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Design of a cryptographically 
secure pseudo random number 
generator with grammatical 
evolution
Conor Ryan1,4*, Meghana Kshirsagar1,4*, Gauri Vaidya1,4*, Andrew Cunningham2 & 
R. Sivaraman3

This work investigates the potential for using Grammatical Evolution (GE) to generate an initial seed 
for the construction of a pseudo-random number generator (PRNG) and cryptographically secure 
(CS) PRNG. We demonstrate the suitability of GE as an entropy source and show that the initial seeds 
exhibit an average entropy value of 7.940560934 for 8-bit entropy, which is close to the ideal value 
of 8. We then construct two random number generators, GE-PRNG and GE-CSPRNG, both of which 
employ these initial seeds. We use Monte Carlo simulations to establish the efficacy of the GE-PRNG 
using an experimental setup designed to estimate the value for pi, in which 100,000,000 random 
numbers were generated by our system. This returned the value of pi of 3.146564000, which is precise 
up to six decimal digits for the actual value of pi. We propose a new approach called control_flow_
incrementor to generate cryptographically secure random numbers. The random numbers generated 
with CSPRNG meet the prescribed National Institute of Standards and Technology SP800-22 and 
the Diehard statistical test requirements. We also present a computational performance analysis of 
GE-CSPRNG demonstrating its potential to be used in industrial applications.

Random number  generators1 are classified into two categories: true random number generators (TRNG)2 and 
pseudo random number generators (PRNG). TRNGs are able to generate randomness by relying on some physi-
cal source, such noise from thermal, atmospheric or radioactive decay sources. They are highly secure due to 
their reliance on such sources for strong entropy, but suffer due to their reliance on additional external devices. 
On the other hand, PRNGs generate random numbers deterministically based on an initial  seed3 that, ideally, 
should be hard to predict and secure. If one gets hold of the seed or can influence the generation of the seed, 
one can predict the PRNG output and the whole system collapses. Thus, developing PRNGs that are secure 
enough still remains a key challenge to the researchers. The main advantages of using a PRNG are the rapidity 
and repeatability of output  sequences4 with relatively small memory requirements. Designing and developing 
efficient PRNGs is always an area of interest to the researchers across all domains. Several  approaches5–7 have 
been explored and investigated in the design of efficient PRNGs in the literature.

Most of the existing PRNGs are based on complex mathematical  operations8 such as non-linear  congruences9, 
linear feedback shift  registers10 and quadratic residuosity, non-quadratic  variants11 and cellular  automata12, 
amongst others. PRNGs can be divided into two broad  categories13, namely, basic PRNG and CSPRNG. Basic 
PRNGs are designed for simulations while CSPRNG are designed for cryptography. CSPRNG requirements 
fall into two groups: first, that they pass statistical randomness tests; and secondly, that they hold up well under 
serious attack, even when part of their initial or running state becomes available to an attacker. The random 
sequences generated by any CSPRNG are uniquely identified by the following three characteristics: (a) high 
entropy; (b) no repetition in strings generated; (c) zero correlation.
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Grammatical Evolution (GE)14–18 is a bio-inspired population-based Machine Learning (ML) tool that makes 
use of Backus-Naur Form (BNF)  grammars19 to generate legal structures for various problem domains. In this 
research work, we investigate GE as a potential entropy source to generate high entropy initial seed, as every 
evolutionary run is capable of producing a different seed. We propose a GE-based PRNG and GE-based CSPRNG, 
both of which can generate random sequences which adheres to meeting all standards of an excellent pseudo 
randomness.

Results
Generation of random sequences with control_flow_incrementor. The approach for generating 
random numbers for constructing CSPRNG is analogous to an incremental counter, where we define a loop 
to act as an incrementor counter and hence we name this approach control_flow_incrementor. This method 
uses a variable initialized to 0. To generate a new pseudo-random sequence, the current value of the variable is 
incremented and appended to the least significant bit (LSB) position of the initial seed. The resulting string is 
processed using a cryptographically secure hash algorithm such as SHA3-51220, depending on user requirement 
to make it secure against brute-force attacks. We can easily extend the size of the strings making it suitable for 
different applications with simple concatenation functions. For example, if we need a 1024-bit key, two 512-bit 
strings can be concatenated. As statistically inferred from our NIST experiments, we reseed our CSPRNG after 
generating every 4000 sequences for our 4096-bit CSPRNG to comply with the CSPRNG properties.

