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Active thermo‑reflectometry 
for absolute temperature 
measurement by infrared 
thermography on specular 
materials
Thomas Lafargue‑Tallet1,2, Romain Vaucelle3, Cyril Caliot4, Abderezak Aouali1, 
Emmanuelle Abisset‑Chavanne1*, Alain Sommier1, Raymond Peiffer2 & Christophe Pradere1

Knowledge of material emissivity maps and their true temperatures is of great interest for contactless 
process monitoring and control with infrared cameras when strong heat transfer and temperature 
change are involved. This approach is always followed by emissivity or reflections issues. In this 
work, we describe the development of a contactless infrared imaging technique based on the 
pyro‑reflectometry approach and a specular model of the material reflection in order to overcome 
emissivities and reflections problems. This approach enables in situ and real‑time identification 
of emissivity fields and autocalibration of the radiative intensity leaving the sample by using a 
black body equivalent ratio. This is done to obtain the absolute temperature field of any specular 
material using the infrared wavelength. The presented set up works for both camera and pyrometer 
regardless of the spectral range. The proposed method is evaluated at room temperature with several 
heterogeneous samples covering a large range of emissivity values. From these emissivity fields, raw 
and heterogeneous measured radiative fluxes are transformed into complete absolute temperature 
fields.

Knowledge of absolute temperature mapping is a key parameter in many industrial applications, such as addi-
tive manufacturing, material shaping, and thermal processes. Very often, the process itself or its environment 
(extreme conditions, temperature range, cluttering of the environment, etc.) do not allow contact instrumenta-
tion using conventional methods such as thermocouples, thermopiles or other intrusive techniques. Thus, for 
such applications, and more generally in the new con.text of the future 4.0 industry, it is necessary to be able 
to develop imaging contactless methods adapted to complex shapes and heterogeneous samples. Among the 
contactless methods in the infrared (IR) spectral range, pyrometry and thermography are the most popular 
and are based on radiometric methods and models. Then, regardless of the radiometric techniques used, the 
simple measurement of the flux emitted by a surface or a thermal scene does not easily allow determination 
of its absolute temperature. Indeed, as depicted in Fig. 1, the surface spectral and directional radiative proper-
ties depend on their optical properties (refractive indexes) and surface roughness and their variations due to 
temperature change. In addition to these properties, the radiative fluxes in a scene depend on the temperature 
field, the scene geometry and the participating atmosphere (which is considered transparent here). Thus, when 
considering only opaque surfaces (which is the case in this study), the radiative flux measured by any IR sensor 
(see Fig. 1) depends on emission, absorption, multiple reflection and multiple scattering. Even if one succeeds 
in controlling, measuring or determining all of these parameters, it is also important to obtain the calibration 
curve of the IR sensors, which has a nonlinear dependency on the absolute temperature.

In this context, and with regard to the literature, one can note that today, few experimental techniques allow 
for a simple, reliable, robust and precise measurement of the absolute temperature by contactless infrared sen-
sors, and more precisely by imaging methods based on IR cameras.

OPEN

1I2M TREFLE, UMR 5295 CNRS-UB-ENSAM, 351 Cours de la Libération, 33400 Talence, France. 2MBDA France, 
1 Avenue Réaumur, 92350 Le Plessis-Robinson, France. 3EPSILON - Groupe ALCEN, Esplanade des Arts et 
Metiers, 33405 Talence Cedex, France. 4Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Anglet, 
France. *email: emmanuelle.abisset-chavanne@ensam.eu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-11616-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7814  | https://doi.org/10.1038/s41598-022-11616-8

www.nature.com/scientificreports/

Indeed, pyrometric measurements of radiance to determine temperature have been performed for  decades1. 
From the beginning, the characterization of emissivity has always been a major  issue2. To overcome this issue, a 
 bichromatic3 pyrometer has been implemented, which has been extended to a multispectral  pyrometer4,5. These 
methods assume that the evolution of the emissivity between nearby wavelengths is constant or known. In addi-
tion to radiance measurements, the evaluation of the directional hemispherical  reflectivity6 was introduced to 
deduce both emissivity and  temperature7–10. The adjustment of these methods for matricial sensors is still an 
ongoing endeavour. To do so, in early 2000, the pyro-reflectometry9,11 method was proposed by pioneer and 
adapted to an infrared camera with the thermo-reflectometry  method12,13, which requires the measurement 
of bidirectional reflectivity at two specific wavelengths in the near-infrared (NIR) region and assumes that the 
bidirectional reflectance distribution function (BRDF) is constant between nearby wavelengths. Others method 
are based on correlation between visible and infrared observation. This method use teaching  learning14 algorithm 
or cross correlation invariant coefficient between both  spectrum15. Vellvehi et al.16 conducted irradiance-based 
emissivity correction based on two reference thermal images obtained at two uniform temperatures.

In addition to the work carried out on emissivity correction, some methods have been developed to estimate 
parasitic reflection that occurs during temperature measurement in highly reflective  scenes17,18 at high tempera-
tures. This method are based on radiation  models19. Other method had been developed by  Vollmer and al.20 by 
studying the polarisation of reflection in order to set up a polariser filter. Other methods have been implemented 
for infrastructure surveillance (especially tunnels) to eliminate reflections from the environment using a mobile 
camera and a dedicated  algorithm21.

