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Modeling of charged‑particle 
multiplicity 
and transverse‑momentum 
distributions in pp collisions using 
a DNN
E. Shokr1, A. De Roeck2 & M. A. Mahmoud3,4*

A machine learning technique is used to fit multiplicity distributions in high energy proton‑proton 
collisions and applied to make predictions for collisions at higher energies. The method is tested with 
Monte Carlo event generators. Charged‑particle multiplicity and transverse‑momentum distributions 
within different pseudorapidity intervals in proton‑proton collisions were simulated using the PYTHIA 
event generator for center of mass energies 

√

s = 0.9, 2.36, 2.76, 5, 7, 8, 13 TeV for model training and 
validation and at 10, 20, 27, 50, 100 and 150 TeV for model predictions. Comparisons are made in order 
to ensure the model reproduces the relation between input variables and output distributions for the 
charged particle multiplicity and transverse‑momentum. The multiplicity and transverse‑momentum 
distributions are described and predicted very well, not only in the case of the trained but also in 
the case of untrained energy values. The study proposes a way to predict multiplicity distributions 
at a new energy by extrapolating the information inherent in the lower energy data. Using real 
data instead of Monte Carlo, as measured at the LHC, the technique has the potential to project the 
multiplicity distributions for different intervals at very high collision energies, e.g. 27 TeV or 100 TeV 
for the upgraded HE‑LHC and FCC‑hh respectively, using only data collected at the LHC, i.e. at center 
of mass energies from 0.9 up to 13 TeV.

Inclusive particle multiplicity distributions are among the most basic global characteristics of high energy proton-
proton (pp)  collisions1, but have been proven to be difficult to describe or predict by standard Monte Carlo 
generator programs, such as  PYTHIA2 and  HERWIG3. The pp charged-particle multiplicity has been studied 
theoretically and experimentally at the Large Hadron Collider (LHC) in different experiments and for various 
colliding center of mass (CM) energies ( 

√
s)1,4–10. Charged-particle multiplicity distributions generated in these 

collisions in restricted pseudorapidity intervals ( |�η| ), i.e. the probability P(Nch,
√
s, |�η|) for producing the 

number of charged-particles in the final state ( Nch ), depends on the number of interactions between quarks and 
gluons confined inside the colliding protons, and the underlying mechanisms of particle  production11.

At LHC energies, pp interactions are dominated by soft QCD processes, i.e. interactions with small 
transverse-momentum ( pT ) transfer. Such interactions cannot be treated perturbatively but are modeled 
 phenomenologically12. These processes are very useful for studying QCD in non-perturbative regimes, tuning 
event generators and constraining the dynamics in phenomenological models. As the collision energy increases, 
the contributions from hard scattering processes increase which can be treated perturbatively. A generic term for 
such an experimentally collected event sample containing all produced events—soft and hard—is a minimum 
bias (MB) event sample. This is by itself is not a physics but an operational definition: the exact composition of 
the sample depends on the (minimum) requirements imposed to select the events in the experiment (e.g. it can 
be based on the amount of energy or number of particles observable in the experiment).

At the LHC, PYTHIA and HERWIG are the commonly used generators to describe the pp multiplicity distri-
butions at the various center of mass energies at which the collider has operated over the past years. Comparisons 
to data at the different CM energies show that it is very challenging to describe the charged-particle multiplicity 
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distributions with these models, despite the many tunable parameters available for the user. Moreover, we can-
not be sure how well these parameters allow to cover the underlying dynamics and its energy dependence of 
in particular these soft processes. Sufficiently accurate descriptions of multiplicity distributions are however 
important at hadron colliders where we can have, now and in the future, about 20 to perhaps a few hundred of 
such minimum bias events per bunch crossing overlapping with a collision of interest. These additional events add 
significantly to the occupancy in the detectors and affect systematical uncertainties of precision measurements. 
As soon as such future hadron colliders turn into operation the characteristics of MB events will be measured 
in a very early stage of the operation, but until then, studies on the capabilities of such a new machine will have 
to rely on model predictions.

