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An updated view into the cell cycle 
kinetics of human T lymphocytes 
and the impact of irradiation
Evi Duthoo 1,2, Anne Vral 1,2 & Ans Baeyens 1,2*

Even though a detailed understanding of the proliferative characteristics of T lymphocytes 
is imperative in many research fields, prior studies have never reached a consensus on these 
characteristics, and on the corresponding cell cycle kinetics specifically. In this study, the general 
proliferative response of human T lymphocytes to phytohaemagglutinin (PHA) stimulation was 
characterized using a carboxyfluorescein succinimidyl ester-based flow cytometric assay. We were 
able to determine when PHA-stimulated T lymphocytes complete their first division, the proportion of 
cells that initiate proliferation, the subsequent division rate of the cells, and the impact of irradiation 
on these proliferative properties. Next, we accurately visualized the cell cycle progression of dividing 
T lymphocytes cultured in whole blood using an adapted 5-ethynyl-2’-deoxyuridine pulse-chase 
method. Furthermore, through multiple downstream analysis methods, we were able to make an 
estimation of the corresponding cell cycle kinetics. We also visualized the impact of X-rays on the 
progression of the cells through the cell cycle. Our results showed dose-dependent G2 arrest after 
exposure to irradiation, and a corresponding delay in G1 phase-entry of the cells. In conclusion, 
utilizing various flow cytometric assays, we provided valuable information on T lymphocyte 
proliferation characteristics starting from first division to fully dividing cells.

A thorough understanding of the proliferative characteristics of cells forms a cornerstone of basic, translational, 
and clinical biological research. Human lymphocytes are widely used in various research fields and detailed 
knowledge about their proliferation properties and cell cycle kinetics is often key. Many studies have been per-
formed into lymphocyte proliferation, especially between the 1960 and  1990s1–6. However, to present day, the 
available information remains quite conflicting. Various studies described different total cell cycle durations, 
ranging from 10 to 24 h. Significant variations were particularly reported for the G1 cell cycle  phase1–4,6. These 
discrepancies may be explained by differences in culture methods, mitogen stimuli (often phytohaemagglutinin 
(PHA)), or even the employed proliferation assays. The various methods used in these studies, such as tritiated 
thymidine-based assays, are now seldomly utilized due to the accessibility of better alternatives.

Human lymphocytes are often used in diverse research fields, partly due to their considerable potential as 
an easily accessible source of cells that can be collected in a minimally invasive manner. In the context of cancer 
chemotherapy, the development of drugs that target cell cycle-specific proteins has proven to be of highly clinical 
 importance7. Also in the immunology field, insight into the proliferative characteristics of T lymphocytes can 
aid in vitro studies where the functionality or the distinct cytokine profile of T cells is  evaluated8,9. Furthermore, 
understanding the impact of genotoxic agents, such as irradiation, on the cell cycle and division abilities of these 
cells plays a crucial role in many radiobiology  studies10,11. However, our outdated knowledge on lymphocyte 
proliferation and cell cycle kinetics, and correspondingly the underlying regulatory mechanisms, may be impedi-
ment for these research fields.

Numerous techniques are currently available to study both cell proliferation and cell cycle kinetics. These 
methods are based on various aspects of the cell cycle and can be divided into: (1) cytoplasmic proliferation 
dye-based assays; (2) nucleoside-analogue incorporation assays; (3) cell cycle-associated protein assays; and (4) 
indirect methods based on cell counting, viability, and metabolic  activity12. The use of cytoplasmic proliferation 
dyes, classically the green fluorescence dye carboxyfluorescein  succinimidyl ester (CFSE), is an effective method 
to monitor cell proliferation. CFSE is cell permeable and has the ability to covalently bind to cytoplasmatic 
components, resulting in a uniform bright fluorescence signal. Upon cell division, the dye is equally distributed 
between daughter cells resulting in a decrease of fluorescence intensity. Cell proliferation can subsequently be 
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traced for up to eight divisions using flow  cytometry13,14. CFSE is a powerful tool to quantitatively analyze cell 
divisions, both in vivo and in vitro, and is routinely used in both research and clinical  settings15–18.

To study the cell cycle, nucleoside-analogue incorporation assays are often utilized. During replication, 
nucleoside-analogues can be incorporated into cellular DNA, tagging the cells in S phase, followed by immu-
nofluorescence or flow cytometric analysis. So far, the most commonly used thymidine-analogues are tritiated 
thymidine  ([3H]TdR) and 5-bromo-2’-deoxyuridine (BrdU)1,3. However, both techniques, despite their sensitivity 
and reliability, are associated with several imperfections. The tritiated thymidine method uses a radioactively 
labeled thymidine, which requires careful handling and expensive detection devices. Furthermore, this technique 
quantifies overall cell division, but does not allow for single cell  monitoring12. BrdU, a non-radioactive alterna-
tive, relies on an antibody-based detection method that requires DNA denaturation by heat or acid  treatment19. 
However, this can results in modifications of cellular epitopes, degradation of the DNA structure and can cause 
variability in the staining  intensity20. Recently, a new thymidine-analogue 5-ethynyl-2’-deoxyuridine (EdU) has 
been developed as an alternative to the tritiated thymidine and BrdU  method21. This assay is based on copper-
catalyzed Click-iT technology for the detection of EdU incorporation and does not require DNA denaturation. 
The EdU method harbors several major advantages, such as rapidity and simplicity, compared to alternative 
thymidine-analogues. Combining thymidine-analogue incorporation methods with traditional cell cycle analysis, 
based on the measurement of DNA content using propidium iodide or DAPI, allows for highly efficient flow 
cytometry-based proliferation  assays22.

The objectives of the present study were to examine the proliferative characteristics, cell cycle progression, 
and kinetics of the cell cycle phases of cultured human T lymphocytes. These properties were examined using 
the CFSE proliferation assay and the EdU pulse-chase method, for both non-irradiated and irradiated cells. T 
lymphocytes were stimulated with the mitogen PHA and, utilizing CFSE, we subsequently determined when the 
cells complete their first division, the number of cells that initiate proliferation, and the subsequent division rate 
of these cells. Using an adapted EdU pulse-chase method, the progression of PHA-stimulated T lymphocytes 
through the different phases of the cell cycle was visualized. Subsequently, using different downstream analysis 
methods, we were able to estimate the corresponding cell cycle phase kinetics. This adapted method allowed 
us to chase T lymphocytes cultured in whole blood, which provided us with a model that better represents the 
in vivo situation.