If the use and the technology offered by IR cameras are in full development and implementation today. The 
analysis of the state of the art highlights the great difficulty of obtaining a robust and real-time measurement of 
the absolute temperature of thermal scenes acquired with IR imagers in a simple way overcoming both reflection 
and emissivity problems. In this article, a method answering this issue is presented on any specular material in 
infrared wavelength.

This model, which is widely applicable in the industry in regards of proposed roughness and flatness allows to 
determine both experimentally emissivity and reflexions without any assumption. The ease of set up realization 
as well as the ease of implementation (subtraction or division of images) make it an easy and versatile method 
transposable in industrial process .

In this article, a method of simultaneous measurement of emissivity maps by multispectral thermo-reflec-
tometry and raw radiative intensity by IR thermography is presented. This work is based on the development 
of a new measurement system based on an active optical approach that consists of illuminating the objects by 
means of black body beam sources expanded on the surface of the materials with incidence normal to the sur-
face or thermal scene to be measured. This source coupled with methods known as 2  images22,23 (by means of 
a mechanical chopper) will allow the simultaneous measurement of the normal reflectivity of the object to the 
multispectral source, as well as its own proper emission at the classical frequency of acquisition of current cam-
eras. This approach, coupled with a specific calibration of the environment and associated with a method based 
on a model of specular reflection of surfaces, will allow for obtaining emissivity fields in real time. Knowledge 
of these fields associated with the measurement of the radiative intensity and a black body calibration will allow 
determination of contactless absolute temperature fields.

This work presents (i) a description of the method via a formal development based on radiative transfer and 
the notion of the bidirectional reflectance distribution function (BRDF) and (ii) a presentation of the samples 
used, as well as the measurement device. Then, in the second part, the different calibration methods of the camera, 
the measurements and the environment will be presented, and validation will be presented through an example 
of a specular homogeneous medium. Finally, in the last part, the application of the method is carried out on two 
metallic samples with very different surface heterogeneities ranging from black to polished metal.

Material and method
Experimental set‑up. The complete setup used to measure the normal radiative intensity leaving a sample 
is described in Fig. 2. The experimental bench is composed of (1), a multispectral black body source (1: CN-MT 
provided by Prisma Instrument) whose temperature range extends from 20 to 500 ◦ C. In this study, the tem-

Figure 1.  Schema of the main difficulties in the contactless measurement of a thermal scene by using IR 
thermography.
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perature set point was 200 ◦ C. The first advantage of the black body illumination source is the ability to adjust 
the illumination’s power according to the signal needed to reach a good measurement in term of signal to noise 
ratio (few reflectance or high temperature specimen). The second advantages is that this equipment emits overall 
the IR spectrum and multiple cameras can be used according to the best spectral range in term of materials or 
sensitivity. A chopper (2) is used to modulate the intensity of the beam in lock-in mode. Typically, the frequency 
modulation ( fBB ) was set to 50 Hz, whereas the camera frequency acquisition ( facq ) was set to double this value. 
A pair of parabolic mirrors (3 and 4) is used as an optical doublet to image a plane of the black body cavity onto 
the sample plane. The object plane (black body cavity) of the doublet is imaged on the image plane (sample) with 
a theoretical magnification of 2. As the diameter of the black body cavity is approximately 25.4 mm, the beam 
that illuminates the sample surface reaches a theoretical diameter of 50 mm. Mirror (3) is a 15◦ gold-coated off 
axis with a focal length of 645,92 mm, whereas mirror (4) is a 15◦ off axis with a focal length of 542,92 mm and 
has a silver coating. As the optical set up contains only mirror, there is no chromatic aberration. The IR camera 
(5), model SC7000 (synchronized with the optical chopper: facq = 2 fBB ), has an InSb sensor (2,5–5,5 µm ) with 
a frame resolution of 320 × 256 pixels and a pitch of 30  µm and is equipped with a 50  mm focal lens for a spatial 
resolution of 300µm . The beam splitter (6) (with 50% transmissivity, 50% reflectivity) is used to both normally 
illuminate the sample and to record the normal radiative intensity leaving the sample with the IR camera. A 
motorized rail (8) allows linear motion of the reference mirror (9) and the sample (10). Both are mounted with 
particular attention on coplanar alignments that are normal to the camera and beam axis.

Due to the beam splitter, the camera field of view is the superposition of the sample plane (transmitted by the 
beam splitter) and the beam dump (reflected by the beam splitter) plane. To minimise the beam dump partici-
pation, it is positioned far from the camera focal plane and painted with an absorbing black paint to avoid any 
reflection. The specimen is placed 1300 mm away from the camera.

Presentation of the samples. As depicted in Fig. 3, two different opaque metallic samples were used in 
this study. The first picture in Fig. 3.a represents the first sample, which is a stainless steel cubic sample with two 
different surface treatments: (i) a rough part (Fig. 3.a.1) and (ii) a laser polished surface (Fig. 3.a.2). A detailed 
description of the samples is given  in24. The second sample (see Fig. 3.b) is homemade heterogeneous aluminum 
divided into three parts: (i) is a raw surface (Fig. 3.b.1); (ii) is uniformly painted in black (Fig. 3.b.2); and (iii) 
is speckled with the same paint (Fig. 3.b.3). The paint used is a matte black (RAL 9005) whose emissivity was 
estimated to be approximately 0.92, as depicted in  reference25. The size of both samples is approximately 60 mm 
square.