GE has the capability to generate n useful initial seeds depending upon the choices in production rules and the 
definition of production rule for pattern formation in the BNF grammar. We store all best individuals obtained 
during each run of GE in a repository. This can be useful in scenarios where we may not be able to obtain the 
best individuals in the first generation itself, given the inherent randomness of evolutionary computation. In 
such situations, we employ the mechanism of last in first out (LIFO) for seed extraction from the repository. We 
conducted an experiment to verify the potential of updating our entropy pool with unique seeds. In this experi-
ment, 1,000 evolutionary runs resulted in 5076 unique seeds, in a time of 46.73 s, where each evolutionary run 
took an average time of 0.046 s.

Statistical test for GE based CSPRNG. Randomness tests for GE‑CSPRNG with NIST SP 800‑22. GE-
CSPRNG passed the statistical randomness test of output sequences from the National Institute of Standards and 
Technology  NIST21 Special Publication (SP) 800-22 Statistical Test Suite. This comprises 15 tests, each of which 
generates a p-value in the range [0, 1], to demonstrate how well the generator holds up under serious attacks. 
Passing a particular threshold value, α, is indicative of success on a particular test.

In all 15 cases, α is defined to be 0.01, which indicates 99% probability of sequences to be random if the test is 
passed. The random sequences obtained by the control_flow_incrementor approach with GE were generated for 
4096-bits as modern systems that use  RSA22 for encryption standards usually require keys of 4096 bits. The long-
est data stream of 947,200 random bits passed all the 15 tests after which point the reseeding was done to obtain 
new samples. In both the cases, i.e. single objective CSPRNG which fulfils entropy requirements and the many 
objective CSPRNG which fulfils all three desired characteristics, viz, entropy, randomness and autocorrelation 
the difference in results is observed due to the fact of different seeds used to obtain the random sequences. The 
results of the tests are given in Table 1. The randomness and entropy of the strings are validated as all the tests 
are passed by the generated output sequences.

Table 1.  Results from the NIST SP800-22 randomness test suite for GE-CSPRNG with a threshold of α = 0.01.

Test

Sequences obtained 
from seed with 
single objective 
fitness function

Sequences obtained 
from seed with 
many objective 
fitness function

p-value Result p-value Result

Approximate entropy test (block = 8) 0.159423 Success 0.100883 Success

Block frequency test (block = 128) 0.471817 Success 0.336346 Success

Cumulative sums test (forward) 0.028936 Success 0.022369 Success

Cumulative sums test (reverse) 0.044248 Success 0.029855 Success

Fast Fourier Transform test (FFT) 0.584463 Success 0.081098 Success

Frequency test 0.026182 Success 0.017425 Success

Linear complexity (block = 500) 0.995472 Success 0.649274 Success

Longest runs of ones test 0.530367 Success 0.266024 Success

Non-overlapping templates test (block = 9, 000111101) 0.924066 Success 0.159012 Success

Overlapping template test of all ones test (block = 9) 0.670096 Success 0.659282 Success

Rank test 0.681196 Success 0.681668 Success

Runs test 0.461330 Success 0.092038 Success

Serial test 1 (block = 16) 0.331357 Success 0.559360 Success

Serial test 2 (block = 16) 0.570711 Success 0.742759 Success

Universal test 0.162531 Success 0.506254 Success
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Randomness tests for GE‑CSPRNG with diehard battery of tests. Diehard23 is the statistical test suite devel-
oped by George Marsaglia for estimating the statistical independence of random numbers through which the 
randomness has been confirmed. It requires 80 million bits for conducting the 18 tests to assess the quality of 
the CSPRNG. For Diehard tests, we generated 80 million bits with control_flow_incrementor approach and the 
results have been tabulated in Table 2.

The 2-D spheres test was integrated with 3-D spheres and thus we tested our random sequences on 17 tests. 
On observing the results, out of 17 tests, all tests have been passed to meet out the diehard criteria, which ensures 
the randomness of the proposed PRNG.