Our findings reveal various proliferative properties that are characteristic for T lymphocytes stimulated with 
PHA. Moreover, we were able to make an estimation of the cell cycle kinetics of T lymphocytes cultured in whole 
blood and uncover the unique effects of X-rays on the cell cycle progression of these cells.

Materials and methods
Sample collection. Heparinized peripheral blood samples were obtained from healthy volunteers (n = 14) 
with an age between 24 and 55 years. Informed consents were obtained from the blood donors. This study was 
approved by the Ethics Committee of Ghent University Hospital (reference no. 2019/1565). Blood donors in this 
study had no known previous exposure to medication, radiotherapy, or substances that could affect the results of 
this study. All experiments were performed according to the relevant guidelines and regulations.

Irradiation procedure. Irradiations were performed using the Small Animal Radiation Research Platform 
(SARRP) (Xstrahl, Camberley, UK) at Infinity Lab, Ghent University. Cultures were irradiated using X-rays 
(220 kV, 13 mA, 0.15 mm copper filter) at a dose rate of 3 Gy/min.

CFSE proliferation assay for isolated PBMCs. Peripheral blood mononuclear cells (PBMCs) were iso-
lated from heparinized blood samples using Lymphoprep (Axis-Shield, Dundee, UK) gradient centrifugation. 
Following isolation, PBMCs were resuspended in PBS at a density of 1 ×  106 cells per ml. Cell proliferation was 
examined using CFSE (CellTrace CFSE Cell Proliferation Kit, Thermo Fisher Scientific, Waltham, MA, USA) 
based on Quah et al.13 Cells were labeled with CFSE at a final concentration of 1 µM and immediately vortexed 
to ensure rapid and homogeneous labeling. The cells were incubated for 10 min at 37 °C. Unbound CFSE was 
quenched by the addition of cold PBS with 1% fetal calf serum (FCS). The cells were washed twice with PBS 
containing 1% FCS and then seeded in a cell suspension 48 well plate (Greiner Cellstar, Sigma-Aldrich, Saint 
Louis, MO, USA) at a concentration of 250,000 cells in 500 µl growth medium consisting of RPMI-1640 medium 
supplemented with 10% FCS, 1% sodium pyruvate, 0.1% β-mercapthoethanol, penicillin (50 U/ml), and strep-
tomycin (50 mg/ml), all from Gibco (Thermo Fisher Scientific, Waltham, MA, USA). Immediately following 
CFSE labeling and seeding, the PBMCs were irradiated with 1 and 2 Gy of X-rays. Sham-irradiated samples 
(0 Gy) were included. Subsequently, the cells were stimulated with phytohaemagglutinin-M (PHA-M, 5 µl/ml) 
(Sigma-Aldrich, Saint Louis, MO, USA). After 0–96 h of culture, with 24-h intervals, the cells were harvested, 
washed twice with PBS, and analyzed by flow cytometry. Cell viability was assessed using Propidium Iodide (PI). 
Additional flow cytometric analyses, immediately following CFSE labeling, indicates a labeling efficiency that 
exceeds 99%.

EdU pulse-chasing method for whole blood cultures. Whole blood cultures were set-up by adding 
0.5 ml of fresh heparinized blood to 4.5 ml of RPMI-1640 medium supplemented with 10% FCS, penicillin (50 
U/ml), and streptomycin (50 mg/ml). Cell division was stimulated using PHA-M (20 µl/ml). EdU labeling and 
staining (Click-iT EdU Alexa Fluor 555 Imaging Kit, Thermo Fisher Scientific, Waltham, MA, USA) was per-
formed according to Sun et al.23 After 96 h of culture, dividing T lymphocytes were pulse-labeled with 10 µM 
EdU (dissolved in DMSO as per manufacturer’s instructions) for 30 min at 37 °C and, during pulse-labeling, the 
cells were irradiated with 2 and 4 Gy of X-rays. Sham-irradiated samples (0 Gy) were included. For EdU pulse-
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chasing (Fig. 1), the cells were washed twice with prewarmed PBS, supplemented with EdU-free prewarmed 
medium, and cultured at 37 °C, 5%  CO2. The cells were chased over time for hours ranging from 0 to 25 h.

After varying culture times, the erythrocytes were lysed using lysis buffer. This was done in order to simplify 
the flow cytometric evaluation of the T lymphocytes. Subsequently, the cells were washed twice with PBS and the 
pellet was fixed in 3% paraformaldehyde (VWR International, Wayne, PA, USA) for 20 min, at room tempera-
ture (RT). The cells were washed twice with PBS containing 1% FCS and permeabilized for 10 min with ice-cold 
0.2% Triton X-100 in PBS (Sigma-Aldrich, Saint Louis, MO, USA). Next, the cells were incubated at RT in the 
dark for 30 min with 100 µl of the Click-iT reaction cocktail, prepared as per manufacturer’s instructions. After 
washing twice with PBS, DNA was stained using 100 µl of DAPI solution (1 µg/ml) (Sigma-Aldrich, Saint Louis, 
MO, USA) and the cells were analyzed by flow cytometry. Additional non-irradiated and irradiated whole blood 
cultures — supplemented with DMSO without EdU — were included to determine the possible toxic effect of 
EdU on the cell cycle kinetics.

Analysis by flow cytometry. Flow cytometry was performed using a BD LSR II (BD Biosciences, San 
Jose, CA, USA) equipped with four lasers (488 nm, 633 nm, 405 nm, and 355 nm). Cell debris and doublets were 
excluded from the analysis using FSC-A versus SSC-A and FSC-A versus FSC-H when appropriate. An average 
of 10,000 events was collected per sample after these gatings, in a slow rate mode to avoid  doublets24. Additional 
gatings were applied on both the CFSE proliferation and EdU pulse-chase data according to the analysis (Sup-
plementary Figs. S1 and S2). Minor differences between donor samples were observed. This was included in 
subsequent sample analyzes by adjusting the gatings accordingly. It is important to note that the whole lympho-
cyte fraction was analyzed according to the gating strategy shown in Supplementary Figs. S1 and S2 without an 
extra T lymphocyte staining. A minor fraction of B lymphocytes and natural killer (NK) cells might thus still 
be present in the sample. However, as PHA stimulates proliferation of specifically T lymphocytes, all analyzed 
proliferating cells are expected to be T  lymphocytes25–27.