Black body calibration. Whatever the kind of infrared sensor we used, the raw data measured are pro-
vided in Digital Level (DL). This arbitrary unit is proportional to the radiative intensity ( Ib : W .m−2.sr−1.µm−1 ) 
of the black body under certain conditions of temperature ( Tb : K), integration time (IT, tIT : µs ), optics, etc. Ib and 
Tb are both linked by Planck’s law described in Eq. 1:

Figure 2.  Schematic representation of the experimental setup.
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Where h is the Planck constant ( m2.kg .s−1 ), kB is the Boltzmann constant ( W .m−2.K−4 ), c is the speed of light 
( m.s−1 ) in air and � is the wavelength ( µm).

Thus, even without making assumptions regarding the surface conditions and/or other problems of sample 
emissivity, the first step is the calibration of the camera to determine the relation between the measured DL and 
the true temperature of a black body. This step can be performed by the camera supplier, but in our case, the 
option of self-calibration of the entire measurement chain has been retained (see Fig. 4). The literature regarding 
IR camera calibration is  abundant26–32. There are multiple parameters influencing the calibration, such as the 
object-to-camera  distance33, the object  orientation34, the detector  type26,35 and the  magnification36.

As described in Fig. 4, the experimental setup used for the calibration phase is a part of the complete setup 
shown in Fig. 2. This method allows us to integrate all the reflections, especially the absorption of the radiative 
intensity emitted by the objects through the separating plate.

Indeed, the calibration setup takes into account the transmissivity of the beam splitter ( τbs ) and the back-
ground reflected by the beam splitter ( Ibs is considered negligible because it is far from the sharp field of view 
of the camera).

The camera transfer function (f) is unknown (described in Eq. 2) and dependent on τbsIb and the black body 
temperature T. One must find a direct link between T and DL through the calibration (g) described in Eq. 4.

The calibration procedure includes integration times varying from 10 to 200 µs and temperatures from 20 to 
800 ◦ C. Then, a set of curves is obtained describing the temperature in terms of DL for multiple integration 
times, as shown in Fig. 5.

As one can observe in Fig. 5, the camera response seems to be a linear function of the integration time with 
temperature dependencies of the slope coefficient and the origin ordinate, as written in Eq. 5.

The temperature evolution of the coefficient of the linear regression of Eq. 5 is reported for the slope and the 
origin ordinate in Fig. 6.

The origin ordinate is considered constant and averaged. The slope coefficient is fitted with ( p2 ), a polynomial 
interpolation of order 2. Thus, Eq. 5 can be written as (see Eq. 6).

(1)Ib(�,T) =
2 h c2

�5

1

e
h c

�TkB − 1

(2)DL =f
(

τbs Ib(T , �)
)

(3)T =g(DL)

(4)f = a(T) tIT + b(T)

Figure 3.  Photography of the sample characterized in this paper: (a) two-part stainless steel sample with (1), a 
textured surface with an apparent roughness of 6 µm and (2), polished surface with a roughness of 320  nm24 and 
(b), three-part aluminum sample with (1), raw surface, (2), black painted surface with 0.92 emissivity and (3), 
surface speckled with the same black paint.
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Once this transfer function is obtained, we must identify the temperature as a function of DL (g). To do so, 
thanks to Eq. 6, one can create an abacus of curves for each IT that one has not measured. For each one, a fit is 
determined and stored as calibration (g).

To finish, in order to validate the calibration, one can project the obtained fit on different known experimental 
points, as shown in Fig. 7. In this case, the relative mean deviation is approximately 0.8 %.

Radiative model
Description of the model. The problem of contactless measurement of absolute temperature by an IR 
camera is a rather complex problem that we illustrate by the diagram in Fig. 8. Indeed, the raw data expressed 
in digital levels (DL) measured by an IR camera are derived from the incident radiation on the camera detector, 

(5)f = p2(T) tIT + 272

Figure 4.  Experimental setup during calibration procedure.

Figure 5.  Set of curves obtained during black body calibration.
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which comes from emission, transmission and multiple reflections occurring inside the studied scene (Fig. 8). 
These DL are then converted to temperature using calibration curves identified with a black body (see Sect. 2.3).

Considering a transparent atmosphere and opaque surfaces, the radiative intensity leaving a surface ( Il : 
W .m−2.sr−1.µm−1 ) at �x (with outward normal �n ) and incident to the camera in direction �ωr (Fig. 8) is the sum 
of emitted ( Ie : W .m−2.sr−1.µm−1 ) and reflected ( Ir : W .m−2.sr−1.µm−1 ) radiative intensities (see Eq. 7). Both 
quantities depend on the local temperature since emissivity, reflectivity or Planck’s law depend on it.

Due to the beam splitter (Fig. 2) in the optical path from the sample to the IR camera, the monochromatic 
radiative intensity arriving at the camera ( Il ) results in the superposition of the radiative intensity leaving the 
sample surface at �x towards the camera (Eq. 7, which is transmitted by the beam splitter, τbs ) and the background 
radiative intensity reflected by the beam splitter. This background intensity, Ibd , comes from the beam dump 
emission and reflections.