Security analysis of GE‑CSPRNG. Reverse engineering is a crucial attack that exploits the inherent features of 
any design. It helps the attacker gain knowledge about the design and to analyse the weaker points of it. It leads to 
cloning of the design/device, fault injections, trojans, cryptanalysis etc. It has three fundamental phases namely 
information extraction, modelling and analysis. The proposed PRNG integrates a novel random seed generation 
with a SHA3-512 to achieve adequate randomness. As the proposed BNF grammar for GE-PRNG is flexible, the 
production rules can be extended by merely adding additional choices for symbols, thus having the potential to 
generate ∑2n number of unique seeds, where n is the total number of choices for each of the production rules. 
The BNF grammar proposed in the article has the potential to generate 1,514,240 (as explained in Eq. (1)) unique 
seeds with the permutations of the production rules and available choices. Hashing the initial seed with SHA3-
512 ensures it against session replay attacks and brute force attacks.

where ch(1)is the number of choices for rule1, ch(2)is the number of choices for rule2, etc.
The number of choices for each of the eight rules in this grammar are 1, 1, 1, 8, 26, 26, 28 and 10. This gives 

the possible permutations for the grammar as 1,514,240, which equates to the number of unique seeds for our 
grammar. Similarly, with this logic, we can generate a larger number of unique initial seeds simply by adding 
more combinations of choices in the BNF grammar by the inclusion of additional production rules. This feature 
shows the flexibility of GE-PRNG to be scalable for applications that cater to a large number of users needing 
unique initial seeds for generating random numbers.

The length of random numbers generated by a PRNG after which the sequences start to repeat themselves 
is called the period of the PRNG. The period of the proposed PRNG depends upon the limit of variables for the 
incrementor loop in the system program. For example, if we use long long int in C, the period for the PRNG 
would be 9,223,372,036,854,775,807, as that is the limit for a long long int in C.

Also, the proposed CSPRNG meets the Avalanche criteria in which the PRNG produces a new set of random 
values even for a single bit change in the inputs. Since the SHA3-512 has a strong foundation of irreversibility, it 
helps the PRNG to produce high quality irreversible random numbers. Hence, the problem of reverse engineer-
ing can be alleviated.

Analysis of computational performance of GE‑CSPRNG. To analyse the Encryption throughput (ET) and Num-
ber of cycles required for encrypting per byte (NpCB) for GE-CSPRNG we followed the same procedure as 
used by the  authors24. By using the functionality available in Python’s OpenCV library, we generated 10 plain 

(1)Permutation(BNFGrammar) = ch(1)× ch(2) · · · × ch(8)

Table 2.  Results from the diehard battery of tests for GE-CSPRNG with a threshold of α = 0.01.

Test

Single objective Many objectives

p-value Result p-value Result

Birthday spacing 0.7466 Success 0.2564 Success

Overlapping 5-permutation 0.5467 Success 0.5346 Success

32 × 32 binary matrix 0.9848 Success 0.7977 Success

6 × 8 binary matrix 0.1799 Success 0.8600 Success

Overlapping pairs sparse occupancy 0.8238 Success 0.9221 Success

Overlapping quadruples sparse occupancy 0.9718 Success 0.9858 Success

DNA 0.9219 Success 0.9756 Success

Count the 1’s test on a stream of bytes 0.5107 Success 0.5401 Success

Count the 1’s test for specific bytes 0.9567 Success 0.9878 Success

Parking 0.3296 Success 0.6486 Success

Minimum distance 0.7342 Success 0.4018 Success

3D spheres 0.5165 Success 0.6312 Success

Squeeze 0.0647 Success 0.9935 Success

Overlapping sum 0.2822 Success 0.1674 Success

Runs 0.5303 Success 0.8222 Success

Craps 0.1457 Success 0.2928 Success

Bitstream 0.9255 Success 0.9479 Success
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RGB images of varying sizes. We then encrypted the images, by using the encryption  method25, which is basic 
shuffling of pixels in the RGB images. The encryption was done with the keys obtained from GE-CSPRNG and 
using Python’s rand() function for comparative analysis. Then we calculate ET and NPCB using Eqs. (2) and (3).