Quantitative data analysis. Further quantitative data analyses were performed using both the FlowJo 
Software v10.7 (BD Life Sciences) (https:// flowjo. com) and GraphPad Prism v9.2.0 for Windows (GraphPad Soft-
ware, San Diego, CA, USA) (https:// graph pad. com). Statistical analysis was performed using GraphPad Prism. 
The precursor frequency (PF) and lymphocyte proliferation index (LPI) of each CFSE sample was determined 
using the Proliferation Tool in the FlowJo Software package. This tool calculates the PF and LPI as described by 
Wells et al. and  Roederer15,28. Significance of differences between both the PFs and the PIs of the different irradia-
tion doses was determined for each time point using a Kruskal–Wallis test followed by a Dunn’s post hoc test.

The Cell Cycle Analysis tool in the FlowJo Software package was utilized to compare T lymphocyte cell cycle 
phase distributions of both EdU-labeled and non-labeled whole blood cultures in order to determine EdU-
toxicity (Supplementary Fig. S3). The EdU pulse-chase data was quantified as the percentage of EdU-positive 
cells in the G2/M phase, G1 phase, or in G2 arrest, respectively. The duration of the S phase was defined as the 
full-width-at-half-maximum (FWHM) of the hourly percentage of EdU-positive cells in the G2/M  phase29,30. 
The FWHM was calculated using the SymPy mathematics Python package in a custom Python  script31, starting 
from the equation parameters of a cubic fit applied in GraphPad Prism. This fit was applied for each sample indi-
vidually, resulting in a FWHM value for each sample. Using the relative movement (RM) technique as described 
by Begg et al., the estimated duration of the S phase was verified (Supplementary Fig. S4)32. The G2/M phase 
duration was defined as the time interval between the start of influx of cells into the G2/M phase and the time 

Figure 1.  Schematic overview of the EdU pulse-chasing method for tracking T lymphocytes cultured in whole 
blood. (1) Whole blood is cultured and lymphocyte cell division is stimulated using PHA. (2) After 96 h of 
culture, the proliferating cells are pulse-labeled with 10 µM EdU for 30 min; and (3) during pulse-labeling, the 
cells are irradiated in vitro with 2 or 4 Gy of X-rays. (4) EdU pulse-chasing is performed by culturing the cells 
from 0 up to 25 h and chasing them over time. (5) Following red blood cell lysis, the lymphocytes are fixed 
and then stained using the Click-iT EdU imaging kit. (6) The samples are measured using flow cytometry and 
analyzed using FlowJo software.

https://flowjo.com
https://graphpad.com
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needed to reach a maximum number of cells in G2/M  phase33. These time points were determined from the 
cubic fit equation of each sample individually. From the lymphocyte proliferation indexes of all time points, the 
total cell cycle time (Tc) was estimated (Supplementary Table S1).

Results
Examining the proliferative characteristics of isolated T lymphocytes using the CFSE as-
say. T lymphocytes complete a first division between 48 and 72 h of culture with PHA. To examine when T 
lymphocytes complete their first division after PHA stimulus, isolated PBMCs were homogeneously labeled with 
CFSE, which initially results in a bright and uniform peak of CFSE-positive cells (Fig. 2a). Proliferation of the 
CFSE-labeled cells results in the sequential halving of the fluorescence signal with each division, as illustrated in 
Supplementary Fig. S5. Note that the traceable number of divisions is limited by the autofluorescence level of the 
unstained activated control  sample13. Upon stimulation with PHA, T lymphocyte proliferation was examined at 
0, 24, 48, 72, and 96 h. Furthermore, the effect of irradiation on the duration of the first division was examined 
by exposing the cells to 1 and 2 Gy of X-rays before stimulation.

Our results show that a first T lymphocyte division is completed between 48 and 72 h after PHA stimula-
tion (Fig. 2a). When examining the amount of performed divisions, we can see that after 72 h, some cells have 
divided up to three times, while other cells remain undivided throughout this same period of time (Fig. 2a). This 
indicates moderate asynchrony in the cell proliferation kinetics of T lymphocytes. Our findings also show that 
irradiation of the T lymphocytes before stimulation has no visible impact on the average time needed for a first 
division (Fig. 2c). Noteworthy, the undivided T lymphocytes continue to fluoresce brightly after 96 h, confirming 
dye stability over the cultured period of time.

Figure 2.  Proliferation analysis of CFSE-labeled T lymphocytes after PHA stimulus. T lymphocytes were 
exposed to 0, 1, and 2 Gy of 220 kV X-rays and cell proliferation was examined at 0, 24, 48, 72, and 96 h. (a) 
Representative example of CFSE fluorescence profiles of live non-irradiated T lymphocytes. The open black 
histograms show stimulated CFSE-labeled cells. The solid grey histograms show unstimulated CFSE-labeled 
control samples. The open grey histograms show the autofluorescence of stimulated control samples, not labeled 
with CFSE. (b) The precursor frequency (PF) of CFSE-labeled cells for each irradiation dose, at various time 
points. Individual datapoints of 6 independent experiments are shown, with the mean ± standard deviation. No 
statistically significant differences were found (p > 0.05) between irradiation doses. (c) Representative example of 
CFSE fluorescence profiles of live irradiated T lymphocytes visualized as described for (a).
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The proportion of T lymphocytes completing a first division is not altered by exposure to irradiation. To com-
pare the proportion of dividing cells between non-irradiated and irradiated T lymphocytes, we determined the 
precursor frequency (PF) for all time points and each irradiation dose. The PF is defined as the fraction of cells 
of the starting population that divided at least once during the culture period. This provides us with a good 
measurement to determine the initial proliferation response of the cells, without being biased by any potential 
differences in the division rate.

For each irradiation dose, a major increase in average PF could be observed between 48 and 72 h, confirm-
ing our previous observations regarding the average time needed for the cells to start proliferating (Fig. 2b and 
Supplementary Table S2). Notably, no significant effect of irradiation on the PF could be observed (p > 0.05), 
indicating that exposure to X-rays prior to PHA stimulation has no influence on the number of cells that initiate 
proliferation. Interestingly, after 96 h of stimulation, an average of 46.86%, 46.60%, and 52.52% of the cells have 
not started proliferating after exposure to 0, 1, and 2 Gy of X-rays respectively.

The division rate of T lymphocytes is not significantly affected by irradiation. To further investigate the pro-
liferative characteristics of T lymphocytes and the subsequent effects of X-ray irradiation, we determined the 
lymphocyte proliferation index (LPI) for each irradiation dose, for all time points. This index determines the 
average number of divisions made by all actively proliferating cells and thus reflects the division rate of the PHA-
responsive T lymphocytes.

