
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports

Improvement of automated
analysis of coronary Doppler
echocardiograms
Jamie Bossenbroek1,2, Yukie Ueyama3, Patricia E. McCallinhart3, Christopher W. Bartlett2,4,5,
William C. Ray2,4,5* & Aaron J. Trask3,4,5*

Coronary artery disease is the leading cause of heart disease, and while it can be assessed through
transthoracic Doppler echocardiography (TTDE) by observing changes in coronary flow, manual
analysis of TTDE is time consuming and subject to bias. In a previous study, a program was created
to automatically analyze coronary flow patterns by parsing Doppler videos into a single continuous
image, binarizing and separating the image into cardiac cycles, and extracting data values from each
of these cycles. The program significantly reduced variability and time to complete TTDE analysis, but
some obstacles such as interfering noise and varying video sizes left room to increase the program’s
accuracy. The goal of this current study was to refine the existing automation algorithm and heuristics
by (1) moving the program to a Python environment, (2) increasing the program’s ability to handle
challenging cases and video variations, and (3) removing unrepresentative cardiac cycles from the
final data set. With this improved analysis, examiners can use the automatic program to easily and
accurately identify the early signs of serious heart diseases.

Coronary microvascular disease (CMD) is a heart condition affecting the smaller blood vessels that branch off
from the main coronary arteries. Impairments in the coronary microcirculation disrupt the healthy regulation
of myocardial blood flow and nutrient exchange1,2. CMD is a nonobstructive coronary artery disease, mean-
ing that although there is no physical blockage, oxygenated blood is unable to move through smaller blood
vessels at an adequate rate to maintain physiological demand3. This condition has been shown to be strongly
associated with diabetes, and when paired with myocardial ischemia and myocardial diseases it is referred to as
nonobstructive coronary artery disease (INOCA). CMD is one of the earliest signs of heart disease which can
lead to myocardial infarction, heart failure, and/or stroke1,2. Functional, structural, and biomechanical deficits
in coronary resistance microvessels (CRMs) are associated with CMD and are indicators that can be observed
before the appearance of symptoms such as atherosclerosis (blockages in the arteries)2. With early and accurate
identification of CMD, more serious and life-threatening cardiac conditions can be treated and prevented before
they become deleterious.

While indirect methods to diagnose CMD are available, they are fraught with subjectivity. Positron emission
tomography (PET) and magnetic resonance imaging (MRI) offer value in identifying impairments in cardiac
perfusions, but currently include no direct measures to diagnose CMD4. Transthoracic Doppler echocardiography
(TTDE) is an affordable and non-invasive method used to assess cardiovascular function through direct meas-
urements of coronary blood flow (CBF), with potential to assess CMD. CBF is measured from one of the main
coronary arteries under both baseline and stress (hyperemic) conditions, and this yields uniquely characteristic
flow patterns in which diastole predominates and which can be analyzed to indicate impaired CBF5. For example,
coronary flow velocity reserve (CFVR) is indicative of the amount of additional blood flow that the microvascu-
lature can carry under stress; CFVR is lower in cases of coronary artery disease, even in otherwise asymptomatic
subjects or in patients with INOCA6. This change in CBF likely represents a combination of functional, structural,
and biomechanical impairments1. For example, previous studies by our laboratory observed inward hypertrophic
remodeling associated with reduced CBF. This structural remodeling occurred before occlusive macrovascular
atherosclerosis, which emphasizes the importance of early examination of coronary microcirculation7. However,

OPEN

1Department of Computer Science and Engineering, The Ohio State University College of Engineering, Columbus,
OH, USA. 2Battelle Center for Mathematical Medicine, Columbus, OH, USA. 3Center for Cardiovascular
Research and The Heart Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital,
Columbus, OH, USA. 4Department of Pediatrics, The Ohio State University College of Medicine, Columbus,
OH, USA. 5These authors contributed equally: Christopher Bartlett, William C. Ray and Aaron J. Trask. *email:
will.ray@nationwidechildrens.org; aaron.trask@nationwidechildrens.org

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-11402-6&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

manual analysis of TTDE CBF can be time consuming and subject to both intra-rater and inter-rater bias8. To
resolve these issues, our groups began developing a MATLAB program to automatically extract data values from
coronary flow patterns of TTDE video files9.

For each cardiac cycle in the TTDE flow pattern, the original MATLAB program automatically extracted
several parameters including the peak velocity and velocity time integral, which are commonly used to quantify
coronary health. CFVR was then calculated as the average peak hyperemic velocity divided by the average peak
baseline velocity. When analyzing 98 baseline files and 117 hyperemic files both manually and with the automatic
program, linear regression analysis showed significantly reduced variability when using automatic analysis, and
the time to analyze videos was reduced from 1500 to 50 min. However, agreement between manual and automatic
parameter output ranged from less than 1% difference to over 55% difference for certain variables9. While the
accuracy of the simple regression model is comparable to human evaluators, the parameter variability suggested
that with continued testing and program adjustments, automatic analysis of TTDEs could become increasingly
more accurate and capable of processing challenging videos.

Extensive testing identified several potential areas in which improved analysis was possible, including the
removal of interfering noise, the identification and analysis of fainter cardiac cycles, and the verification of
peak selection in the ECG region. The original program was also limited to a single video height and width in
pixels, which excluded the analysis of many Doppler videos. In this study, we present the results of an effort to
improve the accuracy of the first-generation program through development of several key areas of analysis. The
original program was developed in MATLAB but was recapitulated in Python in order to leverage OpenCV for
computer vision and Google’s TensorFlow for downstream machine learning. Therefore, we have implemented
an updated and improved program for extracting cardiac Doppler parameters from the Doppler videos using
Python and a variety of best-in-class open-source Python libraries for image and signal processing. This approach
allows easier distribution and community maintenance of the software, and it enabled us to address several of
the data-processing limitations inherent in the MATLAB version as well. As Python is also an industry standard
for machine learning development, changing to that environment allows us to leverage innovations in machine
learning from both academia and industry much faster going forward.