Therefore we present in this study an alternative approach where we make no prior assumption on any under-
lying Monte Carlo generator model or tuning of parameters, but use a machine learning technique to construct 
“the model”. This is similar to the very successful parton density distribution (PDF) determinations technique 
used by the NNPDF  collaboration13, where instead of imposing explicit functional forms for the distributions at 
a starting scale, a neural network is used to provide that information, in order to reduce the source of potential 
bias from the initial assumptions.

The pT spectrum of final state charged hadrons is also an important observable in describing particle pro-
duction in pp  collisions14. As an example, the study of the pT spectrum in pp collisions offers a reference for the 
measurements of the suppression of high-pT particles (Jet Quenching) in a dense QCD medium produced in 
ion-ion  collisions15,16. A solid knowledge of the rates and characteristics of the particle production are mandatory 
to distinguish e.g. rare soft processes from the relatively huge backgrounds of hadronic  interactions17, which is 
one of the greatest challenges in these pursuits, and for extracting precision measurements from the data.

Since several years, particle physicists have continued to explore techniques to increase the analyzing power 
for measurements by using algorithms implementing multiple variables simultaneously. These so-called multi-
variate analyses  techniques18–20 have been shown to provide significant support for different challenges in data 
analysis but also have some important limitations, with increasing dimensionality of the problem.

The implementation of these advanced analysis techniques, such as Machine Learning (ML), the increasing 
computer power and tailored processors for the problem, and the emergence of Deep Learning (DL) techniques 
around  201221 provided tools that allowed to tackle complex problems without these previous limitations. In 
high energy physics, machine learning algorithms and techniques have been embraced early on for analyzing 
and collecting the huge amount of data produced by  colliders18; e.g. the LHC is presently one of the largest data 
volume generators. The role of these new powerful techniques is clear, namely revolutionizing the handling and 
interpretation of these huge data volumes, and allowing to extract detailed physics results with increased sen-
sitivity. These techniques are now considered essential tools at the LHC and have found important applications 
in data analyses, calibration, event triggering, flavor tagging, etc..20,25–31.

Recently, different algorithms and techniques based on Artificial Neural Networks, Genetic Programming and 
Machine Learning have been implemented for the studies as proposed in this paper, namely trying to explain, 
and modeling of, multiplicity distributions of hadron-nucleus22 and pp  interactions23,24. The motivation to use 
Artificial Intelligence and Deep Neural Networks (DNN) for such studies is its ability to learn the complex rela-
tion between input interaction variables and output observables that arise in pp collisions since such interactions 
are hard to describe due to the absence of the information on how to describe the quantity of interest with the 
relevant interaction variables  mathematically19, that the foundations for these techniques were proposed  in32–48.

The test we propose is to check to what extend suitable DNNs will allow to predict e.g. the multiplicity distri-
butions at other center of mass energies than those used in the learning process and provided no (significant) new 
physics processes set on in the new energy regime. In the example studied in this paper we use the multiplicity 
distributions of charged-particles simulated at energies where LHC collider has collected data. We check the 
ability to predict such distributions for both intermediate new energies and in a new regime reachable by possible 
future higher energies. Such higher energy extension could come from the CERN pp program by a High-Energy 
LHC Collider (HE-LHC) at e.g. 27 TeV that could be located in the present LHC tunnel, and be based on Future 
Circular Collider (FCC-hh) magnet technology currently under  development49. Furthermore, we include the 
proposed 100 TeV FCC-hh50, potentially to be built using a new accelerator ring with 100 km circumference. 
The predictions are obtained using LHC simulations for 0.9, 2.36, 2.76, 5, 7, 8 and 13 TeV as input to the model 
training, i.e. CM energies at which the LHC has operated so far.

The strategy of this study is as follows. This study is a proof of principle of the underlying idea using the 
PYTHIA event generator instead of real data. This has the advantage that a uniform analysis can be performed 
with the “data sets” of all CM energies and that these are also available to be used as inputs. Charged-particle 
multiplicity distributions from LHC data are not available yet for all CM energies.

We set up a machine learning configuration and train the network with the pp multiplicity and transverse-
momentum distributions of charged-particles generated using the PYTHIA event generator for seven increas-
ingly wider pseudorapidity intervals and for different center of mass energies corresponding to the energies that 
the LHC operated at untill 2018. We use corresponding CM energy settings for data sets that may be collected 
in the future to test and support our proposed technique. We check the quality of the resulting model’s ability 
to predict generator distributions at different CM energies, including how well these interpolate between the 
measurements already made and how well they can predict distributions for higher energies.