After 72 h of culture, non-irradiated T lymphocytes completed an average of 1.59 divisions, whereas the 1 and 
2 Gy irradiated cells divided 1.55 and 1.61 times on average, respectively (Supplementary Fig. S6 and Table S2). 
An average of 2.92, 2.70, and 2.68 divisions were performed after 96 h of culture, for 0, 1, and 2 Gy, respectively. 
Again, no significant differences were observed between the irradiation doses (p > 0.05), indicating no profound 
effect of irradiation on the subsequent division rate of T lymphocytes. Markedly, our results demonstrate an 
average division rate of more than one division in 24 h, suggesting that the duration of the T lymphocyte cell 
cycle is shorter than this period of time (Supplementary Table S2).

Tracking the cell cycle progression of T lymphocytes in whole blood cultures using EdU 
pulse-chase analysis. The EdU pulse‑chase method was successfully optimized for T lymphocytes cultured 
in whole blood. We successfully adapted the EdU pulse-chase method for T lymphocytes cultured in whole 
blood. Firstly, no effect of EdU pulse-labeling on the cell cycle distribution of both non-irradiated and irradiated 
T lymphocytes was observed, showing the applicability of this method (Supplementary Fig. S3). Secondly, EdU-
labeled S phase cells can clearly be identified (green cohort) and a distinction between all cell cycle phases can 
be made through bivariate analysis of EdU incorporation and cellular DNA content (Fig. 3a, 0 h). This demon-
strates the effectiveness of our technique to monitor T lymphocyte cell cycle progression in whole blood cultures. 
Thirdly, our adapted technique was also successful for chasing EdU-labeled T lymphocytes over time (Fig. 3a). 
The shifting patterns of the bivariate profiles show the T lymphocytes progression through the cell cycle. Over 
time, we can see the EdU-labeled cohort moving from the S to the G2 phase (Fig. 3a 3–6 h). As the cells divide, 
the cells will progress back to the G1 phase, thus starting a new cell cycle (Fig. 3a, 3–9 h). Continuous prolifera-
tion can be seen as the EdU-labeled cells progress to the S phase of a second cycle (Fig. 3a, 12 h). Progression of 
the unlabeled G1 and G2/M phase cells can also be observed (Fig. 3a, red cohort). Lastly, our results show that 
this technique can be used in combination with irradiation of the cells, which allows for the evaluation of the 
effects of irradiation on the cell cycle progression (Fig. 3a–c).

Quantitative analysis of the cell cycle phase durations of non‑irradiated T lymphocytes. By employing multiple 
quantitative analyses on both the EdU pulse-chase and CFSE proliferation data, the cell cycle kinetics of non-
irradiated T lymphocytes were examined more in detail. These methods allow us to estimate the duration of the 
cell cycle phases and to define the total cell cycle time (Tc).

The duration of both the S and the G2/M phase was estimated by quantifying the progression of EdU-
labeled cells through the G2/M phase (Fig. 4; Table 1). Importantly, we can see that the estimated S phase length 
(6.10 ± 1.38 h) and G2/M phase length (3.50 ± 0.69 h) are consistent with the T lymphocyte progression visible in 
the bivariate profiles (Fig. 3a; Supplementary Fig. S7). For instance, we can see the first EdU-labeled cells appear 
in the G1 phase around 3 h after labeling, which matches the estimated G2/M phase duration (Fig. 3a; 3 h profile, 
indicated by the arrow). Additionally, verification of the estimated S phase duration with the relative movement 
(RM) technique showed a similar outcome (6.75 ± 0.83) (Table 1; Supplementary Fig. S4).

Due to increasing asynchrony after the first cell cycle, the G1 phase duration is more difficult to directly 
quantify from the EdU pulse-chase results. We therefore derived an estimate of the total cell cycle duration (Tc) 
from the CFSE-based lymphocyte proliferation index, as described above, which resulted in an estimated Tc 
of 16.62 ± 1.84 h (Supplementary Table S1). By subtracting the S and G2/M phase lengths from this Tc value, 
the average G1 phase duration was estimated to be 7.02 h (Table 1). Based on the standard deviations of the S, 
G2/M, and Tc durations, we expect variation on this estimated value. This is also reflected in the bivariate profiles 
(Fig. 3a; Supplementary Fig. S7).

Quantitative and qualitative analysis of the effects of irradiation on the cell cycle progression of T lymphocytes. The 
influence of X-ray irradiation on the cell cycle progression was assessed using both quantitative and qualitative 
methods. T lymphocytes were exposed to 2 and 4 Gy of irradiation during EdU pulse-labeling and the cells 
were chased over time. To determine whether irradiation has an impact on the duration of the S phase, we used 
the RM technique. Our results show no significant effect of 2 Gy of X-rays on the S phase length (7.33 ± 0.58 h; 
p > 0.05) compared to 0 Gy (6.75 ± 0.96 h) (Supplementary Fig. S4). However, when exposed to 4 Gy of irradia-
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tion, the EdU-labeled cells show a significant prolongation of the S phase duration (9.33 ± 0.58 h; p < 0.05) com-
pared to non-irradiated cells.

Further quantifications of the cell cycle phase durations were complicated by considerable variation in the 
samples due to an increase in asynchrony of the dividing cells. We therefore focused on the qualitative properties 
of the progression through both the G2/M and the G1 phase of the EdU-labeled cells and the differences between 
irradiated and non-irradiated cells. When examining the G2/M-to-G1 phase progression of EdU-labeled cells, a 
delay of re-entry in the G1 phase can be observed for the irradiated cells (Figs. 3b–c, 5a). This delay corresponds 
to a prolonged G2/M phase, indicating considerable G2 arrest after irradiation (Fig. 5b; Supplementary Figs. S8, 
S9). Our data show that after exposure to 2 and 4 Gy of X-rays, the peak in number of cells in G2/M phase is 
reached on average 2 and 5 h later, respectively, compared to the non-irradiated (Fig. 5b). Interestingly, when 
observing the entry of EdU-labeled cells into the next G1 phase and the correlated G1-entry kinetics, no major 
differences can be observed between the T lymphocytes exposed to 0 versus 2 Gy of X-rays, besides the delay 
of G1-entry (Fig. 5a). When examining the cells exposed to 4 Gy of X-rays, however, a flattening of the curve 
is visible, indicating that a large proportion of these cells are unable to complete their cell cycle over the time 
course analyzed in this study.