We hypothesized that the use of OpenCV and modified heuristics could better address the original program’s
limitations, and that these refinements would produce a comprehensive and accurate method for examiners to
classify coronary flow issues through interpretation of CFVR values and other patterns in parameter output.
These improvements allow examiners to take advantage of the speed and consistency offered by automated
analysis without sacrificing diagnostic accuracy in assessing coronary diseases. A diagram of the conceptual
blocks and logic flow of the new Python version of the software is shown in Fig. 1.

Materials and methods
TTDE video files with approximately 20 distinct heart beats each were acquired from 12-week, 16-week, and
36-week old normal Db/db and type 2 diabetic (T2DM) db/db mice (Jackson Laboratories) at both baseline
and hyperemic (high flow) conditions10. Doppler readings were measured at 1% isoflurane (baseline) and 3%
isoflurane (hyperemia), and all measurements were taken from the left main coronary artery of the mice as previ-
ously described10. These videos were exported as .avi files from the VevoLab 3.1.1 software and analyzed offline
using the improved program. Mice were housed under a 12-h light/dark cycle at 22 °C and 60% humidity. They
were allowed ad libitum access to water and were fed standard laboratory mice chow. This study was conducted
in accordance with National Institutes of Health Guidelines and was approved by the Institutional Animal Care
and Use Committee at the Abigail Wexner Research Institute at Nationwide Children’s Hospital.

Algorithm description. The improved program was written in Python, and utilized the following librar-
ies: sys, cv2 (OpenCV), PIL, scipy, skimage, matplotlib, tkinter (Tk), pandas, and numpy. Initial data processing
began with prompts to select the folder containing the video files to be analyzed, input a name for the output
excel file, select the type of analysis as ‘Doppler’ or ‘Combined’ (the latter including analysis of color mode vid-
eos), and finally to select each video file to be analyzed. The new interface expanded on the functionality of the
original program by allowing more than one baseline and/or hyperemic video file to be selected for analysis in
each run as well as by accepting videos with any pixel height and width. The user was then prompted to enter
the peak velocity value in mm/s on the Doppler window’s scale for each video, as well as the probe angle and
minimum/maximum penetration in mm from the B Mode window if combined analysis was selected.

Once all parameters had been entered, the program parsed each video by inspecting the difference between
subsequent video frames to identify frames where the scroll bar reset from the right to the left side of the Doppler
window. These frames were concatenated into a single continuous image which was then cropped to the region
of interest containing the coronary flow pattern and electrocardiogram (ECG) recording. A Gaussian filter was
applied, the image was dilated with a linear structuring element, and then a global threshold value was calculated
using OpenCV and Otsu’s method for image binarization. A representative binarized image is depicted in Fig. 2A.

The calculated threshold value was adjusted by the user in a ‘Scroll Test’ window, where the threshold was
incremented or decremented to visually inspect how the level of filtering would affect the amount of data captured
in the binarized Doppler image. Increasing the threshold value removed additional noise, while decreasing the
threshold expanded the included envelope. Once the threshold value was verified, the program removed any
remaining noise and filled small holes in the image using OpenCV. The updated program applied more complete
noise removal by identifying all contours in the image and removing any objects that were not within ten pixels of
the horizontal baseline. This corrected for any small noise objects and was especially useful in removing any ‘top
noise’ located at the top of the Doppler window. Next, the program split the Doppler region into cardiac cycles
by identifying peaks in the corresponding ECG pattern. Peaks were initially identified using scipy, and then an

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

added check compared the distance between each peak to remove extra peaks that were too close together and
to fill larger empty gaps with estimated peak locations. Finally, the program extracted the following parameters
from each cardiac cycle: peak velocity, diastolic velocity, decay velocity, systolic rise time, diastolic rise time,
diastolic decay time, systolic slope, diastolic slope, decay slope, heart rate, and velocity time integral. These were
the same parameters extracted in the original MATLAB program9. All parameters were output to a Microsoft
Excel file in .xlsx format.

The program generated an image of the coronary flow pattern with diastolic velocity (indicating the beginning
of the diastolic phase), peak velocity (maximum velocity for each cycle), decay velocity (point at which accelera-
tion switches signs closest to peak diastolic deceleration), peak diastolic deceleration (minimum acceleration),
and end of cycle (correlating with the peaks found in the ECG region) indicated with green, yellow, pink, red,
and blue points, respectively. An example of this image is depicted in Fig. 2B. The plots and corresponding output
parameters generated by both the MATLAB and Python programs were inspected to find discrepancies where
algorithmic or heuristic improvements might increase analysis accuracy.

The program also included an option for analysis of coronary diameters B-mode color videos, which is
required to calculate CBF10. The algorithm began by masking the first frames of both the color mode and cor-
responding Doppler videos and identifying the borders of the B mode window and the center lines indicating

Figure 1. A diagram of the conceptual blocks and logic flow of the new Python version of the software.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

where vessel measurements were taken from. For each video frame of the color mode file, these values were used
to crop to a region around the center location before rotating the image based on the angle of the probe. The cor-
responding length of each pixel in mm was calibrated from the minimum and maximum probe depths entered
by the user at the beginning of video analysis. The program then masked the image and identified any contours,
and if the contour was large enough and in the correct location to exclude noise or ventricle filling, the diameter
of the identified vessel was then calculated by finding the average distance between the left and right vessel walls
of the object. The program output the minimum, maximum, mean, median, mode, and standard deviation of
all diameters for each analyzed video. An example of a measured vessel is shown in Fig. 2C.