As mentioned, a practical application for a real world prediction would require to use as input actual meas-
urements based on data. At this point in time, these measurements have not been conducted for all CM energies 
at which the LHC was operated. Minimum bias charged-particle multiplicities distribution measurements do 
exist, and have been provided in particular by the CMS and ALICE collaborations over the last years. We hope 
that studies such as this one will strongly encourage that such measurements will be performed and published 
in future. Using such a method for predicting higher energies has the obvious drawback that if a strong new 
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physics process will set on in between the region of the measurements and the new energy, this method will 
obviously not make a correct prediction. But turning this argument around: such deviations, when compared 
with the future data can then point to something new!

This paper has six further sections. Section “Deep Neural Network“ introduces the basics of the DNN. Sec-
tion “Data preparation“ gives a summary of our method to collect and preparing data. Section “Prediction net-
work“ explains in detail our model for predictions. Sections “Results and discussion“ and “Conclusion“ discuss 
the results and the conclusion respectively.

Deep neural network
In ML modeling, an approximating function that describes the relation between inputs and outputs can be 
inferred automatically from the input data without providing explicit information about this function. The most 
powerful technique to infer an approximation f(x, w) of the unknown function f(x) is called supervised learn-
ing, in which the training process contains datasets that include inputs and the corresponding targets (desired 
outputs). The goal of learning is to determine the parameters w of the model, so we can obtain a functional 
approximation of the desired input-output map. In high energy physics, the training data is generally obtained 
from Monte Carlo  simulations18.

Feed-forward Neural Networks are the most popular and widely used multivariate  methods18. It contains 
an interconnected group of neurons ordered in sequential layers, where each neuron has a role to process the 
received information with what is called an activation function, see section “Results and discussion”, then the 
result is moved to the next layer of nodes. The first layer, which receives the input variables is called the input 
layer, followed by one or more hidden layers. The last layer is responsible for the final response of the neural 
network and is called the output layer. Each interconnection is specified by a weight and a bias, which are the net-
work parameters that are being learned and updated during the training process. A simple NN is shown in Fig. 1.

In Fig. 1, showing a NN that consists of one hidden layer of nodes and an input data layer with d feature 
variables (inputs) x = {x1, x2, ...xd} , the output of this network is

where g represents the activation function and bj is the output from the hidden neurons:

Where θj neuron bias, i is input number, and j is neuron number.

Data preparation
PYTHIA2 is a general-purpose Monte Carlo event generator that is actively used in particle physics in general, 
and for the LHC in particular. This generator has undergone decades of development and tuning to collider and 
other data.

The event generation consists of several steps starting typically from a hard scattering process, followed by 
initial- and final-state parton showering, multi-parton interactions, and the final hadronization process. PYTHIA 
uses different model approaches for these steps, e.g. it uses a pT-ordered perturbative  approach51 for modeling 

(1)f (x,w) = g



θ +
�

j

wjbj





(2)bj = g
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Figure 1.  A simple feed-forward Neural Network with three layers,  from18.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8449  | https://doi.org/10.1038/s41598-022-11618-6

www.nature.com/scientificreports/

of parton shower. The original impact parameter  model52 for multi-parton scattering and the Lund string frag-
mentation  model53,54 are used for the hadronization (fragmentation) of partons into hadrons.

The proton-proton collisions are generated in this work with the PYTHIA 8.18655 version of the program. The 
collisions are generated at 

√
s = 0.9, 2.36, 2.76 , 5, 7, 8, and 13 TeV, corresponding to the energies at which the 

LHC was operated from 2010 till 2018, in order to train and evaluate the model performance, and at the energies √
s = 10, 20, 27, 50, 100, 150 TeV in order to compare with the prediction of our model and to show its ability to 

predict event distributions at the energies that were not used to train on. Different model response functions are 
extracted for different pseudorapidity intervals. In total 50*106 collisions were simulated at 7, 8 and 13 TeV, and 
5*106 events were generated for other CM energy values, using default minimum bias generation settings of the 
generator, discussed below. The difference in the number of events was chosen to emulate the experimental situ-
ation where much larger data sets were collected at 7, 8 and 13 TeV at the LHC, than for the other CM energies.