T lymphocytes remain in G2 arrest up to 25 h after irradiation. As previous results showed that T lymphocyte 
cell cycle progression is delayed in the G2/M phase up to 14 h after irradiation in the S phase, we further exam-
ined the extent of G2 arrest by tracking the EdU-labeled cells for 25 h, with 3 h-intervals (Fig. 6). We observed a 
substantial percentage of cells arrested in the G2 phase 13 h after 2 Gy and 4 Gy of irradiation. This percentage 
decreased over time, as cells eventually progressed to the G1 phase. Markedly, 25 h after irradiation, 6.14% and 

Figure 3.  EdU pulse-chasing of T lymphocytes in whole blood cultures allows for the assessment of the cell 
cycle progression. T lymphocyte proliferation was stimulated with PHA for 96 h before EdU pulse-labeling. (a) 
Bivariate distributions of non-irradiated EdU pulse-labeled T lymphocytes showing DNA content (x-axis) and 
EdU incorporation (y-axis). The green population shows the EdU-positive T lymphocytes. The red population 
shows the EdU-negative cells. The black arrows indicate the progression of the cells through the cell cycle, 
over time. The bivariate profiles of one donor are displayed here. Other donors show similar distributions. 
(b) Bivariate profiles of T lymphocytes exposed to 2 Gy of X-rays, visualized as described for (a). (c) Bivariate 
profiles of T lymphocytes exposed to 4 Gy of X-rays, visualized as described for (a).
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28.56% of EdUlabeled T lymphocytes still resided in the G2 phase for 2 and 4 Gy respectively, showing a pro-
longed arrest for a minority of cells irradiated in the S phase.

T lymphocytes irradiated in the G1 phase do not undergo G1 arrest. We also examined the progression of the 
EdU-negative T lymphocytes through the cell cycle, visible in the bivariate profiles as the red cohort (Fig. 3a–c, 
Supplementary Fig. S7–S9) and compared the distributions of the irradiated and non-irradiated samples. We 
observed that cells irradiated in the G1 phase displayed no pronounced delay of entry into the S phase, indicating 
no major G1 arrest after exposure up to 4 Gy of X-rays. Instead, an accumulation of the non-labeled irradiated 
cells in the G2/M phase could be seen, suggesting that these cells do experience a G2 arrest.

Discussion
In this study, we report on the proliferative characteristics of T lymphocytes after stimulation with the mitogen 
phytohaemagglutinin (PHA) and, additionally, we demonstrated the impact of X-ray irradiation on the division 
capability of these cells. Our results show that a first division, after stimulation with PHA, is completed between 
48 and 72 h. Interestingly, exposure to X-ray doses up to 2 Gy before the proliferative stimulus did not signifi-
cantly alter this timespan. A marked asynchrony in the proliferating population could be observed for both the 
irradiated and non-irradiated T lymphocytes, which is in concordance with previous  reports13,14. This asynchrony 
can be attributed to the fact that the time span required for a first division is significantly longer than the time 
spans for subsequent divisions, thus resulting in a heterogeneously dividing population.

Strikingly, we observed that a significant proportion of T lymphocytes did not respond to the proliferative 
stimulus, even after 96 h of culture. On average, only 50% of the original T lymphocytes — indicated by the 
precursor frequency — responded to the PHA stimulus, with some proliferative responses being as low as ~ 37%. 

Figure 4.   Estimation of the S and G2/M phase duration through the quantification of non-irradiated EdU-
labeled cells in G2/M phase over time. Datapoints show the mean percentage of non-irradiated EdU-positive 
cells in the G2/M phase across four independent experiments, for each time point. Error bars show the standard 
deviation of the mean. A cubic fit was applied, on which the full-width-at-half-maximum was calculated, as 
shown by the red arrow. The blue arrow indicates the G2/M phase duration.

Table 1.  The estimated duration (h) of each cell cycle phase and total cell cycle time (Tc) of non-irradiated T 
lymphocytes, determined by different methodologies. The estimated mean ± standard deviation (h) is shown.

Phase G1 S G2/M Tc

CFSE proliferation 16.62 ± 1.84

EdU pulse-chase 6.10 ± 1.38 3.50 ± 0.69

RM Technique 6.75 ± 0.83

Derived from Tc, S, and G2/M 7.02
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This is in contrast to previous reports dating from the late 1970s, where a proliferative response to PHA stimulus 
was reported for more than 80% of the  cells3,4. However, the methodologies used in previous reports did not 
take into account the continuous proliferation of the cells, and thus the exponentially expanding population. 
This demonstrates the importance of a good metric, such as the precursor frequency, which describes the initial 
proliferative response of the cells, without being biased by any potential differences in the division rate.

It is important to note that the determined PF could be a minor underestimation due to a potential limited 
presence of other lymphocytes in the sample, namely B lymphocytes and NK  cells27. The PF is determined based 
on the complete cell population, including any potential non-proliferating cells. As no extra T lymphocyte-
specific staining was included in the gating strategy, this minor fraction of cells could introduce a small bias 
into our results. Nevertheless, based on previous reports, only a small fraction of these cells (< 10%) is estimated 
to be present in the samples. Therefore, this bias is expected to be relatively minor, and should not impact the 
overall results and conclusions.

Figure 5.   Progression of EdU-labeled T lymphocytes through both the G1 and the G2/M phase over time. 
(a) Datapoints show the mean percentage of EdU-positive cells for each irradiated dose in the G1 phase, for all 
time points. The grey shading shows the standard deviation of three independent experiments. The blue and red 
arrow indicate the cell cycle delay for 2 and 4 Gy, respectively. (b) The mean percentage of EdU-positive cells in 
the G2/M phase is shown for each irradiation dose, for each time point. The grey shading shows the standard 
deviation of three independent experiments.