Methodology. A collection of 18 Doppler video sets evenly distributed between 12-, 16-, and 36- week old
healthy and diabetic mice were processed with both the original MATLAB program and the improved Python
program. All tests were performed on the same computer by a single tester who entered in any prompted values
and adjusted the threshold value for binarization as needed to fully capture the coronary flow pattern without
including noise. Each video set included one baseline and one hyperemic video, and the Python program also
analyzed the corresponding color mode videos acquired at baseline and hyperemic conditions. Videos were
intentionally selected by the tester through visual inspection of video files in order to demonstrate a wide range
of processing difficulty, from videos containing distinct Doppler regions with little noise to videos that the MAT-
LAB program struggled to handle. Some challenging patterns included interfering noise or ‘top noise’ descend-
ing from the top of the Doppler image, poor contrast between background noise and the Doppler signal, and
inconsistent ECG readings that led to the incorrect separation of cardiac cycles. Testing with the improved
program could then demonstrate through specific examples that modified heuristics were better able to handle
challenging videos, while videos with clearer signals that had already been fully captured by the original pro-
gram continued to generate similar data.

Statistics. The table of parameters for each cardiac cycle generated by the two programs were saved to a
Microsoft Excel file, and for each parameter the mean and standard deviation (SD) across all cycles were calcu-
lated. With color mode analysis included, CBF could be calculated using the equation as previously described
by us10:

Figure 2. Images representing the steps taken by the Python algorithm for Doppler video analysis. Panel (A)
displays a binarized image of the Doppler region, panel (B) shows the generated output image with critical
values labeled with colored points, and panel (C) is an example of a vessel diameter measured during Color
Mode analysis.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

The percent difference between the MATLAB and Python average values and standard deviations were then
calculated for each parameter. The percent difference was a useful statistic to uniformly evaluate the change in
values between MATLAB and Python program analysis as opposed to the numerical change which varied based
on the maximum velocity of each individual video’s scale. An f-test was performed to compare the peak velocity
values of the two data sets and to determine if the variances of the sets were equal. Finally, a t-test (assuming equal
or unequal variance based on the results of the f-test) with a significance level of p < 0.05 was then performed to
compare the average peak velocity values and CBF. The calculated data was then categorized into groups based
on the obstacles present in the video for comparison and evaluation of the improved program’s effectiveness.

Availability of data and materials. The software described in this study may be downloaded anony-
mously for non-commercial use from the following repository: https:// zenodo. org/ record/ 63089 61#. Yh0Uk
99OlE4.

Results
Overall, standard deviation decreased from the MATLAB program to the Python program (Table 1). Standard
deviation for peak velocity values decreased by an average of 50.0% for baseline flow videos and 32.1% for hyper-
emic flow videos, and VTI standard deviation decreased by 51.2% and 35.2% for baseline and hyperemic videos
respectively. In individual cases where standard deviation noticeably increased for these parameters, factors such
as interfering noise (videos labeled as ‘Top noise’) or incorrect identification of fainter peaks (videos labeled as
‘Missing fainter peaks’) had influenced the calculated standard deviation for the MATLAB program’s output.

When examining the two tailed t-tests performed between the peak velocity values of the MATLAB and
Python programs, p values indicated statistical significance when the Python program made significant improve-
ments to the video’s analysis, such as through removal of top noise, extraction of cycles that were missed in
the original analysis, or removal of unrepresentative peaks from the final data set. For cases where the original
analysis was accurate, the p values suggested that the two data sets were equal. In Table 2, baseline videos which
were accurately captured and analyzed by the MATLAB program had an average p value of 0.20, which did not
indicate significance between the peak velocity values of the two programs. On the other hand, baseline videos
that had several cardiac cycles that were not fully captured by the MATLAB program but which were correctly
analyzed by the Python program had an average p value of 0.004, which did indicate significant differences.
Videos with top noise and ECG inaccuracies saw similarly lower p values.

Average peak velocity and VTI values tended to increase when using the new algorithm, with the exception
of videos where noise at the top of the Doppler region had been captured by the MATLAB program. The change
in each individual baseline video’s peak velocity from the MATLAB to the Python program is displayed in Fig. 3,
with videos affected by top noise indicated with red dots, accurate analysis indicated with green points, videos
with fainter peaks indicated with yellow, and inaccurate ECG peak identification shown with blue points. The
overall average peak velocity values, excluding top noise videos, are shown by the gray line. In this figure, the
peak velocity for accurately analyzed videos remained similar from the MATLAB to the Python program, while
videos with top noise had a significant decrease in peak velocity values and videos with fainter peaks that were not
fully captured by the original program tended to have an increase in peak velocity values when analyzed by the
updated program. Overall, when not considering top noise videos, peak velocity values increased by an average
of 19.3% ± 13.6% and 10.9% ± 8.3% for baseline and hyperemic videos respectively and VTI values increased by
26.4% ± 25.7% and 8.1% ± 29.3% (Table 1).