Because the beam dump is positioned far from the camera sharp field of view, one can consider that Ibd is neg-
ligible ( Ibd ≈ 0 ). The radiative intensity emitted by any kind of opaque body in a direction �ωr is the product of 
the black body radiative intensity (Eq. 1) and the directional emissivity ( ε′ ) (Eq. 9):

(6)Il(T(�x), �ωr , �) =Ie
(

T(�x), �ωr , �
)

+ Ir
(

T(�x), �ωr , �
)

(7)Il
(

T(�x), �ωr , �
)

= τbs

[

Ie
(

T(�x), �ωr , �
)

+ Ir
(

T(�x), �ωr , �
)

]

+ Ibd

Figure 6.  Temperature evolution of the coefficient of the linear regression of Eq. 5.

Figure 7.  Complete calibration curve linking the DL measured by the IR camera with absolute black body 
temperature as a function of the IT.
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The directional emissivity ε′ of an opaque surface is related to the directional-hemispherical reflectivity ρ′∩37,38 
by Kirchhof ’s law, Eq. 10, whereas the relationship between ρ′∩ and the BRDF ( ρ′′ ) is given in Eq. 11:

where � is the solid angle (sr). As already presented in the  literature39,40, Ir is the reflected radiative intensity at 
�x in the direction �ωr and coming from incident directions �ωi:

where Il
(

T(�x′), �ωi , �
)

 is a radiative intensity coming from the surroundings towards the sample and origi-
nates from �x′ due to multireflection and emission in the thermal scene. This quantity will be named 
Iscn = Il

(

T(�x′), �ωi , �
)

.
Based on Eqs. 9–12 and considering that the camera is perpendicular to the sample ( �ωr =⊥ ), Eq. 8 can be 

written as Eq. 13 ( Ibs = 0).

From the general equation of the mixed emission reflection problem presented in Eq. 13, one can understand that 
the encountered problem is strongly linked to the directional aspect of the reflected luminous beam. We soon 
understand the complexity of the problem. Indeed, to access ρ⊥∩ and Ir , one must determine all BRDFs. As this 
value depends on many parameters (temperature, surface condition, etc.), the measurement of the BRDF should 
be conducted as soon as those parameters vary, which is not suitable experimentally. Thus, one must find a way 
to ease the problem. An easy and versatile approach is to consider only specular reflection. This hypothesis is 
valid if the studied wavelengths are larger than the surface  roughness41. This assumption is fortunately applicable 
in many cases because IR cameras work with long wavelengths.

Remark To ensure that this condition is met, it is possible to magnify the difference between the wavelength of 
the camera and the surface roughness. To do so, one can use a camera with an MCT or SLS sensor that works at 
longer wavelengths ( 8− 14 µm ), or polish the surface. The literature shows  that42 reflection can be considered 
mainly specular if the wavelength is five time higher than the root mean square surface roughness.

Thus, we introduce a Fresnel  model43 described in Eq. 13, where Fr(⊥) is the normal Fresnel reflectivity 
dependent on the incident angle; �R( �ωi , �n(�x)) is the specular direction from the incident direction �ωi and the 
surface normal �n(�x) and ρ′′

F is the Fresnel BRDF.

(8)Ie
(

T(�x), �ωr , �
)

= ε′
(

T(�x), �ωr , �
)

Ib
(

T(�x), �
)

(9)ε′
(

T(�x), �ωr , �
)

=1− ρ′ ∩
(

T(�x),−�ωr , �
)

(10)ρ′∩
(

T(�x), �ωi , �
)

=

∫

2π

ρ′′
(

T(�x), �ωr | �ωi , �
)

|�n · �ωr | d�( �ωr)

(11)Ir
(

T(�x), �ωr , �
)

=

∫

2π

ρ′′
(

T(�x), �ωr | �ωi , �
)

Il
(

T(�x′), �ωi , �
)

|�n · �ωi| d�( �ωi)

(12)

Il
(

T(�x),⊥, �
)

= τbs

[

(

1−ρ⊥∩)Ib
(

T(�x), �
)

+

∫

2π

ρ′′
(

T(�x), �ωr | �ωi , �
)

Iscn
(

T(�x′), �ωi , �
)

|�n · �ωi| d�( �ωi)

Figure 8.  Schematic of the radiative problem of an opaque body at ambient temperature placed into an 
environment with notations used for ray reflection on an elementary surface at �xi (incident direction �ωi , 
reflected direction �ωr).
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Considering the sample as an optical mirror with unknown reflectivity implies that for a given �ωr , there is only 
one �ωi for which ρ′′

F (�x, �ωr | �ωi , �) �= 0 . In the specific case of a normal reflection ( �ωr =⊥ ), the only incident 
direction ( �ωi ) for which ρ′′

F (⊥ |�ωi , �x, �) �= 0 is the normal incident direction ( �ωr = �ωi =⊥ ). Thus, the specular 
BRDF expression (Eq. 13) is replaced in Eqs. 11 and 12 to lead to Eqs. 14 and 15, respectively. To simplify the 
notation, ρ′′

F (�x,⊥ | ⊥, �) will be denoted ρ⊥
F (�x, �):

Based on Eqs. 14 and 15, Eq. 12 can be written as:

As the camera integrates the radiative intensity field on its wavelength range [ �1 , �2 ] and a tiny opening angle 
��⊥ around the sample’s surface normal, one can introduce the radiative flux measured by a camera pixel q̇l 
as follows:

Illustration of the model for numerical cases. Four numerical examples of thermography measure-
ments are presented that implement the radiometric model described in Eq. 17. To represent cases of interest, a 
metal object at 300 K with a specular (optically smooth) surface is considered. The emissivity field is extracted 
 from44. Figure 9.a shows the emissivity field, and Fig. 9.b shows the histogram of emissivity values.