Figure 6.   G2 arrest of EdU-labeled T lymphocytes after exposure to X-ray irradiation over time. The bar plots 
show the mean percentage of EdU-positive cells still residing in G2 arrest for non-irradiated and irradiated 
conditions, over multiple time points. Error bars show the standard deviation of the mean of three independent 
experiments.
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Our results showed no significant impact of irradiation on both the proportion of dividing cells and the 
subsequent division rate of the proliferating cells. These findings suggest that the cells did not undergo cell cycle 
arrest after exposure to 1 and 2 Gy of X-rays in the G0 phase, as this would have resulted in a decreased propor-
tion of dividing cells due to arrest at the cell cycle  checkpoints34. This indicates that most of the DNA damage 
induced by irradiation was repaired before continuing their cell cycle progression, which is not unexpected as it 
is known that the main repair pathway active in the G0 phase, namely the non-homologous end joining (NHEJ) 
pathway, ensures repair of DNA damage within 24  h35,36. It is important to note that in these experiments, the 
cells were exposed to moderate doses of X-rays and that higher doses (> 7.5 Gy) have been reported to inhibit 
the proliferative response of lymphocytes, as shown by multiple  studies37,38. Furthermore, it is also important to 
note that the whole lymphocyte fraction was analyzed assuming only T lymphocyte proliferation, as it widely 
known that PHA as mitogen has a stimulating effect specifically on T  lymphocytes25–27,39. A minor fraction of 
other lymphocytes, namely B lymphocytes and NK cells, can still remain present in the culture. However, these 
cells do not initiate proliferation after PHA addition. Importantly, as all aspects of this research only considered 
proliferating cells, with exception of the precursor frequency, no influence on the results of this minor fraction 
of cells is expected. In future experiments, an additional staining for CD3 + could prove to be of value, especially 
to determine the precursor frequency more accurately as we expect this to be a small underestimation of the 
actual T lymphocyte PF.

Various studies have mentioned the potential adverse effects of CFSE on  lymphocytes40,41. These studies dem-
onstrated a considerable effect on cell viability and proliferative capacity of high concentrations of CFSE, ranging 
from 5 to 10 µM. Labeling concentrations of 2.5 µM or lower, however, resulted in only a slightly diminished cell 
viability. Based on these reports, we expect no considerable negative effect of CFSE labeling on the proliferative 
capability of the cells used in our experiments.

Proliferation assays, using e.g. CFSE, are excellent methods to investigate the proliferative characteristics of 
lymphocytes, however, they provide us with only limited information on the progression of these cells through 
the cell cycle and the corresponding kinetics. A method that forms a particularly powerful approach for monitor-
ing cell cycle progression is based on DNA labeling of proliferating cells with a thymidine nucleoside-analogue, 
usually BrdU or  EdU42,43. Combining this technique with traditional cell cycle analysis allows for an efficient 
flow cytometry-based assessment of the cell cycle  distributions44. In our study, we successfully optimized the 
EdU pulse-chase method for tracking the cell cycle progression of PHA-stimulated T lymphocytes cultured in 
whole blood. Beside its advantages of being easy, fast, and accurate, it also provides us with a model that better 
represents the in vivo  situation45,46. A disadvantage reported in literature, however, is the potential cytotoxic 
effect of EdU associated with strong cell cycle perturbations and even cell  death43,47–49. This detrimental effect is 
reported to be cell type dependent and has been linked with the used EdU labeling concentration and labeling 
time. Importantly, our results demonstrate no impact of EdU pulse-labeling on the cell cycle progression of the 
T lymphocytes, indicating no immediate cytotoxic effect of EdU. Furthermore, we observed that irradiating the 
cells during pulse-labeling had no adverse effect on the functionality of this method.

Using this technique, we were able to make an estimation of each cell cycle phase duration and simultane-
ously analyze the effects of irradiation on the different cell cycle phases. We estimated the cell cycle phase (G1, 
S, and G2/M) durations to be 7, 6.1, and 3.5 h, respectively. The total cell cycle time was estimated to be 16.6 h. 
To our knowledge, this is the first study to determine the T lymphocyte cell cycle kinetics with more up-to-date 
techniques since the ‘90s.

We observed a prolongated G2 phase of cells irradiated in the S phase, indicating that the cells are halted at 
the G2/M cell cycle checkpoint. The extent of the observed delay was dependent on the delivered dose, as dem-
onstrated by chasing the cells through prolonged culture times. This observation is in agreement with previous 
 reports50,51. Markedly, our results show similar kinetics for G1 phase-entry between non-irradiated cells and 
cells exposed to 2 Gy of X-rays, although there is a ~ 2 h-delay. In contrast, strong cell cycle disturbances could 
be observed when exposed to 4 Gy of X-rays, with deviating S and G1 phase kinetics and ~ 30% of the cells still 
halted in G2/M phase up to 25 h after irradiation.

When observing cells irradiated in the G1 phase, we did not see a delay of S phase-entry, indicating that 
these cells do not experience a pronounced G1 arrest, even after exposure to 4 Gy of X-rays. This was a surpris-
ing observation, as it has been suggested in other cell types that the G1-S checkpoint is a master regulator that 
prevents cell cycle progression of damaged  cells34,52.

Various other techniques are available to study cell cycle kinetics, such as the FUCCI  system53 or the fraction-
labelled-mitoses (FLM)  assay54. However, compared to these techniques, the EdU pulse-chase assay is still a 
relatively cost-efficient and simple method and, as our results demonstrate, this assay can be performed on whole 
blood samples. We do note that, in contrast to S and G2/M phase, the duration of the G1 phase was difficult to 
quantify from these EdU pulse-chase experiments. We therefore derived the G1 phase length by subtracting the 
S and G2/M phase durations from the estimated total cell cycle time (Tc) determined by the CFSE experiments. 
Importantly, these findings are in concordance with visual examination of the EdU-positive cohort progression 
through the G1 phase in the bivariate profiles. Additionally, this technique does not allow subdivision between 
the G2 and M phase, which impedes determination of the duration of these phases separately.

In recent years, considerable progress has been made towards understanding the precise mechanisms involved 
in cell cycle progression, checkpoints, and DNA  repair50,53,55. However, the cell cycle is regulated by a complex 
network and is influenced not only by intracellular signals, but also by extracellular factors. Nonetheless, eluci-
dating the processes that are the foundation of T lymphocyte cell cycle progression and their unique responses 
to genotoxic agents such as X-rays is essential in many medical and biological research fields. It can aid in the 
screening of potential new drugs that can selectively modulate the cell cycle transition or assist in the develop-
ment of novel treatment modalities such as cell cycle regulators, that are considered attractive targets in cancer 
 therapy56–58. Moreover, further investigation into the cell cycle profiles of the T lymphocyte subsets, such as 
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CD4 + and CD8 + T lymphocytes or T lymphocytes expressing either αβ or γδ T cell receptors (TCR), may be 
of interest for future research as it could reveal certain fundamental differences that could aid in the develop-
ment of new  therapies59–61. Furthermore, various processes modulating the cell cycle regulatory system are also 
closely linked with the inhibition or induction of cell death  mechanisms62. Exposure to ionizing radiation has 
been known to elicit cell death through various processes, such as apoptosis, mitotic catastrophe, necroptosis, 
or  senescence63. Not surprisingly, studies into cancer therapy development are focused on understanding these 
mechanisms, and further research into the effects of irradiation on the cell cycle regulatory system, and associ-
ated cell death processes, can prove to be of therapeutic  interest64–66.