Several examples of the specific changes that contributed to overall performance improvement are investi-
gated in the rest of this section. Removal of interfering top noise from the Doppler envelope made it possible for
the improved program to capture the correct cardiac velocities. The program also added checks to verify ECG
peak values so that cardiac cycles weren’t skipped or broken into multiple sections. Finally, the program fully
captured fainter cardiac cycles that had been previously overlooked and removed unrepresentative cycles from
consideration, both of which were changes that decreased standard deviation and increased average peak velocity
and VTI values. When making comparisons, peak velocity and VTI values were selected as the parameters for
analysis because they are most representative of the analyzed Doppler region and are the values most commonly
utilized in clinical practice.

Removal of top noise. Many of the videos analyzed in this data set demonstrated the Python program’s
ability to identify and remove top noise from the binarized image. To accomplish this, the new algorithm added
steps to eliminate any large areas of noise which weren’t close to the baseline of the image. For example, the
representative baseline and hyperemic videos displayed in Fig. 4A contained significant top noise which was
captured by the MATLAB program. However, when analyzed by the Python program, this noise was removed
from consideration in the binarized image and the program could extract accurate values, as shown by the criti-
cal points in Fig. 4B.

Removing top noise to more accurately capture the correct velocity values often produced a decrease in aver-
age values for the Python program’s values as velocities were no longer forced to the top of the video. On average,
baseline videos with top noise had a 95.6% ± 27.5% decrease in average peak velocity values, and hyperemic
videos had a 10.4% ± 9.0% decrease in average VTI values (Table 2). This change also contributed to an overall
decrease in standard deviation values; standard deviation of peak velocity values decreased by 101.3% and 5.3%
for baseline and hyperemic videos respectively. For some individual examples of videos with top noise, standard
deviation for peak velocity values increased by up to 88.7% because when processed by the original program,

CBF(mL/min) = ((π/4)× D2× VTI×HR)/1000

https://zenodo.org/record/6308961#.Yh0Uk99OlE4
https://zenodo.org/record/6308961#.Yh0Uk99OlE4

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

most or all peak velocities were driven up to the same maximum value. However, contrary to indications of
increased variability, removal of top noise is a step that allows the new program to more appropriately extract
data values from videos which could not be optimally analyzed by the MATLAB program.

Table 1. Coronary blood flow pattern variables assessed by the original MATLAB and the new Python
programs at baseline and hyperemia. Relevant values discussed in the text are in [bold].

Baseline Hyperemia

Average
MATLAB
values

Average
python values

Average %
difference +/− SD

Average % SD
difference

Average
MATLAB
values

Average
python values

Average %
difference +/− SD

Average % SD
difference

Systolic rise
time (ms) 75.58 71.57 0.79 44.55 − 54.61 73.94 62.90 − 10.64 39.60 − 59.22

Diastolic rise
time (ms) 23.03 26.73 16.28 36.27 − 11.65 29.05 29.05 1.25 27.80 − 31.23

Diastolic decay
time 1 (ms) 34.16 41.94 23.63 26.42 − 11.43 27.91 31.80 9.36 31.88 − 22.92

Diastolic decay
time 2 (ms) 61.73 35.30 − 50.94 35.94 − 51.84 64.90 42.16 − 40.48 43.29 − 50.21

Systolic slope
(mm/s2) 1042.46 443.38 25.82 173.15 − 22.96 2883.07 3686.91 27.85 38.42 7.54

Diastolic slope
(mm/s2) 24,777.52 10,698.94 − 24.04 68.88 − 29.16 29,405.50 22,284.09 − 11.37 45.06 − 40.01

Decay slope 1
(mm/s2) − 11,183.36 − 3159.46 − 50.62 76.42 − 72.15 − 12,850.25 − 9942.69 − 13.88 49.86 − 68.12

Decay slope 2
(mm/s2) − 5509.69 − 6718.63 23.72 44.74 16.78 − 11,247.26 − 15,374.79 26.34 29.13 9.31

Diastolic
velocity
(mm/s)

70.99 71.63 179.36 659.25 2.81 211.53 290.45 31.14 34.73 − 15.34

Peak velocity
(mm/s) 374.33 287.91 − 6.23 51.86 − 50.00 798.03 847.01 5.50 12.37 − 32.10

Decay velocity
(mm/s) 283.97 187.37 − 13.85 56.69 − 40.78 573.62 561.72 0.09 25.38 − 6.26

Heart rate
(BPM) 323.48 359.14 9.31 17.90 − 30.09 320.89 375.22 15.10 16.25 − 33.69

VTI (mm) 24.14 22.11 4.15 49.55 − 51.19 59.04 62.24 2.99 26.41 − 35.20

Baseline—no top noise Hyperemia—no top noise

Average
MATLAB
Values

Average
python
Values

Average %
difference +/− SD

Average
MATLAB
Values

Average
python values

Average %
difference +/− SD

Systolic rise
time (ms) 86.71 76.69 − 13.14 20.25 83.04 65.92 − 22.48 20.55

Diastolic rise
time (ms) 25.25 26.74 4.46 22.87 30.63 29.11 − 5.94 21.97

Diastolic decay
time 1 (ms) 33.90 41.48 23.75 27.84 28.85 31.47 7.11 28.77

Diastolic decay
time 2 (ms) 49.65 35.46 − 38.11 28.23 58.08 41.66 − 32.67 27.80

Systolic slope
(mm/s2) 201.98 431.48 92.87 129.35 2540.62 3700.73 38.94 23.50

Diastolic slope
(mm/s2) 10,238.15 11,007.39 7.71 26.87 21,868.16 23,225.37 7.45 16.99

Decay slope 1
(mm/s2) − 4179.26 − 3291.31 − 16.58 44.49 − 11,940.33 − 10,032.00 − 14.98 37.36

Decay slope 2
(mm/s2) − 4166.63 − 6776.93 42.91 26.96 − 11,762.49 − 15,699.49 26.95 18.06

Diastolic
velocity
(mm/s)

40.87 73.31 53.85 42.10 222.39 295.15 26.84 17.52

Peak velocity
(mm/s) 234.84 287.84 19.30 13.60 773.08 863.84 10.91 8.29

Decay velocity
(mm/s) 163.14 189.29 13.46 16.22 525.57 576.42 9.90 16.98

Heart rate
(BPM) 324.32 351.83 6.81 19.70 315.76 370.09 15.14 17.26

VTI (mm) 16.75 22.16 26.42 25.67 57.16 64.13 8.15 29.29

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

Table 2. Coronary blood flow peak velocity and VTI as assessed by the original MATLAB and the new
Python programs at baseline and hyperemia and under varying circumstances that occur in Doppler videos.