The surrounding radiation coming from the scene is assumed to be given by Planck’s law at a uniform constant 
temperature, which can lead to three different cases. 

1. The environment is at a lower temperature than the studied sample: Ie(T(�x)) > Iscn(T(�x
′)) . To illustrate 

this situation, one can simulate a surrounding field at homogenous temperature (290 K), which carries a 
radiative intensity field 1.28W .m−2.sr−1.

2. The surroundings have a temperature similar to that of the sample: Ie(T(�x)) ≈ Iscn(T(�x
′)) . To illustrate 

this situation, one can simulate a surrounding field at homogeneous temperature (300 K), which carries a 
radiative intensity field 1, 87W .m−2.sr−1.

3. The sample is at a lower temperature than the surrounding sample: Ie(T(�x)) < Iscn(T(�x
′)) . To illustrate this 

situation, one can simulate a surrounding field at homogenous temperature (350 K), which carries a radiative 
intensity field 9, 1W .m−2.sr−1.

A more realistic simulation of the surrounding environment considers multiple sources with a high variability 
of optical properties. This is the subject of the fourth simulated case where the heterogeneous surrounding field 

(13)ρ′′
F (�x,⊥ |�ωi , �) =

Fr(�x,⊥, �) δ
(

⊥ −�R( �ωi , �n(�x))
)

|�n(�x)· ⊥|

(14)ρ⊥∩
(

T(�x), �
)

= ρ⊥
F (T(�x), �)

(15)Ir
(

T(�x),⊥, �
)

= ρ⊥
F (T(�x), �) I

⊥
scn

(16)Il
(

T(�x),⊥, �
)

=τbs

[(

1− ρ⊥
F

(

T(�x), �
)

)

Ib(T(�x), �) + ρ⊥
F

(

T(�x), �
)

I⊥scn

]

(17)q̇l
(

T(�x),⊥
)

=

∫

��⊥
d �ωr

∫

�2

�1

τbs

[

(

1− ρ⊥
F (T(�x), �)

)

Ib(T(�x), �) + ρ⊥
F

(

T(�x), �
)

I⊥scn

]

d�

Figure 9.  Presentation of the numerical study: (a) emissivity field, (b) histogram of emissivity.
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carries a radiative intensity field between 9, 1 and 14 W .m−2.sr−1 . For each configuration, the radiative fluxes are 
obtained by integration of the radiative intensity between �1 = 2, 5 µm and �2 = 5 µm to simulate an IR camera 
sensor. The surrounding radiative fluxes detected by the camera through a perfect mirror ( ̇qrm : corresponding 
to the second term of Eq. 17) are presented in Fig. 10.a for the first configuration and Fig. 10.b for the fourth 
case. The surrounding radiative fluxes detected by the camera through the heterogeneous specular sample ( ̇qrs ) 
are shown in Fig. 10.c for the first configuration and Fig. 10.d for the fourth case. Based on the emitted ( Ie ) and 
reflected ( Ir ) intensities, the radiative flux leaving the sample ( ̇qls = q̇l/��⊥ ) is computed for the four different 
(see Eq. 14) cases, as depicted in Fig. 11.

At this step, there is an unlikely conclusion. Indeed, if the surrounding irradiation is at the same tempera-
ture as the studied sample, the signal of the camera is uniform and correct on the whole image (case 2, Fig. 11). 
However, the measure is totally false because of the emissivity and the multiple reflections. This phenomenon 
can be explained with Eq. 17. Indeed, by considering Ib ≈ I⊥scn , Eq. 17 can be written as Eq. 18.

Thus, the reflected flux compensates for the emitted flux variation (due to emissivity), and the signal given by 
the camera is uniform. Although this case is numerical and the field obtained is perfectly homogeneous, it is 
representative of many experimental cases at room temperature with camera images being almost homogene-
ous despite heterogeneous emissivity fields. In this specific case, the measured field temperature seems almost 
constant and correct, whereas the measurement is biased by reflection.

(18)q̇ls
(

T(�x),⊥
)

≈

∫

��⊥
d �ωr

∫

�2

�1

d� τbs

[

Ib(T(�x), �)

]

Figure 10.  Surrounding radiative fluxes detected by the camera through a perfect mirror, (a) and (b), or 
through the heterogeneous sample, (c) and (d), in a homogeneous irradiation configuration (290 K), (a) and (c), 
or in a heterogeneous irradiation case, (b) and (d).
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On the other hand, in the other cases, one can clearly see that the radiative intensity leaving the sample is 
not sufficient to measure the temperature. For those reasons, we have developed a new method called Active 
Thermo-Reflectometry ( ATR), which is presented in the following.