Table 3 shows the comparative analysis of ET for ten RGB images with GE-CSPRNG and the Python rand() 
function, that is Mersenne Twister (MT). The comparative ET from both the approaches show that GE based 
PRNG is performing well in terms of speed and surpassing the one with Python’s rand() function. The best ET 
and NpCB for GE-PRNG was found for the image with size 100 × 100, followed by 800 × 800.

The experiments were performed by employing Linux version 16.04, the GE tool, libGE-version 0.32 in C/
C++ from Biocomputing and Developmental Systems Research Group at University of Limerick,  and Python 
3.7 with the following configurations: Intel(R) Core (TM), i5-1035G1 CPU 1 GHz 8 GB RAM.

Simulation based tests for GE based PRNG. Random numbers find their applicability in various simulations 
and for validating ML models. We evaluated the potential of GE based PRNG for usage in simulations and sam-
pling applications with two different methods, viz, Monte Carlo and fitting ML regression models.

Monte Carlo simulation for the estimation of pi. Monte  Carlo26 simulations are widely used for ensuring the 
quality of random numbers generated. They are used to validate whether a given functionality of PRNG success-
fully achieves its target goal by calculating the value of pi from the random numbers generated by the PRNG. The 
value of pi is  estimated27 with the help of Eq. (4) for calculating the radius of a circle.

where x and y are random numbers generated by GE-PRNG. 1,000,000 or more random numbers are generated 
in the range from 0 to 1 and the value for Eq. (5) is calculated. If the value of the equation is less than 1, the point 
is placed inside the circle, i.e., the random numbers pair is valid. If the value of the equation is greater than 1, 
the point is placed outside the circle and the point is discarded while calculating the value of pi. At the end of the 
prescribed 1,000,000 runs, the value is obtained by Eq. (5) and then it is compared with the actual value of pi. 
The closer the estimated value to the actual value of pi, the better is the performance of the PRNG. The value of 
pi noted with our observation over 1,000,000 runs is 3.146564000, while the actual value of pi is 3.141592653528 
up to 6 decimal precision which gives a strong validation of randomness.

Coverage analysis. To validate the suitability of GE-PRNG for its potential use of generating samples for ML 
datasets, we generated samples across 16 real-world benchmark regression datasets with varying numbers of 
instances. The test evaluates the quality of random samples generated in terms of mean and standard deviation 
with respect to ground truth (entire data). The samples were generated for columns of varying lengths represent-
ing different data types such as categorical, integers and float. The samples were visualised by plotting histograms 
to analyse their distribution. A comparative analysis was then performed against the samples obtained from 

(2)ET = Generated data size
Average generation time

(3)NpCB =
CPUmain clock frequency(Hz)

ET(bytes/s)

(4)r =
√

(

x2 + y2
)

(5)pi = 4×
N
(

points inside the circle
)

N
(

total points
)

Table 3.  Speed analysis of GE based PRNG and Python based PRNG with encryption of RGB images.

Image size (pixels) Image size (Kbs)

GE-based PRNG Python based PRNG

Time(s) ET (Kb/s) ET (Mb/s) NpCB Time(s) ET (Kb/s) NpCB

100 × 100 30 0.023644 1268.809 1.26880963 788.140296 0.036765 815.9859 1225.5112

200 × 200 118 0.109337 1079.228 1.07922884 926.587541 0.136072 867.1823 1153.1599

300 × 300 264 0.266003 992.4686 0.99246862 1007.58852 0.279992 942.8829 1060.5770

400 × 400 469 0.482753 971.5112 0.97151123 1029.32417 0.507970 923.2818 1083.0929

500 × 500 733 0.796582 920.1812 0.92018121 1086.74245 0.800740 915.4021 1092.4160

600 × 600 1055 1.087610 970.0166 0.97001660 1030.91018 1.198891 879.9797 1136.3897

700 × 700 1436 1.555533 923.1561 0.92315614 1083.24037 1.590063 903.1088 1107.2862

800 × 800 1876 1.539821 1218.322 1.21832274 820.800566 2.035266 921.7467 1084.8966

900 × 900 2374 2.507421 946.7893 0.94678936 1056.20113 2.584014 918.7255 1088.4643

1000 × 1000 2930 3.223342 908.9942 0.90899420 1100.11702 3.420089 856.7028 1167.26
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Python’s rand() function-based MT. We observed that the samples from GE-PRNG followed the same type of 
data  distribution29 as observed in the original datasets. This implied that in future GEPRNG can play a crucial 
role in synthetic data generation. The results of the analysis are presented in Supplementary Table S1.