Baseline Hyperemia

Peak velocity (mm/s) VTI (mm) Peak velocity (mm/s) VTI (mm)

Accurate analysis

Average MATLAB values 282.45 20.75 959.43 62.41

Average python values 293.71 23.42 1000.72 61.89

p Value 0.20 0.11 0.26 0.45

Average % difference 4.65 11.74 3.26 − 2.53

 +/− SD 7.46 32.23 5.05 7.86

Average % SD difference − 13.05 − 11.64 − 5.66 − 21.12

ECG inaccuracies

Average MATLAB values 187.64 16.22 653.11 211.50

Average python values 228.54 19.95 717.62 50.44

p Value 0.001 0.10 0.15 0.20

Average % difference 20.07 20.80 8.91 − 12.55

 +/− SD 9.52 22.72 4.90 10.30

Average % SD difference − 25.83 − 43.60 − 37.55 − 58.36

Fainter peaks/unrepresentative cycles

Average MATLAB values 251.33 16.01 718.19 49.50

Average python values 342.65 24.68 886.41 79.59

p Value 0.004 0.08 0.01 0.01

Average % difference 29.63 40.78 20.55 42.79

 +/− SD 7.60 22.58 4.25 29.71

Average % SD difference − 41.24 − 16.06 − 71.06 − 27.76

Top noise

Average MATLAB values 862.55 49.99 829.05 63.03

Average python values 288.15 21.94 757.18 55.79

p Value 0.01 0.02 0.44 0.28

Average % difference − 95.55 − 73.80 − 8.54 − 10.41

 +/− SD 27.53 25.33 10.16 9.00

Average % SD difference − 101.29 − 141.09 − 5.30 − 23.74

Figure 3. Figure showing the change in average peak velocity values from MATLAB to Python program
analysis of each baseline Doppler video. Videos affected by top noise are indicated with red points, accurate
analysis is indicated with green points, videos with fainter peaks indicated with yellow, and inaccurate ECG
peak identification shown with blue points. The average change in values excluding those top noise videos is
represented by the gray line.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

Division of ECG region. As noted above, before extracting data values, the Doppler region is broken into
distinct cardiac cycles by identifying peaks in the ECG region. In cases of unusual ECG readings however,
the MATLAB program was unable to identify the correct number of peaks in this region. This resulted in the
program missing several QRS complex peaks and thus leaving some cardiac cycles unanalyzed—as depicted in
Fig. 5—or in the program selecting multiple peaks within one cardiac cycle, as shown in Fig. 6. In Fig. 5, 9 of
the total 15 ECG peaks were identified, while in Fig. 6 an additional 6 peaks were identified along with the 15
correct ones. With added verification and corrections in the Python program, all 15 ECG peaks are identified in
Fig. 6, and only the correct 15 peaks are identified in Fig. 6 with no additional peaks. Adding more of the correct
ECG peaks to the analysis of this first example decreased standard deviation for peak velocity values by 11.9%
and increased the average value by 6.4%, and removing incorrectly added peaks from the second representative
example decreased standard deviation of peak velocity values by 31.2% and increased the average value by 34%.

Identification of fainter peaks. The new program was able to overcome some of the difficulty of identify-
ing fainter peaks in the Doppler region, especially in cases where other cardiac cycles were significantly brighter
or there was surrounding noise. By employing a more aggressive method of noise removal in the region above
the Doppler flow, the Python program was able to accept a lower threshold for binarization in order to capture
these fainter peaks without also including surrounding noise in the final binarized image. The original algorithm
does not fully capture cycles 2 and 4 when analyzing a representative baseline video, as shown in Fig. 7A, but
these peaks are fully captured and analyzed by the Python program in Fig. 7B. This adjustment was incorporated
into the program without compromising its ability to exclude unrepresentative flow cycles that result from the
coronary artery moving in and out of view of the flow probe.

Correct identification and analysis of these previously overlooked cycles resulted in increased average peak
velocity, VTI, and decreased standard deviation. On average, baseline videos in this category increased peak

Figure 4. Images displaying the removal of top noise from analysis in the updated Python program. Panel
(A) displays analysis of representative baseline (above) and hyperemic (below) videos where top noise was
included in the Doppler envelope. Panel (B) shows the same videos processed by the Python program, where
top noise has been discarded from the analyzed pattern. In these images, green points indicate the beginning
of the diastolic phase, yellow indicates peak velocity, pink indicates decay velocity, red indicates peak diastolic
deceleration, and blue points indicate the end of the cycle.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

velocity and VTI values by 29.6% ± 7.6% and 40.8% ± 22.6% respectively when incorporating the Python pro-
gram’s corrections, while standard deviation fell by 41.2% and 16.1% respectively (Table 2).