The inelastic (diffractive and non-diffractive) proton-proton collisions were simulated using the PYTHIA 
Monash 2013  tune56. The Monash parameters are tuned such that these provide a reasonable description of 
the experimental data at LHC energies for the bulk of the minimum bias charged multiplicity distribution and 
several other event characteristics.

Minimum bias events and particles are selected in this study according to the following criteria. Each event 
must have at least one charged-particle in the final state which is emitted within the studied pseudorapidity 
interval and within the full acceptance of the azimuthal angle ( φ ), and with a minimum pT > of 400 MeV. The 
number of events that pass those selection criteria at the different energies and pseudorapidity intervals |�η| , 
i.e. starting the count of the number of particles from η = 0 to the different η limits at the negative and positive 
sides of the detector, are given in Table  1.

Prediction network
The software package used in this study for the modeling is  Keras57 version 2.4.3, which is an Open Source 
Library for Neural Network written in Python version 3.8.6 and built on top of  TensorFlow58 version 2.4.1. The 
importance of this tools is reducing the role of the physicist to choose an appropriate problem, data scaling and 
manipulation, DNN architecture, and training technique.

Several DNNs were tried to address the problem, with varying number of internal layers and neurons per 
layer. The DNN model found with inputs (Nch,

√
s, |�η|) that showed a very good agreement between the prob-

ability P and the charged-particle multiplicity ( Nch ) at different pseudorapidity windows ( |�η| ) and different 
collision energies ( 

√
s ) consists of an input layer with three inputs, two hidden layers with each 20 neurons and 

final output layer with only one output, see Fig. 2, and was chosen for this study. This model shows also an excel-
lent agreement for the transverse-momentum ( pT ) distributions but with input ( pT , 

√
s , |�η| ) and the output 

of the model trained on (1/Nev)dN/dpT which is the distribution giving the number of particles as function 
of pT , divided by the number of events which have at least one particle with pT > 400 MeV within the studied 
rapidity range.

The initial random weights and biases of the Keras layers are set using the “kernel_initializer” and “bias_ini-
tializer” to follow a normal distribution. The activation function implemented for the hidden layers is a hyperbolic 
tangent “tanh”59,60, namely f (x) = sinh(x)

cosh(x) =
ex−e−x

ex+e−x  , a nonlinear function to allow for a flexible modeling and 
the output ranges from −1 to 1. Furthermore, the activation function for the output layer is “linear”60, namely 

Table 1.  The number of events that pass the selection criteria at different energies and different pseudorapidity 
interval limits; m stated for million.

√

s

 The number of events * 106 at |�η|

0.5 1 1.5 2 2.5 3 3.5

0.9 2.9221 3.6344 3.9446 4.1190 4.2369 4.3264 4.3994

2.36 3.1444 3.7824 4.0500 4.1987 4.2999 4.3785 4.4435

2.76 3.1794 3.8044 4.0659 4.2105 4.3092 4.3854 4.4490

5 3.3099 3.8861 4.1253 4.2576 4.3471 4.4163 4.4745

7 (5m) 3.3748 3.9275 4.1567 4.2822 4.3673 4.4334 4.4893

7 (50m) 34.572 39.890 41.942 43.038 43.792 44.399 44.928

8 (5m) 3.4016 3.9440 4.1688 4.2917 4.3753 4.4402 4.4951

8 (50m) 34.818 40.049 42.064 43.137 43.874 44.469 44.987

10 3.4432 3.9710 4.1891 4.3084 4.3892 4.4520 4.5049

13 (5m) 3.4908 4.0017 4.2121 4.3270 4.4051 4.4659 4.5169

13 (50m) 35.680 40.596 42.481 43.483 44.170 44.720 45.198

20 3.6374 4.1042 4.2830 4.3775 4.4423 4.4940 4.5382

27 3.6836 4.1338 4.3053 4.3965 4.4585 4.5081 4.5507

50 3.7727 4.1911 4.3513 4.4357 4.4932 4.5388 4.5777

100 3.8611 4.2502 4.3987 4.4773 4.5299 4.5716 4.6069

150 3.9089 4.2819 4.4239 4.4995 4.5502 4.5897 4.6234
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f (x) = x . The role of the activation function is to analyze the total information received by the neuron and this 
determines the output information produced by the neuron in response to the input information.