Discussion
There have been several PRNGs proposed in the literature that incorporate bio-inspired methods, such as GP 
and Genetic Algorithms (GA)30. For example,  Koza31 used GA to transform a seed J into a PRNG using a set 
of standard arithmetic operators and a parameter set of {population size: 500, crossover: 0.9 and mutation: 0}. 
The resulting PRNG has been tested digitally on software and passed both Gap-Measure and Chi-square tests. 
 Poorghanand32 employed a GA using 16 Linear Feedback Shift Registers with XOR and inverse-XOR gates to 
generate high entropy 128-bit random numbers and successfully passed the NIST suite of tests. A Hebbian 
neural network initialised by a GA was proposed by  Jhanjharia33. With a parameter set of {population size: 50, 
crossover: 0. and mutation: 0.05} this was capable of producing 192-bit output and successfully passed each of 
the Cumulative Frequency, Gap-Measure and Chi-square tests. More recent work by  Kosemen34, extended Koza’s 
work and resulted in a design that passed the NIST suite of tests, producing output within 0.24960 s. This used 
the following parameters: {population size: 50, crossover: 0 and mutation: 0.5}. Due to GE’s modular structure, 
it is highly convenient as an alternative search strategy, whether evolutionary, deterministic or any other. Such 
a flexible approach to Genetic Programming (GP) makes GE a robust machine learning tool that can be applied 
to a diverse set of problem domains. Moreover, GE’s potential as an entropy source for a secure CSPRNG, using 
the basic BNF grammar, makes it possible to arm GE with problem-specific constructs as demonstrated with our 
approach. Further, GE-PRNG holds the promise of a potential rich source for generating synthetic datasets for 
fitting ML regression models. Due to the ability to customize the production rules of BNF grammar, GE-PRNG 
can serve applications requiring one-time password (OTP) generation and the keys obtained with GE-CSPRNG 
can be employed for storage encryption, network encryption, confidential compute, etc. We illustrate in Supple-
mentary Table S2, a comparative analysis of GE-based CSPRNG with respect to existing software and hardware.

Conclusion
We have presented a combined application of GE and our novel approach, control_flow_incrementor, for the 
design of a basic and cryptographically secure pseudo random number generator. We used control_flow_incre‑
mentor to generate random numbers and GE as the entropy source to return an initial seed. The validations of 
the CSPRNG with NIST SP800-22 and Diehard battery of tests indicate the feasibility of GE as a source of initial 
seeds leading to the efficient construction of CSPRNG. By utilizing the seed repository for reseeding the initial 
seed, our CSPRNG is able to generate highly uncorrelated random sequences at a faster rate with minimal com-
putational costs, making it highly efficient for securing sensitive data. Monte Carlo simulations were performed 
to validate the quality of random numbers for sampling with GE-PRNG. Furthermore, extending production 
rules with additional choices will make it adaptable across a wide range of industrial applications.

Methods
This section discusses the procedure of obtaining initial seeds for the design of PRNG and CSPRNG with GE. 
The functionality of GE is based upon the generation of structures described by a formal language grammar, 
typically in the form of a BNF.

At its heart is a GA that searches through the space of syntactically legal structures. The GA individuals, or 
genomes, are variable length binary strings that get mapped onto a phenotype, the actual structure being created, 
which is typically a program or some other, complex structure. The mapping process is guided by the grammar, 
which, in BNF can be represented as the tuple {S, N, T, P}, where S is a start symbol, T is the set of terminals, 
that is, items which can appear in the language. N is the set of non‑terminals, temporary items to facilitate the 
mapping process, and P, a set of production rules that expand S into a legal structure consisting of only termi-
nals. Figure 1 shows a set of production rules that map the start symbol < expr > to a seed, which is made up 
entirely from terminals.