Method presentation. The ATR method searches to identify T(�x) from the radiometric model of Eq. 17. 
To achieve this goal, the proposed method includes 6 steps: 

1. Determine a black body calibration relationship to link 
∫

d� τbs Ib
(

T(�x),⊥, �
)

 to T(�x),
2. Acquire a raw image of the sample: q̇ls

(

T(�x),⊥
)

,
3. Estimate the scene’s reflection on the sample: 

∫

d� τbs Iscn,
4. Estimate the sample’s normal-normal reflectivity: ρ⊥

F,s,
5. Compute the sample’s transmitted emittance: q̇es
6. Compute the sample’s transmitted black body emittance q̇bs
7. Infer the sample’s true temperature with its emissivity and black body calibration.

The first and second steps have been described previously. Indeed, camera calibration is introduced in Sect. 2.3, 
and the acquisition of q̇l is the raw image produced by the IR camera. In the third step, the radiative contribu-
tion ( Iscn ) of the surroundings is searched. To this aim, since the sample is assumed to be specular, we introduce 
q̇m,1 , which corresponds to the pixel-based camera response during the closed chopper position when imaging 
the reference mirror.

Figure 11.  Radiative flux leaving ( ̇qls ) the sample (300 K) with different black body equivalent temperatures of 
the surrounding scene: (a) uniform at 290 K; (b) uniform at 300 K; (c) uniform at 350 K; (d) heterogeneous case.
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Where �1 and �2 are the bounds of the camera spectral window, ��⊥ corresponds to a pixel solid angle and ρ⊥
F,m 

is the mirror’s specular reflectivity. By considering the reference mirror with ρ⊥
F,m ≈ 1 , its thermal emission may 

be neglected, and Eq. 19 can be simplified to:

To estimate q̇m,1 , the reference mirror has to be placed in the exact same position and orientation as the sample. 
The fourth step is a key one. To determine the sample’s specular reflectivity, we introduce q̇s,1 and q̇s,2 that repre-
sent the pixel-based camera response with the chopper in closed or open positions, respectively. To express q̇s,2 , 
we introduce the nearly collimated radiation I⊥BB coming from the black body at a normal incident angle. Under 
these conditions, q̇s,1 and q̇s,2 are expressed in Eqs. 21 and 22.

Then, the subtraction of the image taken without the reflection of the black body source on the sample ( ̇qs,1 ) 
from the image with the source reflection ( ̇qs,2 ) results in the elimination of the reflection of the surroundings 
and the sample’s thermal emission:

To evaluate IBB , an additional measurement is performed on a reference mirror with a known reflectivity ρ⊥
F,m 

considered equal to unity:

The ratio of these differences (Eqs. 23–24) is used to evaluate the specular normal–normal reflectivity of the 
sample ( ρ⊥

F,s).

This ratio corresponds to the averaged sample reflectivity weighted by the radiative intensity of the black body 
source and is denoted ρ̃⊥

F,s.
To achieve the fifth step, the radiometric equation (Eq. 17) needs to be solved to obtain the black body radia-

tive intensity of the sample. This requires the knowledge of ρ⊥
F,s (Eq. 25) and I⊥scn (Eq. 20) and the assumption that 

ρ⊥
F,s is constant inside the wavelength range [ �1 , �2 ], leading to ρ⊥

F,s = ρ̃⊥
F,s . Thus, an expression of the sample’s 

emittance q̇es transmitted to the camera in its spectral window may be written as:

and computed with Eq. 21, where the reflected surrounding radiative flux is removed using the reflectivity and 
Eq. 20:

The sixth step consists of dividing the sample transmitted emittance ( ̇qes ) by the constant sample emissivity 
( 1− ρ̃⊥

F,s ) to compute the transmitted black body emittance ( ̇qbs  ) expressed in Eq. 28.

(19)q̇m,1
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The last step makes use of the measured reflectivity and the previously recorded calibration relationship, Eq. 3, 
linking the sample’s true temperature to the sample’s black body equivalent emittance ( ̇qbs  ) transmitted to the 
camera (Eq. 2).

Numerical validation of ATR . The example studied in Sect. 3.2 will be used to numerically validate the 
ATR method. The illumination beam ( IBB ) is simulated with normally collimated black body radiation at 400 K. 
Figure 12 shows the experimental part of the ATR method with the simulated infrared images of a heterogene-
ous specular sample and a reference mirror (steps 2, 3 and 4).

Figure 13 corresponds to the method data processing. Fig. 13.a corresponds to the measurement of ρ̃F,s 
described in step 4, where the division of q̇s,2 − q̇s,1 (Fig. 12.a.3) by q̇m,2 − q̇m,1 (Fig. 12.b.3) is performed. Fig-
ure 13.b illustrates the measured emissivity maps obtained with Eq. 9. The determination of q̇es (fifth step) is 
realized with q̇s,1 (Fig. 12.a.1), q̇m,1 (Fig. 12.b.1) and ρ̃F,s (Fig. 13.a) and shown in Fig. 13.c. Then, the black body 
equivalent emittance ( ̇qbs  ) was determined using q̇es and the emissivity maps ( 1− ρ̃⊥

F,s ) described in Fig. 13.d.
As one can observe, the obtained emittance is constant along all specimens. Then, with the calibration curves, 

one can identify the temperature from q̇bs  (Fig. 13.d). In this section, the steps of the ATR method are introduced 
in a theoretical study, whereas in the next section, they are applied to experimental images of actual samples.