The loss value, which quantifies the amount of information lost, used in this model is the mean absolute error 
(mae) between the true value and the predicted one. Mathematically, if γ is a vector of n predictions, and Y is 
the vector of n observed values, then:

The optimizer used for this model is the “Adam”61 optimizer with a 0.0005 learning rate. This optimizer is 
used for improving the speed and performance of the training of our model.

We further set the model “batch_size”=100 and in order to avoid over-training, we have used the EarlyStop-
ping  class62 with min_delta=e−5 and “patience” = 1000 in order to stop the processing after the model has reached 
the smallest loss value for the validation data.

The pp collisions generated by PYTHIA at 0.9, 2.36, 2.76, 5, 7 , 8 and 13 TeV are separated into two parts. Two 
third of the data is used for model training, and the other one-third is used for model validation. The number 
of events at those energies and different pseudorapidity windows are presented in Table 1 (for the transverse-
momentum only 5m data sets are used while for the multiplicity studies the 50m data sets were included).

The best prediction results are obtained when training the multiplicity model with 67% of 0.9, 2.36, 2.76, 
5, 7 , 8 and 13 TeV data but in case of the transverse-momentum a better training was achieved, with less bias, 
using training samples based on the same statistics and hence the samples with 5m collisions each at the different 
energies were used for this study.

The input values that are used to train the multiplicity model used are Nch ∗ 0.1 , 
√
s and |�η| and the output 

is P(Nch,
√
s, |�η|) . Empirically we found that using a reduced value range for Nch leads to more stable and lower 

bias results, as it keeps the range of inputs closer to each other, so there is no input intrinsically influencing the 
model behaviour strongly just as a result of its large value. The multiplicity and pT distributions cover several 
orders of magnitude in the bin population, hence for a more stable training procedure and in order to avoid 
large biases, the training is performed using the logarithms if the bin values for both studies. Furthermore, the 
number of events with a specific multiplicity must be larger than 10 in order to remove any fluctuations in the 
spectrum tails for the multiplicity model and the number of particles with a certain pT is larger than 100 for the 
transverse-momentum model.

The TensorFlow random seed values are set to one at the start, then the training is deployed until it reaches 
the value of the smallest loss value compared to validation data, and next the weights and biases that give the 
least loss are taken. For the comparisons, the results are shown using the original un-scaled values and will be 
discussed in the next section.

Next, the model is used to predict the energies at future collider energies, e.g. for an upgraded LHC to run 
at higher energy, i.e. 20 TeV and 27 TeV. Furthermore, this model can be tested for predictions for much higher 
energies, as expected at the Future Circular Collider (FCC) i.e. 100 TeV. We also test the predictive power for the 
highest imaginable energy to date for a 100 km ring if the technology would allow for producing 24T instead of 
16T magnets superconducting magnets, which would lead to collisions at 150 TeV. Such ideas have been men-
tioned as a possible –but yet to be demonstrated—upgrade option beyond the baseline for the SPPC machine in 
the Chinese future collider project  proposal63.

(3)mae = 1

n

n
∑

i=1

|γ − Y |

Figure 2.  A schematic diagram for our proposed neural network.
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Results and discussion
The performance of the model is found to be excellent for the multiplicity and transverse-momentum distribu-
tions, as demonstrated by the relation between the true output from PYTHIA and the one predicted by the model 
for training data in Fig. 3 and in Fig. 4 for validation data, both shown on a logarithmic scale.

Fits to a linear dependence are made using the fitting equation y=ax+b, where y and x are the predicted and 
actual values respectively. The fitting parameters (a,b) and R2 are given in the Table 2, where R2 is the so called 
coefficient of  determination64, which is a measure of the quality of fitting, and defined by:

where, yi is the true value, ŷi is the predicted value by the model and ȳ is the mean value of all yi values.
Another important and recommended test of the model quality is shown in Fig. 5 as the loss value of the 

training and the validation data is almost the same which demonstrates that this model doesn’t suffer from 
under/over fitting.