GE operates by evolving populations of these individuals, each of which is tested for fitness, i.e. how well 
they perform at the task in hand, entropy in this case. These individuals are then probabilistically selected for 
crossover and mutation, based on their fitness, and a new population is created.

As shown in Fig. 1, the GE-based PRNG takes a 512-bit initial seed and, combined with the proposed 
approach, control_flow_incrementor, generates random numbers. Our control_flow_incrementor follows the logic 
of an incrementor counter initialized at 0. With each iteration, the value of the counter is incremented by any pre-
decided number (we have used 1, although this can be any value) and appended to the initial seed obtained from 
the entropy source. This intermediate string is then hashed with SHA3_512 to generate secure random numbers.

The evolutionary process that leads to initial seeds with GE can be summarized in the following steps:

1. Initialise evolutionary parameters {population, generations, crossover, mutation};
2. Obtain binary string from BNF grammar;
3. Evaluate the individuals with a fitness  function35 using Shannon’s  entropy36 equation (7) to get the fitness 
scores;
4. Generate new population for next generation using crossover and mutation;
5. Repeat until there is no improvement in fitness.
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We fulfill all the requirements of a desirable PRNG by mapping each of characteristics with a fitness function 
as seen in Table 4. We use the Shannon’s entropy as a fitness function F1 to obtain high entropy initial seeds. 
The fitness function Hamming Distance, F2, ensures that unique seeds are generated with each evolutionary 
run. These seeds are subsequently stored in a repository to reseed the PRNG after a defined period. Period of a 
PRNG is the number of pseudorandom sequences after which the PRNG needs to be reseeded to avoid repetition 
in the output sequences, thus maintaining randomness. Moreover, these seeds from the repository can also be 
used as an entropy source thus avoiding evolutionary runs for seed generation. Similarly, the fitness function, 
F3, Autocorrelation, ensures no repetition of patterns within the same seed.

A fitness function, in the context of evolutionary computation, is the measure of how good a solution is for a 
given problem. The fitness function, F1, defined in Eq. (7) is based upon Shannon’s entropy function as defined 
in Eq. (6).

 w h e r e  N is the total number of permutations possible in the binary sequence of the initial seed(e.g.for 1
bit, N is 2 {0, 1}and for 2 bit, N is 4 {00, 01, 10, 11})  . 
pi is the frequency of the patterns of 0 s and 1s in the binary sequence. n is the number of bits in the range[1− 8].

The fitness function in Eq. (7) is the summation of all the n-bit entropy values  H1…..H8, divided by n, i.e. 
number of  bits30. The division by n ensures equal contribution of all n-bits entropies in the final calculation 
of fitness. The sample example of an initial seed returned from GE, below, depicts the procedure followed to 
calculate the entropy.

1001110101101100100110001110011011111111111011001001000110001111101000001100001001011111
1010110101001110000111101001111000010100100010010000101101010001101110100001001010001101110

(6)H(X) = −
∑N

i=1
pilog2pi

(7)fitness =

8
∑

n=1

(

−
∑N

i=1pilog2pi

n

)

Entropy Source 
(BNF Grammar)

Initialize a loop 
counter at 0

Initial seed

SHA3-512 hash of 
the obtained string

Evolutionary Algorithm Incrementor Counter

Control Flow Incrementor

Fitness Evaluation

(1)<exp> ::= binary(hash_512(\”<exp1>\”))
(2)<exp1> ::= <exp2> <exp2> <exp2> <exp2> <exp2> <exp2> <exp2>

<exp2> <exp2> <exp2> <exp2> <exp2> <exp2> <exp2>
<exp2> <exp2> <exp2> <exp2> <exp2> <exp2> <exp2>
<exp2> <exp2> <exp2> <exp2> <exp2> <exp2> <exp2>
| <exp1>

(3)<exp2> ::= <upper> <small> <sym> <dig> | <small> <upper> <dig> <sym>
| <dig> <small> <sym> <upper> | <upper> <dig> <small> <sym>
| <upper> <dig> <small> <sym> | <sym> <upper> <dig> <small>
| <small> <dig> <upper> <sym> | <sym> <small> <upper> <dig>