Figure 5. Example of corrected QRS-complex peak identification in the ECG region where the original analysis
skipped several peaks. The MATLAB program (above) identifies 9 peaks, indicated by red circles, while the
Python program (below) identifies all 15 peaks, indicated by white vertical bars.

Figure 6. Example of corrected QRS-complex peak identification in the ECG region where the original analysis
added several incorrect peaks. The MATLAB program (above) identifies 7 additional peaks, indicated by red
circles, while the Python program (below) identifies only the correct 15 peaks, indicated by white vertical bars.

Figure 7. Figures displaying partially and completely captured fainter cycles in the Doppler region. Panel
(A) above shows cycles 2 and 4 are not fully captured by the MATLAB program, but they are captured and
analyzed by the Python program in Panel (B) below. As in previous images, green points indicate the beginning
of the diastolic phase, yellow indicates peak velocity, pink indicates decay velocity, red indicates peak diastolic
deceleration, and blue points indicate the end of the cycle.

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

Removal of unrepresentative cycles. The final major improvement made by the Python program to
increase accuracy was to remove any unrepresentative cycles from the program’s final output. Unrepresentative
cycles were identified by comparing a cycle’s peak velocity and VTI values to the data set’s averages, and if these
values were comparatively too low (due to the coronary transiently falling out of the view of the ultrasound dur-
ing the cardiac cycle) they were removed from the final data set. Removing this information helped to produce
more uniform results by not taking into consideration either incorrectly analyzed cardiac cycles or cycles that
may have been correctly captured but were not representative of the Doppler region’s overall trends. For exam-
ple, in Fig. 8, the Python program had correctly identified the Doppler region and analyzed each cardiac cycle,
but cycles 5, 6, 11, and 12 were not representative of the rest of the data set, so they were removed from the final
data table and subsequent calculation of average values and standard deviation.

Removing the unrepresentative cardiac cycles from this representative video resulted in a 102.21% decrease
in standard deviation for the peak velocity and a 57.53% decrease in standard deviation for the VTI. The aver-
age peak velocity then increased by 16.8%, and VTI increased by 17.05%. For this analysis, videos in which
unrepresentative cycles were removed were grouped with videos which improved identification of fainter peaks
because both modifications accomplished the common purpose of removing inaccurate lower values from analy-
sis. Because of this, both adaptations saw a similar increase in peak velocity and VTI values and decrease in
standard deviation values.

Color mode analysis. Additional color mode baseline and hyperemic files analyzed with each set of Dop-
pler videos produced vessel diameters which could be used to calculate blood flow through the measured vessel.
Baseline videos identified an average of 19 video frames containing vessels for analysis, and hyperemic videos
averaged 51 frames analyzed for vessel diameters. Vessel diameters increased by an average of 34.37% from base-
line to hyperemic conditions, which correlates with the increased stimulation of blood flow in the vessel. The
new color mode analysis algorithm also generated an image for each video frame containing a measured vessel,
and these images could then be inspected for accurate identification.

With the inclusion of vessel diameter calculations, coronary blood flow could also be calculated (Table 3).
In agreement with our previous demonstrations by manual analyses10,11, the new program was able to resolve
significant reductions in CBF in T2DM db/db mice at 12, 16, and 36 weeks of age. Importantly, coronary flow
reserve (CFR) was also impaired in db/db mice at 16 and 36 weeks of age compared to normal.

Discussion
The early identification of CMD has the potential to allow for the early identification and potential prevention of
more serious heart problems such as myocardial ischemia, atherosclerosis, and heart failure. TTDE is an effec-
tive and non-invasive method used to assess coronary flow by observing coronary flow patterns, and automatic
analysis of coronary blood flow was demonstrated in a previous study by this laboratory to reduce the time
required for analysis and the bias typical of manually-analyzed TTDE files9. Here, we present improvements to
the original program. This improved program took advantage of OpenCV and other Python libraries, and with
improved heuristics was able to handle a larger scope of data inputs and accurately analyze more challenging
Doppler videos.

This study aimed to refactor the original program, transition to a Python environment for use of the OpenCV
and Tensorflow libraries, and to add additional checks and improvements devised from use of the original pro-
gram in order to increase analysis accuracy and more effectively handle difficult cases. The new code improves

Figure 8. Image generated from the Python program showing unrepresentative cycles in the Doppler region.
Cycles 5, 6, 11, and 12 are significantly lower than the surrounding peaks and comparison of these peak values
to the average peak velocity leads to rejection from the final dataset after analysis is complete.

Table 3. Coronary blood flow calculated by the new Python program in both normal and T2DM db/db mice
at different ages. Data are mean ± SEM; n = 6 per group; *p < 0.05, **p < 0.01, and ***p < 0.001 versus respective
Control.

Age

Control Db/db T2DM db/db

Baseline (mL/min) Hyperemia (mL/min) CFR (H/B) Baseline (mL/min) Hyperemia (mL/min) CFR (H/B)

12 Weeks 1.34 ± 0.22 9.69 ± 1.17 7.57 ± 0.84 0.84 ± 0.11* 5.16 ± 0.94** 6.14 ± 0.92

16 Weeks 1.41 ± 0.14 10.59 ± 0.81 7.61 ± 0.37 0.72 ± 0.09** 4.26 ± 0.26*** 6.23 ± 0.54*

36 Weeks 1.04 ± 0.15 6.29 ± 0.58 6.53 ± 0.76 1.30 ± 0.16 4.25 ± 0.60* 3.61 ± 0.65**

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

handling of interference from top noise, validates identification of ECG peaks, correctly estimates parameters
from fainter peaks, and rejects unrepresentative data. In addition, the program functionality was expanded
by accepting videos of any pixel height and width and allowing multiple baseline and hyperemic videos to be
analyzed in one run.