Results and discussion
Stainless steel metallic sample. This section shows the development of the ATR method based on the 
stainless steel metallic samples presented in Fig. 3.a. Figure 14 shows the results of step 2 in the ATR method with 
the recorded thermographic images for both the sample and reference mirror.

Figure 14.a.1 shows the raw DL (proportional to q̇s,1 ) for the sample one. There are two parts in Fig. 14.a.3 
corresponding to the rough (left) and laser polished (right) surfaces. Figure 14.b.1 shows q̇m,1 ), where a cold 

(29)T(�x) = g

[

f
(

q̇bs
)

]

Figure 12.  Simulated camera response (step 2 of ATR) for a heterogeneous sample (a) and a reference mirror 
(b): (a.1) radiative image from the sample q̇s,1 ; (a.2) radiative image from the illuminated sample q̇s,2 ; (a.3) 
difference between both images q̇s,2 − q̇s,1 ; (b.1) radiative image from the mirror q̇m,1 ; (b.2) radiative image from 
the illuminated mirror q̇m,2 ; (a.3) difference between both images q̇m,2 − q̇m,1.
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spot is visible due to the cooled camera  narcissus45, which is also present in Fig. 14.a.1. Figure 14.a.3,b.3 show 
the transmitted reflections of the black body source for the sample and the mirror. Small heterogeneities of the 
source illumination are detected in Fig. 14.b.3 and are due to black body cavity heterogeneity. When the beam is 
reflected by the sample (Fig. 14.a.3), two surface treatments clearly appear. Based on the results of Fig. 14.a.3,b.3, 
the sample’s reflectivity and emissivity may be computed (step 4 of ATR), resulting in the radiative properties 
presented in Fig. 15.a,b.

Figure 15.a indicates that the polished part (on the right) of the sample is more reflective than the rough part. 
Based on the results of Fig. 15.a, the average total reflectivity and its standard deviation are computed for each 
part and gathered in Table 1. From Fig. 14.a.1, the polished part (on the right) of the sample appears warmer 
than the rough part, whereas the sample is isothermal.

Figure 16.a presents the results of the ATR fifth step, q̇es , and the transmitted black body sample emittance in 
Fig. 16.b (sixth step). The rough part in Fig. 16.a corresponds to the region at 2500 DL, and the laser polished 
part is at 1000 DL. This is particularly interesting because it is opposed to the raw DL (Fig. 14.a.1), where reflec-
tion is dominant compared to emission.

As expected, q̇bs  appears to be quasi-isothermal after correction by the sample’s emissivity (Eq. 29), and there 
is continuity between both rough and polished parts. Nevertheless, one can observe a brighter stain and some 
vertical lines on the polished part. The vertical lines are due to the laser path of the polishing process described 
in Fig. 3, which introduces errors in the reflectivity measurement that are amplified for highly reflective mate-
rials. Moreover, the brighter stain in the polished part of the sample is due to a failure with respect to camera 
narcissus attenuation.

Figure 17.a presents a map of the measured true temperatures computed with ATR, and Fig. 17.b shows a his-
togram of the measured temperature distribution obtained with ATR or emissivity correction only ( ̇qes/(1− ρ̃⊥

F,s) ), 
not accounting for the surrounding reflection. With ATR, it is difficult to distinguish the temperature differences 
between the polished and rough parts. In addition, the error due to the narcissus has a negligible effect on the 
temperature evaluation. However, when applying the emissivity correction, even if the emissivity is known, the 

Figure 13.  Illustration of the ATR method (a) ρ̃⊥
F,s ; (b) emissivity (1− ρ̃⊥

F,s) ; (c) q̇es ; (d) q̇bs .
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Figure 14.  Camera measurements (step 2 of ATR) on the stainless steel metallic sample (a) and on the 
reference mirror (b): (a.1) q̇s,1 ; (a.2) q̇s,2 ; (a.3) q̇s,2 − q̇s,1 ; (b.1) q̇m,1 ; (b.2) q̇m,2 ; (a.3) q̇m,2 − q̇m,1.

Figure 15.  Measured sample radiative properties (step 4): (a) reflectivity ρ̃⊥
F,s ; (b) emissivity (1− ρ̃⊥

F,s).

Table 1.  Measured effective reflectivity on stainless steel sample.

Rough part Polished part

ρ̃⊥
F,s

0.16 0.68

Standard deviation 0.02 0.12
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two parts are distinct. The measured temperature on the rough part fluctuates between 21.5 and 22.5 °C, whereas 
the measured temperature on the polished part is completely heterogeneous. The ATR method is found to be 
superior to the standard emissivity correction approach for specular materials at ambient temperature.

Remark In this specific case, the assumption of a sample’s surface roughness being smaller than the wavelength 
is not satisfied for the rough part. Nevertheless, the results show that the reflections are mostly specular. If this 
had not been the case, one would have underestimated ρ̃⊥

F,s on this part. Thus, the corrected temperature would 
have been higher, and a gap between both parts would have appeared.