Figures 6 and 8 show the comparisons of the input data with the model predictions for the CM energies used 
in the training, and demonstrate the quality of the model learning for the multiplicity and transverse-momentum 
distributions respectively. For the multiplicity distributions the model correctly describes the distributions for 

(4)R2 =
∑

(

ŷi − ȳ
)2

∑

(yi − ȳ)2

(a) for multiplicity. (b) for transverse-momentum.

Figure 3.  The relation between the predicted and actual output for the training data.

(a) for multiplicity. (b) for transverse-momentum.

Figure 4.  The relation between the predicted and actual output for the validation data.
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all CM energies and pseudorapidity intervals. Expected fluctuations are seen at the high end of the multiplicity 
distributions due to limited event statistics in the samples. Similarly the transverse-momentum distributions 
are described with excellent quality, in all demonstrating that the DNN model used has the required flexibility.

The interesting part is now to check how accurate we can “predict” distributions for different CM energies, 
i.e. which are not included in the training sets. This is checked for a CM energy value within the range of the 
training sets (10 TeV), and for energy values outside but close to the training range, and values far away from the 
present range of operation of the LHC. As mentioned before this would be of interest for predictions for either 
possible new intermediate energy runs of the LHC, for runs with a possible CM energy for an upgraded LHC, 
or for new future high energy colliders. We do have to assume here that no new as yet unknown physics would 
set-on at these higher energies, which will significantly impact on these general inclusive variables.

The results are shown in Figs. 7 and 9 and demonstrates that the model gives in general an excellent agree-
ment comparing predicted with the true PYTHIA distributions for CM energies up to 50 TeV, while some mod-
est deviations are seen in case of highest energies tried at 100 and 150 TeV. For the multiplicity predictions in 
particular, the large Nch end the of distributions are less stable in that region. Similar effects are seen at the high 
pT end of the transverse momenta distributions.

In order to test the stability of our model, we have made for the multiplicity studies 50 independent tries, 
using a different splitting of the data into trained and validated sample and took the average of the tries as well 
as the envelope of the spread if the results, which are the curves shown on these figures. The small size of the 
envelope shows that the results are quite stable.

Furthermore, as mentioned before, we have tried a lot of different network configurations, by changing e.g. 
the number of layers and number of neurons per layer, different activation functions such as (sigmoid, tanh) and 
different type of optimizers but it appears that the structure that we used in the paper shows the best predictive 
power.

To check the quality of the predictions we compared the normalized sum of the difference between predicted 
and observed values for the multiplicity plots. The 10 TeV prediction gives comparable values as the ones from 
CM energy values used in the training, while the predictions for 50, 100 and 150 TeV are typically a factor of up 
to maximally 2 worse, but still of acceptable good quality.

A further test of the stability was made on using only two sets of energies 7 (50m) and 13 (50m) TeV and 
three sets (2.76, 7 (50m) and 13 (50m) TeV) as training sets for composing the multiplicity model. We found 
the results are already very stable and acceptable for higher energy predictions when using at least three sets of 
separate and spread-out energy values, see Fig. 10.

The final test of the model, to check if it has a bias to the PYTHIA generator, has been done using EPOS-LHC 
and HERWIG. The same technique has been applied with pT > 100 MeV/c. Because EPOS and HERWIG has 
larger generation time we have generated about 900k events at every energy just to check the model prediction at 

Table 2.  The fitting parameters regarding the multiplicity and transverse-momentum models both for training 
and validation represented in Figs. 3 and 4.

Multiplicity Transverse-momentum

a b R
2 a b R

2

Training 0.9992 ± 0.0004 −0.0020 ± 0.0014 0.9995 0.9982 ± 0.0005 −0.0056 ± 0.0018 0.9994

Validation 0.9981 ± 0.0005 −0.0037 ± 0.0021 0.9995 0.9992± 0.0006 −0.0028 ± 0.0024 0.9990

Figure 5.  The model training and validation data loss value.
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different generators. The model showed a relative good prediction with respect to the smaller number of training 
data both for EPOS and HERWIG, see Fig. 11.