One major advantage of moving the program to Python was the use of OpenCV for video processing and
image analysis. The MATLAB program interpreted each video frame as a cell array of pixel values and analyzed
the images to identify the horizontal baseline position, regions of interest to crop to, and threshold values for
binarization. The Python program utilized functions of the OpenCV library to accomplish these steps, as well as
for grayscale conversion and for applying a gaussian filter and dilation to the Doppler region before calculating
the binarization threshold. The findContours function was especially useful in adding modified heuristics to
identify top noise and other noise objects that needed to be removed.

The Python program took advantage of several other Python libraries for specific analysis steps; numpy was
used for array manipulation and mathematical calculations as parsed images were treated as arrays of pixel values,
tkinter was used to create GUIs for user interaction, and matplotlib was used to plot critical values on the images
of the coronary flow pattern that were saved from each processed video. As future developments are added, the
Python environment will be able to utilize TensorFlow, scikit-learn, and other libraries for further data analysis
and machine learning algorithms.

The data and examples provided specifically demonstrate the program’s ability to remove top noise, to improve
identification of peak ECG values, to better capture fainter cardiac cycles, and to remove unrepresentative cardiac
cycles from analysis. Overall, this resulted in decreased standard deviations from the original to the improved
program. This decrease in standard deviation indicates a more uniform analysis of each cardiac cycle and the
proper removal of inaccurate cycles. Increased average peak velocities and VTI values in cases except those deal-
ing with top noise interference also demonstrate the program’s improved analysis as unrepresentative cycles were
removed and fainter peaks that had previously been only partially captured were fully analyzed.

Performing open software development strengthens the research community. Any research group can either
contribute to this project to improve the software or they are free to develop a different tool using our work as a
foundation. Open software due to its transparency also increases reproducibility in research. The software can
be directly examined without any delay should a specific need to know arise when assessing research that uses
the software. As both our software and Python are free, we believe this also adds to the portability and potential
impact of our work.

Related studies. A handful of similar programs have been developed to use automated analysis to reduce
processing time and parameter variability. Many of these programs rely on partial-automation combined with
expert analysis to enhance accuracy without removing manual intervention. For example, a program developed
in MATLAB was used to crop video frames to the region of interest containing the Doppler envelope and apply a
binarization threshold adjusted by the user, similar to the verification included in this current study’s algorithm12.
The program analyzed the Doppler region in frames containing three heartbeats at a time, with each frame
taking between 10 and 40 s to analyze, and calculated a subset of the parameters found in in this study; peak
diastolic velocity, peak diastolic acceleration, beginning diastolic phase, peak systolic velocity, and peak diastolic
deceleration. When analyzing 200 videos from 100 patients, linear regression indicated strong correlation to
manual analysis in PSV (r = 0.986, p < 0.0001, SE = 2.51 cm/s) and PDV (r = 0.998, p < 0.0001, SE = 1.58 cm/s).

A similar study focused on removing all manual intervention from Doppler aortic flow analysis in order to
minimize bias and analysis time13. The program tested Doppler strips of several heartbeats at a time and followed
a similar procedure of cropping to the region of interest, binarizing the image to capture the Doppler envelope,
and extracting critical values from each cardiac cycle. The program was advantageous in that it also didn’t rely on
QRS complex peaks in the ECG region to divide the Doppler region into cardiac cycles, but instead relied only
on the Doppler data to separate cycles. However, the program did not account for some of the added heuristics
implemented in this current study, such as discarding unrepresentative peaks from consideration and remov-
ing top noise from the Doppler envelope. Due to these challenges, when analyzing heartbeats from 18 patients
through 9 manual and 1 automatic analysis, the automated measurements were outside the range of manual val-
ues 9.5% of the time for VTI values and 3.9% of the time for peak velocity values. However, overall this program
displayed strong correspondence in identified VTI and PV values to expert analysis, and saw a tenfold reduction
in time for analysis, as opposed to 30-fold reduction seen by the programs in this current study.

Limitations. Removing user interaction in favor of more computer automation would help to increase con-
sistency, especially in identification of the correct threshold level for image binarization. However balancing user
interactivity with complete automation is necessary for evaluators to adjust for errors and special cases, so allow-
ing for a manual adjustment of the threshold value for image binarization is most effective. The option to adjust
the binarization threshold is a critical element that needs to remain in order for a trained expert in coronary
flow to assess the suitability of the pattern moving in and out of view of the Doppler during the cardiac cycle—a
phenomenon that’s difficult to automate.

Conclusions
Comparison of the data values and plots generated from the original MATLAB and improved Python programs
serve to demonstrate the increased accuracy of the updated algorithm to automatically measure CBF, specifi-
cally its ability to process a wider range of video sizes, special cases, and inaccurate readings that the original
program did not have checks to handle. The improved program is able to remove top noise and other large noise
artifacts, to verify the correct identification of ECG peaks, to better capture fainter peaks in the Doppler region,

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:7490 | https://doi.org/10.1038/s41598-022-11402-6

www.nature.com/scientificreports/

and to remove unrepresentative values from the final set of parameters. The program accepts any video pixel
height and width and allows for the analysis of more than one baseline and hyperemic video at a time. Videos
that had already been accurately analyzed by the MATLAB program continued to output similar data values,
while videos that were corrected showed decreased standard deviation and increased peak velocity and VTI
values. Finally, the improved program was able to automatically resolve differences in CBF in a mouse model in
which we’ve previously demonstrated impaired CBF. The program has achieved its goal of improving algorithm
heuristics in order to better handle special cases, and can be used by examiners as an efficient, fast, and exact
way to automatically analyze coronary Doppler echocardiograms.