In conclusion, the use of both the CFSE proliferation assay and EdU pulse-chase assay allowed us to visualize 
the cell cycle kinetics of human lymphocytes and the correlated effects after irradiation. Importantly, by using 
both assays, we were able to visualize and quantify the lymphocyte proliferation characteristics starting from 
first division to fully dividing cells. Studying the impact of genotoxic agents, such as irradiation, on cell cycle 
behavior is crucial for our ability to understand and predict cellular responses.

Data availability
The datasets generated during and/or analyzed during the current study will be made available.

Received: 16 September 2021; Accepted: 19 April 2022

References
 1. Bender, M. A. & Prescott, D. M. DNA synthesis and mitosis in cultures of human peripheral leukocytes. Exp. Cell Res. 27, 221–229 

(1962).
 2. Crossen, P. E. & Morgan, W. F. Analysis of human lymphocyte cell cycle time in culture measured by sister chromatid differential 

staining. Exp. Cell Res. 104, 453–457 (1977).
 3. Bernheim, J. L., Dorian, R. E. & Mendelsohn, J. DNA synthesis and proliferation of human lymphocytes in vitro: I. Cell kinetics 

of response to phytohemagglutinin. J. Immunol. 120, 955–962 (1978).
 4. der Maur, P. A. & Berlincourt-Böhni, K. Human lymphocyte cell cycle: Studies with the use of BrUdR. Hum. Genet. 49, 209–215 

(1979).
 5. Richman, D. P. Lymphocyte cell-cycle analysis by flow cytometry: Evidence for a specific postmitotic phase before return to Go. 

J. Cell Biol. 85, 459–465 (1980).
 6. Kishi, K. Cell cycle analysis and properties of two sub-populations in PHA responding lymphocytes. Yap. J. Hum. Genet 22, 17–26 

(1977).
 7. Mills, C. C., Kolb, E. A. & Sampson, V. B. Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer 

therapy. Cancer Res. 78, 320–325 (2018).
 8. Deenadayalan, A., Maddineni, P. & Raja, A. Comparison of whole blood and PBMC assays for T-cell functional analysis. BMC 

Res. Notes 6, 1–5 (2013).
 9. Silva, D., Ponte, C. G. G., Hacker, M. A. & Antas, P. R. Z. A whole blood assay as a simple, broad assessment of cytokines and 

chemokines to evaluate human immune responses to Mycobacterium tuberculosis antigens. Acta Trop. 127, 75–81 (2013).
 10. Nasonova, E. & Ritter, S. Cytogenetic effects of densely ionising radiation in human lymphocytes: Impact of cell cycle delays. 

Cytogenet. Genome Res. 104, 216–220 (2004).
 11. Lee, R., Nasonova, E., Hartel, C., Durante, M. & Ritter, S. Chromosome aberration measurements in mitotic and G 2-PCC lym-

phocytes at the standard sampling time of 48 h underestimate the effectiveness of high-LET particles. Radiat. Environ. Biophys. 
50, 371–381 (2011).

 12. Romar, G. A., Kupper, T. S. & Divito, S. J. Research techniques made simple: Techniques to assess cell proliferation. J. Investig. 
Dermatol. 136, e1–e7 (2015).

 13. Quah, B. J. C., Warren, H. S. & Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluo-
rescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2, 2049–2056 (2007).

 14. Hawkins, E. D. et al. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat. Protoc. 
2, 2057–2067 (2007).

 15. Wells, A. D., Gudmundsdottir, H. & Turka, L. A. Following the fate of individual T cells throughout activation and clonal expan-
sion. J. Clin. Investig. 100, 3173–3183 (1997).

 16. Deenick, E. K., Gett, A. V. & Hodgkin, P. D. Stochastic model of T cell proliferation: A calculus revealing IL-2 regulation of precur-
sor frequencies, cell cycle time, and survival. J. Immunol. 170, 4963–4972 (2003).

 17. Yoon, H., Kim, T. S. & Braciale, T. J. The cell cycle time of CD8+ T cells responding in Vivo is controlled by the type of antigenic 
stimulus. PLoS ONE 5, e15423 (2010).

 18. Azarsiz, E. et al. In vitro T lymphocyte proliferation by carboxyfluorescein diacetate succinimidyl ester method is helpful in 
diagnosing and managing primary immunodeficiencies. J. Clin. Lab. Anal. 32, 1–7 (2018).

 19. Gratzner, H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. 
Science 218, 474–475 (1982).

 20. Cavanagh, B. L., Walker, T., Norazit, A. & Meedeniya, A. C. B. Thymidine analogues for tracking DNA synthesis. Molecules 16, 
7980–7993 (2011).

 21. Buck, S. B. et al. Detection of S-phase cell cycle progression using 5-ethynyl-2′- deoxyuridine incorporation with click chemistry, 
an alternative to using 5-bromo-2′-deoxyuridine antibodies. Biotechniques 44, 927–929 (2008).

 22. Wilson, G. D. Analysis of DNA-Measurement of cell kinetics by the bromodeoxyuridine/anti-bromodeoxyuridine method. In 
Flow Cytometry: A Practical Approach 159–177 (Oxford University Press, New York, 2000).

 23. Sun, Y. et al. Multicolor flow cytometry analysis of the proliferations of T-lymphocyte subsets in vitro by EdU incorporation. 
Cytom. Part A 81A, 901–909 (2012).

 24. Roederer, M. How many events is enough? Are you positive?. Cytome. A 73, 384–385 (2008).
 25. Geha, R. S., Rosen, F. S. & Merler, E. Unresponsiveness of human B lymphocytes to phytohaemagglutinin. Nature 248, 426–428 

(1974).
 26. Potter, M. R. & Moore, M. PHA stimulation of separated human lymphocyte populations. Clin. Exp. Immunol. 21, 456–467 (1975).
 27. O’Donovan, M. R., Johns, S. & Wilcox, P. The effect of PHA stimulation on lymphocyte sub-populations in whole-blood cultures. 

Mutagenesis 10(4), 371–374 (1995).
 28. Roederer, M. Interpretation of cellular proliferation data: Avoid the panglossian. Cytom. Part A 79A, 95–101 (2011).
 29. Tsuchida, E. et al. Effect of X-irradiation at different stages in the cell cycle on individual cell-based kinetics in an asynchronous 

cell population. PLoS ONE 10, 1–17 (2015).



