, ηi) and the mean of the latent space 
distribution µzi,t at the precise point in time t. Accordingly, the loss function for the ODEnet is

The ODEnet is a separate feed-forward neural network with two layers and 16 inputs; the mid-layer and end-
layer have three nodes (due to data size considerations). As inputs, we use a mixture of integrals, first and last 
observations, differences, and autocorrelations (see Table 1).

We used a piecewise constant step function to approximate the integral of the individual trajectories defined as 
si =

∑Ti
m=1 cml(Im) where cm is the value of zmh

i,t  or zsli,t on the interval Im = (ti−1, ti) and l(Im) the length ( ti − ti−1 ) 
of this interval. We also included s2i  . It was left to gradient descent to find a good combination of these inputs to 
minimize LossODE(τ , ηi) given the value of the ODE at a particular point in time fzi (ti) which, in turn, depends 
on the individual set of ODE parameters ηi.

We use a ReLU activation function in the middle layer and no transformation in the final layer. The choice 
of inputs is restricted by the minimum requirement of two observed values for each group of variables at any 
point in time. We scale the inputs to ensure approximately equal numerical size. For reasons explained above, 
we update the integrator at every realized measure of zsli,t . Such steps are implemented in DifferentialEquations.
jl44 and differentiable through neural nets via DiffEqFlux.jl45. All solved ODE systems start the first measure-
ment µzi,1 . To deal with unit non-response, Loss(θ ,φ; x, �VAE) and LossODE(τ , ηi) are only evaluated at actual 
measurement time points.

Training.  We obtained a sufficiently low

with a combination of separate pretraining of the VAE and ODEnet combined with a sequantial training of both. 
Leaving Loss(θ ,φ; x, �VAE) and LossODE(τ , ηi) unweighted is an implicit choice. In initial experiments, we added 
weights and experimented with different settings during sequential training, however, we found no strong advan-
tages. Therefore, we decided in favor of the presented approach, which works reasonably well in our experience.

More detailed, we pretrain both VAEs with a learning rate α = 5−5 for 80 epochs. Then, we pretrain the 
ODEnet for 50 epochs with α = 1−6 . Afterward, we sequentially train the VAEs and the ODEnet in the same 
epoch with α = 1−6 for 100 epochs. We also compared this approach to a joint training of all involved compo-
nents. We find the sequential training strategy to work better for this purpose. We did not systematically tune 
our hyperparameter choices (see Supplementary Table S1). While more principled39 ways to determine hyper-
parameter choices would have led most likely to a lower Losscomposite , this approach avoids heavy overfitting. All 
neural networks were trained with the Adam optimizer42 and standard decay rates ( β1 = 0.9 and β2 = 0.999).

MARP data.  The Mainz Resilience Project (MARP) is an ongoing study that started in 2016 with a planned 
study duration per participant of seven years and is conducted by the University Medical Center Mainz and the 
Leibniz Institute for Resilience Research12. All available observations ( Nsl = 1.233 and Nmh = 1.196 ) were used 
to train the VAEs. Each observation consists of 28 mental health items (GHQ-2846) and 58 daily hassle (MIMIS 

(3)

log p(x1, . . . , xN ) =

N∑

i=1

log p(xi)

≥

N∑

i=1

(Eq(z|x) log p(xi|z)− KL (q(z|xi)||p(z)))

(4)

Loss(θ ,φ; xi) =
1

2

N∑

i=1

(1+ log((σ (xi))
2)− (µ(xi))

2 − (σ (xi))
2)

︸ ︷︷ ︸

DKL(φ)

+

N∑

i=1

(�i − xi × log(�i))

︸ ︷︷ ︸

Poisson reconstruction error (θ)

+ �VAE × (
∑

i

φ +
∑

i

θ)

︸ ︷︷ ︸

Weight regularization

(5)LossODE(τ , ηi) =

N∑

i=1

T∑

t=1

(fzi (t, ηi)− µzi,t )
2 + �ODEnet ×

∑

i

τ + �ODEp ×
∑

i

ηi .
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battery47) items. One item is a question to either rate 28 different health aspects on a scale from 0-3 (mh) or 
indicate the days last week (0-7) where certain unpleasant circumstances were experienced (sl). This vector of 
length 28/58 was plugged into the respective VAE and mapped into the latent dimension. To be included in the 
longitudinal analysis, at least two observations of mental health and stressor load—at any point in time within 
the observation window of 3.5 years—were necessary. This basic requirement was met by N = 166 participants. 
Four respondents were excluded due to unusual patterns. In this longitudinal data set, on average 9.1 observa-
tions ( min = 2 , max = 14 , sd = 3.5 ) per person are available. The majority of the longitudinal measures are 
gathered via an online assessment roughly every three months. Calendar time was protocolled at logging in to 
the online questionnaire. Study time was taken by subtracting the calendar time of each observation with the 
first baseline observation. Accordingly, observations of stressor load and mental health got the same study time, 
although they were not taken simultaneously but during the same login. Besides the request to provide data 
on their mental health and stressors (daily hassles and life events, of which only daily hassles are used here), 
the participants went through an extensive baseline examination, which includes in total p = 350 neuroimag-
ing, behavioral, proteomics, and survey data variables. One hundred fifty-five participants met the longitudinal 
requirements; hence, they underwent the artificial stress test (see Fig. 2). However, only Nlasso = 88 respondents 
had a complete baseline battery and sufficient longitudinal information for being included into the lasso analysis. 
Participants were recruited in a critical life phase aged 18 to 20 at study inclusion with a prehistory of critical 
life events.

Human participants.  All methods were carried out in accordance with relevant guidelines and regulations. 
All experimental protocols were approved by ethics committee of the Medical Board of the State of Rhineland-
Palatinate, Mainz. All subjects gave informed consent.
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