(4)<upper> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O |
P | Q | R | S | T |
U | V | W | X | Y | Z

(5)<small> ::= a |b | c | d| e | f | g | h | i | j | k | l | m | n | o | p
| q | r | s | t | u | v | w | x | y | z

(6)<sym> ::= \# | \$ | \? | \~ | \@ | \& | \+ | \> | \< | \} | \] | \! |
\~ | \% | \* | \^ | \{ | \[ | \_ |
\= | \` | \. | \, | \( | \) | \: | \; | \’ | \-

(7)<dig> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

BNF Grammar

Transformation

Hex to Binary

Single 
Objective 

Multi 
Objective 

Many 
Objective

Figure 1.  Pipeline for the design of GE-PRNG with the control_flow_incrementor approach. The process starts 
with using BNF grammar as entropy source to obtain the initial seed and subsequently, uses the seed as an input 
to the control_flow_incrementor function which generates random numbers.

Table 4.  The different fitness functions along with their range of values used for the design of GE-PRNG.

Fitness function Range Objective function Remarks

F1: Shannon’s entropy [0–8] Maximise This fitness function helps to obtain an initial seed with optimal entropy

F2: Hamming distance [0–512] Maximise The usage of this fitness function ensures generation of unique seeds

F3: Autocorrelation [0–1] Minimise The functionality of the fitness function is to have high randomness within the 
initial seed
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1111010110010010000001000000011110101011000111110010111101001011100110110011001111001110001
111100000001010111110001011101110100000010100010000100111110

All 1-bit possible combinations with 0s and 1s are {0,1}. Initially, we calculate the frequencies of these com-
binations, which, in this case, are 260 and 252 respectively. Then we calculate the value H1 with Eq. (6), which is 
0.9998. Then we calculate the value of  H1 /n, where n is 1 in this case. This gives the entropy as 0.0999.

Similarly, all the 2-bit possible characters are {00, 01, 10, and 11} and their respective frequencies are 137, 
122, 123, 129 respectively. The value of H2 is 1.99. The final entropy for 2-bit is H-value/n, i.e 1.99/2, which gives 
final entropy as 0.995. In this way, we calculate all the n-bit entropy values up to 8, and the value for each n-bit 
entropy lies in the range [0-1]. This binary notation of the initial seed obtained from GE has a final fitness value 
(entropy) of 7.962 as shown in Table 5.

Single objective fitness function. To generate high entropy initial seeds, we first performed preliminary 
experiments with GE on a variety of different BNF grammars with fitness function F1. We obtained an entropy 
of 7.31 in version 1 with the evolutionary parameters {population size: 10, generations: 15, crossover: 0.9, muta-
tion: 0.04} and subsequent modifications to the production rules and evolutionary parameters led to the optimal 
parameters for our fifteenth version as seen in Fig. 2a and details of entropy improvements depicted in Supple-
mentary Table S3.

The optimal evolutionary parameters obtained were as follows: {population size: 2, generations: 5, crossover: 
0.0001, mutation: 0.01}. The initial seed obtained from GE is subsequently used to generate random sequences 
with the control_flow_incrementor approach. This strongly supports the use of GE as a high-quality entropy source 
for initial seeds which is independent of hardware or software requirements. The production rules in grammar 
can be used to yield arbitrarily large output random sequences, thus making it easily adaptable across diverse 
applications. Hence, we propose GE based PRNG to be suitable for domains such as sampling Machine Learn-
ing (ML) models, generating One-time Passwords (OTP), and to be used as a CSPRNG. The genetic operators, 
mutation and crossover, were derived after performing a series of experiments over 100 runs. Figure 2b,c show 
the tuning of crossover and mutation rates, while Fig. 2d shows the mean entropy of the PRNG with the fifteenth 
version of grammar. The values for the genetic operators of crossover and mutation were varied in the range [0,1] 
and experimented on all the fifteen versions of the BNF grammar which resulted in the final values of crossover 
fixed at 0.0001 and mutation at 0.01. This strongly validates the potential of GE-PRNG as being computationally 
efficient in terms of speedup and complexity.