The network structure of our model is of the form [3x20x20x1] for the structure in the different layers. We 
note that the output of this model can in principle directly be obtained by multiplying the data matrices with the 
derived weighting matrices and adding biases for each layer, which can be represented by the following equation:

where Y [1x1] is the output of our presented model, i.e. P(Nch,
√
s, |�η|) in case of multiplicity and (1/Nev).dN/dpT 

in case of pT modeling; X[3x1] is the input matrix, i.e. Nch ∗ 0.1 , |�η| and 
√
s for multiplicity and pT , |�η| and √

s in case of transverse-momentum. Here f1, f2 are the activation functions of the hidden layers which are the 

(5)Y [1x1] = f3(f2(f1(X
[3x1] ∗W [20x3]

1 + B
[1x20]
1 ) ∗W [20x20]

2 + B
[1x20]
2 ) ∗W [1x20]

3 + B
[1x1]
3 )

(a) for √s= 0.9 TeV. (b) for √s= 2.76 TeV.

(c) for √s= 5 TeV. (d) for √s= 7 TeV.

(e) for √s= 8 TeV. (f) for √s= 13 TeV.

Figure 6.  The DNN results in comparison with multiplicity distribution generated by PYTHIA at the training 
runs (0.9, 2.76, 5, 7, 8 and 13 TeV).
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(a) for √s= 10 TeV. (b) for √s= 20 TeV.

(c) for √s= 27 TeV. (d) for √s= 50 TeV.

(e) for √s= 100 TeV. (f) for √s= 150TeV.

Figure 7.  The DNN results in comparison with multiplicity distribution generated by PYTHIA for the 
untrained runs.
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(a) for √s= 0.9 TeV. (b) for √s= 2.76 TeV.

(c) for √s= 8 TeV. (d) for √s= 13 TeV.

Figure 8.  Transverse-momentum spectrum in between the Actual (Ac.) distributions generated by PYTHIA 
and Predicted (Pr.) by the model in case of the trained data (0.9, 2.76, 8 and 13 TeV).
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(a) for √s= 27 TeV. (b) for √s= 50 TeV.

(c) for √s= 100 TeV. (d) for √s= 150 TeV.

Figure 9.  Transverse-momentum spectrum in between the Actual (Ac.) distributions generated by PYTHIA 
and Predicted (Pr.) by the model in case of the untrained runs (27, 50, 100 and 150TeV).
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hyperbolic tangent functions (tanh) and f3 is the activation function of the output layer, a first-order polynomial. 
The matrix W [20x3]

1  is a 20 by 3 matrix representing the weights for the first hidden layer neurons, W [20x20]
2  is 20 

by 20 matrix for the second hidden layer neurons and W [20x1]
3  for the output layer. B[1x20]1  and B[1x20]2  are 1 by 20 

matrices representing the biases for the first and second hidden layers and B[1x1]3  is for the output layer neuron. 
These matrices can be found in 65.

Conclusion
We deploy machine learning techniques to build a model for the description of charged-particle multiplicity 
and transverse-momentum measurements in high energy pp interactions. Proton-proton collisions have been 
generated by the event generator PYTHIA at the energies at which the LHC operated so far to train the model 
and test its predictive power. A good ML structure that shows small loss value and leads to highly stable predic-
tions has been reported.

The model with the [3-20-20-1] structure, and tanh activation function in the hidden layer and a linear func-
tion for the output layer, shows an excellent agreement in comparison with the trained and untrained runs for 
all the seven pseudorapidity windows selected, with the coefficient of determination (see eqn. (4)) up to 0.9995 
in case of multiplicity and about 0.9990 in case of pT.

This model succeeded in providing good predictions for the charged-particle multiplicity and transverse-
momentum distributions at new center of mass energies. Hence such a procedure, when applied on real measured 
data at the LHC at the different energies could be used in studies for possible future CM energies, at the LHC 
or future hadron colliders, to give an initial idea of the to be expected particle density in future experiments.
Also, the model was tested by using Herwig and EPOS-LHC, it succeeded to get good prediction with respect 
to small number of generated events.

(a) for 7 (50m) and 13 (50m) TeV. (b) for 2.76, 7 (50m) and 13 (50m) TeV.

Figure 10.  Test of the multiplicity model prediction at 100 TeV when training on different number of energies.
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