Three‑layer aluminium sample. This section shows the development of the ATR method on the three-
layer aluminum sample presented in Fig. 3.b. Figure 18 shows the results of step 2 in the ATR method with the 
recorded thermographic images for both the sample and reference mirror. Figure 18.a.1,b.1 show images of the 
sample ( ̇qs,1 ) and the mirror ( ̇qm,1 ) with the chopper closed position whereas Fig. 18.a.2,b.2 correspond to the 
chopper open position ( ̇qs,2 and q̇m,2 ). Figure 18.a.3,b.3 shows the difference for both the sample and the refer-
ence mirror. Based on this measurements, one can realise the fourth step of the ATR method and compute the 
normal reflectivity (Fig 19.a) and the normal emissivity (Fig 19.b). Figure 19.a indicates that the raw part is 
reflective ( ρ⊥

F,s ≈ 0.8 ) and that the painted part has an emissivity value of approximately 0, 96, which is close to 
the value found  in25. Surprisingly, the speckled area does not have such sharp reflectivity fields. This is due to the 
spatial resolution of the camera, which is lower than the size of the speckle pattern. Such problems are addressed 
in digital image correlation  approaches46. Based on these results, an average effective reflectivity and its standard 
deviation for each part are computed and gathered in Table 2.

Figure 16.  Measured stainless steel metallic sample emittance: (a) q̇es (b) q̇bs .

Figure 17.  Sample temperature distribution ( ◦C): (a) temperature map; (b) histogram of temperatures for ATR 
and emissivity correction methods. The room temperature was measured as 21.3 °C.
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One can observe that the rough part has a higher total reflectivity than the speckled and uniformly painted 
parts. The standard deviation of the total reflectivity follows the same trend. Compared to the previous sample 
(stainless steel), the standard deviation is also lower. This reinforces the hypothesis that the method is sensitive 
to the surface flatness and noise measurement on highly reflective samples. From this measure, we can apply 
the fifth step of ATR and plot q̇es and q̇bs  in Fig. 20.a,b, respectively. Unlike the previous measurement, we do not 

Figure 18.  Camera measurements (step 2 of ATR) on the three-layer aluminum sample (a) and on the 
reference mirror (b): (a.1) q̇s,1 ; (a.2) q̇s,2 ; (a.3) q̇s,2 − q̇s,1 ; (b.1) q̇m,1 ; (b.2) q̇m,2 ; (a.3) q̇m,2 − q̇m,1.

Figure 19.  Measured sample radiative properties (step 4): (a) reflectivity ρ̃⊥
F,s ; (b) emissivity (1− ρ̃⊥

F,s).

Table 2.  Measured effective reflectivity on the aluminium three-part sample.

Rough Speckled Painted

ρ̃⊥
F,s

0.62 0.23 0.04

Standard deviation 0.0546 0.0421 0.0227
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use an average reflectivity on each sample part because of the high variability of the speckled surface. For this 
reason, the black body emittance is computed on a pixel basis and appears quasi-constant on the sample. Only 
a small area of the narcissus is still slightly visible.

After converting the black body emittance with the last step of ATR, the temperature map is obtained and 
displayed in Fig. 21.a, and its histogram distribution is plotted in Fig. 21.b. The uniformity of the sample tempera-
ture is almost recovered by the ATR method, and the measured temperature corresponds to room temperature. 
Only the error due to the narcissus on the reflective raw part leads to a local overestimation of the sample’s true 
temperature. However, this error is negligible in the black-painted part of the sample since the reflection of the 
narcissus is negligible.

Conclusion and perspectives
In this paper, we have developed a rapid and versatile method to characterize the normal emissivity on a specu-
lar opaque body for any type of IR camera over a wide range of wavelengths. The detailed ATR method allows 
simultaneous acquisition of the emissivity, an estimation of the reflections and temperature fields through an 
analytical radiation model and an experimental methodology.

We have seen that the raw images measured by IR cameras are not sufficient to easily obtain an absolute and 
remote measurement of the temperature. Indeed, the lack of local knowledge of the emissivity fields and the 
influence of reflections from the environment do not allow accurate radiometric measurement.

In this work, validation was carried out on various types of samples ranging from opaque materials such as 
black bodies to metallic materials such as polished sample and hybrid surfaces. For each case, the application of 
radiometric balances allowed us to highlight the contribution and interest of the ATR method for the absolute 
and contactless measurement of temperature fields by IR thermography. Moreover, the method has shown best 
results than emissivity correction only at ambient temperature because the reflection are not negligible.

Figure 20.  Measured emittance of the three-layer aluminum sample: (a) q̇es (b) q̇bs .

Figure 21.  Sample temperature distribution ( ◦C): (a) temperature map; (b) histogram of temperatures for ATR 
and emissivity correction methods. The room temperature was measured as 23.2 ◦C.



18

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7814  | https://doi.org/10.1038/s41598-022-11616-8

www.nature.com/scientificreports/

The necessity of specular reflection as well as the normal alignment impose experimental precaution. Nev-
ertheless, if this condition is respected, the method allows an absolute temperature measurement without any 
assumption. This is a main advantage comparing to other available method which are often based on correlation 
on nearby wavelength.

Further developments are underway to validate the method with respect to unsteady thermal processes in 
extreme conditions, as well as monochromatic multispectral approaches or roughness limitations.
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