Multi-objective and many objective fitness functions. The subsequent series of experiments 
involved the combinations of fitness functions in a pair of two to achieve the desirable characteristics of PRNGs. 
For two objectives, we use NSGA-II in two setups: (a) F1, 8‑bit entropy and F2, Hamming Distance and (b) F1, 
8‑bit entropy and F3, Autocorrelation. Figure 3a,b illustrate the results obtained for two objectives after perform-
ing 30 revolutionary runs. The optimal solutions lie in the region of [7.65, 7.95] for F1 and for F2, the region is 
[220, 280]. Similarly, the region for F1 and F3 is [7.65, 7.95] and [0, 0.09] respectively.

To achieve all the characteristics of a CSPRNG, we used the combination of all the three fitness functions as a 
single setup combining F1, F2 and F3. For experimentation purposes, we used NSGA-II with  pymoo37 to achieve 
many-objective fitness functions. The seed obtained from a many-objective fitness function will be the one with 
the maximum entropy, the maximum hamming distance and the minimum autocorrelation. The optimal solu-
tion obtained for three objectives was evaluated with a hypervolume indicator from a reference point [7.95, 298, 
0.06]. The hypervolume  indicator38 is a measure for many-objective optimization where the volume enclosed 
between a reference point and a Pareto front is calculated. A reference  point39 is the maximum/minimum point 
obtained in the series or runs for an evolutionary experiment. The smaller the volume, the more optimal are the 
solutions obtained from the runs. Figure 3c illustrates the hypervolume obtained after combining F1, F2 and 
F3 over 30 runs. Unlike multi-objective experiments, the individuals here lie in the average region {[7.60, 7.96], 
[230, 290], [0.06, 0.11]}.

Table 5.  Sample fitness score calculation. The entropy of each H value is summed.

#bits (n) H-value Entropy (H-value/n)

1 H1 = 0.998 0.998

2 H2 = 1.99 0.995

3 H3 = 2.99 0.996

4 H4 = 3.99 0.997

5 H5 = 4.97 0.998

6 H6 = 5.98 0.996

7 H7 = 6.85 0.994

8 H8 = 7.91 0.988

∑Entropy 7.962
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(a) (b)

(c) (d)

Figure 2.  Tuning of BNF grammar and genetic operators, mutation and crossover, to obtain the optimal 
entropy. In all combinations of the BNF Grammar as depicted in (a) where 20 generations were sufficient to 
obtain the optimal entropy. The initial seed leading to optimal entropy using the 15th version of BNF Grammar 
was secured with SHA3-512, whereas in the previous 14 versions, the hashing algorithm SHA2-512 was used 
to secure the initial seed. In all of the cases, the entropy remained in the range 7.92 to 7.94. (b) Values for 
crossover were varied from 0.0001 to 0.1 while keeping mutation fixed at 0.01. With the value of 0.0001, the 
optimal entropy remained consistent and the time taken to obtain the entropy was also consistent for that value. 
Similarly, in (c), we vary the mutation rate from 0.01 to 0.5 while keeping crossover fixed at 0.001. In this case, 
the most consistent value for time taken was exhibited by a mutation rate of 0.01. Finally, these two values were 
used with the 15th BNF grammar version to produce an optimal entropy value of 7.940560934 from 100 runs as 
illustrated in (d).

Reference point 
(7.95, 288, 0.061)

(a) (b) (c)

Figure 3.  Results of the fitness evaluations with multi-objective and many-objective fitness functions for a 
512-bit seed generated by GE-PRNG. (a) The Pareto fronts for a multi-objective fitness function made up of 
F1, entropy, and F2, Hamming distance. This indicates the maximum dissimilarity between any pair of strings 
generated by GE-PRNG while maintaining the optimal achieved entropy for a particular generation; (b) shows 
the Pareto fronts for a multi-objective fitness function made up of F1, entropy, and F3, Autocorrelation. This 
experiment validates minimal autocorrelation within a string without impacting the optimal achieved entropy. 
Finally, (c) shows the hypervolume for a many-objective fitness function made up of all three, F1, F2, F3. The 
combination of all three objectives produces a solution that meets all the prescribed characteristics of an PRNG.
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Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information file. The tool libGE - version 0.32 used in the experimentation will be made available upon request 
to the corresponding authors.
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