Received: 4 May 2021; Accepted: 12 April 2022

References
 1. McCallinhart, P., Scandling, B. W. & Trask, A. J. Coronary remodeling and biomechanics: Are we going with the flow in 2020?.

Am. J. Physiol. Heart Circ. Physiol. https:// doi. org/ 10. 1152/ ajphe art. 00634. 2020 (2020).
 2. Labazi, H. & Trask, A. J. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic

syndrome. Pharmacol. Res. 123, 114–121. https:// doi. org/ 10. 1016/j. phrs. 2017. 07. 004 (2017).
 3. Herscovici, R. et al. Ischemia and no obstructive coronary artery disease (INOCA): What is the risk?. J. Am. Heart Assoc. 7, e008868.

https:// doi. org/ 10. 1161/ jaha. 118. 008868 (2018).
 4. Taqueti, V. R. & Di Carli, M. F. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-

the-art review. J. Am. Coll. Cardiol. 72, 2625–2641. https:// doi. org/ 10. 1016/j. jacc. 2018. 09. 042 (2018).
 5. Simova, I. Coronary flow velocity reserve assessment with transthoracic doppler echocardiography. Eur. Cardiol.. 10, 12–18. https://

doi. org/ 10. 15420/ ecr. 2015. 10. 01. 12 (2015).
 6. Hartley, C. J. et al. Coronary flow reserve in mice: effects of age, coronary disease, and vascular loading. Annu. Int. Conf. IEEE Eng.

Med. Biol. Soc. https:// doi. org/ 10. 1109/ iembs. 2010. 56275 71 (2010).
 7. Trask, A. J. et al. Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic

syndrome. J. Appl. Physiol. 1985(113), 1128–1140. https:// doi. org/ 10. 1152/ jappl physi ol. 00604. 2012 (2012).
 8. Finegold, J. A. et al. Choosing between velocity-time-integral ratio and peak velocity ratio for calculation of the dimensionless

index (or aortic valve area) in serial follow-up of aortic stenosis. Int. J. Cardiol. 167, 1524–1531. https:// doi. org/ 10. 1016/j. ijcard.
2012. 04. 105 (2013).

 9. Sunyecz, I. L., McCallinhart, P. E., Patel, K. U., McDermott, M. R. & Trask, A. J. Defining coronary flow patterns: Comprehensive
automation of transthoracic Doppler coronary blood flow. Sci. Rep. 8, 17268. https:// doi. org/ 10. 1038/ s41598- 018- 35572-4 (2018).

 10. Katz, P. S. et al. Coronary arterioles in type 2 diabetic (db/db) mice undergo a distinct pattern of remodeling associated with
decreased vessel stiffness. Basic Res. Cardiol. 106, 1123–1134. https:// doi. org/ 10. 1007/ s00395- 011- 0201-0 (2011).

 11. Husarek, K. E. et al. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice.
Vascul. Pharmacol. 76, 28–36. https:// doi. org/ 10. 1016/j. vph. 2015. 06. 013 (2016).

 12. Magagnin, V., Delfino, L., Cerutti, S., Turiel, M. & Caiani, E. G. Nearly automated analysis of coronary Doppler flow velocity from
transthoracic ultrasound images: Validation with manual tracings. Med. Biol. Eng. Comput. 45, 483–493. https:// doi. org/ 10. 1007/
s11517- 007- 0178-x (2007).

 13. Zolgharni, M. et al. Automated aortic Doppler flow tracing for reproducible research and clinical measurements. IEEE Trans. Med.
Imaging 33, 1071–1082. https:// doi. org/ 10. 1109/ TMI. 2014. 23037 82 (2014).

Acknowledgements
This work was supported by the U.S. National Institutes of Health (R00 HL116769 and R21 EB026518 to AJT)
and the Abigail Wexner Research Institute at Nationwide Children’s Hospital (to CWB, WCR, and AJT).

Author contributions
All authors contributed to the experimental design. JB and YU acquired the data. All authors analyzed and
interpreted the data. JB wrote the initial draft of the manuscript. All authors provided revisions and approved
the final submission.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.C.R. or A.J.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1152/ajpheart.00634.2020
https://doi.org/10.1016/j.phrs.2017.07.004
https://doi.org/10.1161/jaha.118.008868
https://doi.org/10.1016/j.jacc.2018.09.042
https://doi.org/10.15420/ecr.2015.10.01.12
https://doi.org/10.15420/ecr.2015.10.01.12
https://doi.org/10.1109/iembs.2010.5627571
https://doi.org/10.1152/japplphysiol.00604.2012
https://doi.org/10.1016/j.ijcard.2012.04.105
https://doi.org/10.1016/j.ijcard.2012.04.105
https://doi.org/10.1038/s41598-018-35572-4
https://doi.org/10.1007/s00395-011-0201-0
https://doi.org/10.1016/j.vph.2015.06.013
https://doi.org/10.1007/s11517-007-0178-x
https://doi.org/10.1007/s11517-007-0178-x
https://doi.org/10.1109/TMI.2014.2303782
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Improvement of automated analysis of coronary Doppler echocardiograms
	Materials and methods
	Algorithm description.
	Methodology.
	Statistics.
	Availability of data and materials.

	Results
	Removal of top noise.
	Division of ECG region.
	Identification of fainter peaks.
	Removal of unrepresentative cycles.
	Color mode analysis.

	Discussion
	Related studies.
	Limitations.

	Conclusions
	References
	Acknowledgements