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7687  | https://doi.org/10.1038/s41598-022-11364-9

www.nature.com/scientificreports/

 30. Pereira, P. D., Serra-caetano, A., Cabrita, M. & Bekman, E. Quantification of cell cycle kinetics by EdU (5-ethynyl-2 ′ - deoxyuridine 
) -coupled-fluorescence-intensity analysis. Oncotarget 8, 40514–40532 (2017).

 31. Meurer, A. et al. SymPy: Symbolic computing in python. PeerJ 3, e103 (2017).
 32. Begg, A. C., McNally, N. J., Shrieve, D. C. & Kärche, H. A method to measure the duration of DNA syntheses and the potential 

doubling time from a single sample. Cytometry 6, 620–626 (1985).
 33. Cai, L., Hayes, N. L. & Nowakowski, R. S. Local homogeneity of cell cycle length in developing mouse cortex. J. Neurosci. 17, 

2079–2087 (1997).
 34. Deckbar, D., Jeggo, P. A. & Löbrich, M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit. Rev. 

Biochem. Mol. Biol. 46, 271–283 (2011).
 35. Kavanagh, J. N., Redmond, K. M., Schettino, G. & Prise, K. M. DNA double strand break repair: A radiation perspective. Antioxid. 

Redox Signal. 18, 2458–2472 (2013).
 36. Qi, Y. et al. Mechanistic modelling of slow and fast nhej dna repair pathways following radiation for g0/g1 normal tissue cells. 

Cancers 13, 2202 (2021).
 37. Pourfathollah, A. A., Shaiegan, M., Namiri, M. & Babae, G. R. Effect of gamma irradiation on lymphocyte proliferation and IL-8 

production by lymphocytes isolated from platelet concentrates. Arch. Med. Res. 36, 590–593 (2008).
 38. Wei, Y. Q. et al. Irradiation of peripheral blood mononuclear cells with 7.5 Gy X-rays prior to donor lymphocyte infusion inhibits 

proliferation while preserving cytotoxicity, and improves the effectiveness of HSCT in patients with hematological malignancies. 
Oncol. Lett. 13, 4101–4108 (2017).

 39. Lis, H. & Sharon, N. Erythrina lectins. Methods Enzymol. 138, 544–551 (1987).
 40. Lašťovička, J., Rataj, M. & Bartůňková, J. Assessment of lymphocyte proliferation for diagnostic purpose: Comparison of CFSE 

staining, Ki-67 expression and 3H-thymidine incorporation. Hum. Immunol. 77, 1215–1222 (2016).
 41. Lašt’ovička, J., Budinský, V., Špíšek, R. & Bartůňková, J. Assessment of lymphocyte proliferation: CFSE kills dividing cells and 

modulates expression of activation markers. Cell. Immunol. 256(1–2), 79–85 (2009).
 42. Dolbeare, F., Gratzner, H., Pallavicini, M. G. & Gray, J. W. Flow cytometric measurement of total DNA content and incorporated 

bromodeoxyuridine. Proc. Natl. Acad. Sci. U.S.A. 80, 5573–5577 (1983).
 43. Diermeier-Daucher, S. et al. Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EDU) for dynamic proliferation assess-

ment in flow cytometry. Cytom. A 75, 535–546 (2009).
 44. Wilson, G. D. Probing the cell cycle with flow cytometry. J. Biomed. Sci. Eng. 7, 698–711 (2014).
 45. Bloemena, E., Roos, M. T. L., Van Heijst, J. L. A. M., Vossen, J. M. J. J. & Schellekens, P. T. A. Whole-blood lymphocyte cultures. J. 

Immunol. Methods 122, 161–167 (1989).
 46. Bocchieri, M. H. et al. Whole blood culture for measuring mitogen induced T cell proliferation provides superior correlations 

with disease state and T cell phenotype in asymptomatic HIV-infected subjects. J. Immunol. Methods 181, 233–243 (1995).
 47. Peng, D.-F., Sugihara, H. & Hattori, T. Bromodeoxyuridine induces p53-dependent and-independent cell cycle arrests in human 

gastric carcinoma cell lines. Pathobiology 69, 77–85 (2001).
 48. Kohlmeier, F., Maya-Mendoza, A. & Jackson, D. A. EdU induces DNA damage response and cell death in mESC in culture. Chro‑

mosome Res. 21, 87–100 (2013).
 49. Diermeier, S., Schmidt-Bruecken, E., Kubbies, M., Kunz -SChughart, L. A. & Brockhoff, G. Exposure to continuous bromodeoxyu-

ridine (BrdU) differentially affects cell cycle progression of human breast and bladder cancer cell lines. Cell Prolif. 37, 195–206 
(2004).

 50. Miszczyk, J. Investigation of dna damage and cell-cycle distribution in human peripheral blood lymphocytes under exposure to 
high doses of proton radiotherapy. Biology 10, 1–16 (2021).

 51. Heimers, A., Brede, H. J., Giesen, U. & Hoffmann, W. Influence of mitotic delay on the results of biological dosimetry for high 
doses of ionizing radiation. Radiat. Environ. Biophys. 44, 211–218 (2005).

 52. di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term 
induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

 53. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).
 54. Yakovlev, A. Yu. & Yanev, N. M. The fraction labelled mitoses curve in different states of cell proliferation kinetics. In Transient 

Processes in Cell Proliferation Kinetics 137–175 (Springer, Berlin, 1989).
 55. Karanam, K., Kafri, R., Loewer, A. & Lahav, G. Quantitative live cell imaging reveals a gradual shift between DNA repair mecha-

nisms and a maximal use of HR in Mid S phase. Mol. Cell 47, 320–329 (2012).
 56. Otto, T. & Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17, 93–115 (2017).
 57. Zhang, L. et al. Identifying cell cycle modulators that selectively target ARID1A deficiency using high-throughput image-based 

screening. SLAS Discov. 22, 813–826 (2017).
 58. Burgess, A. et al. Clinical overview of MDM2/X-targeted therapies. Front. Oncol. 6, 7 (2016).
 59. Golubovskaya, V. & Wu, L. Different subsets of t cells, memory, effector functions, and CAR-T immunotherapy. Cancers 8, 36 

(2016).
 60. Chraa, D., Naim, A., Olive, D. & Badou, A. T lymphocyte subsets in cancer immunity: Friends or foes. J. Leukoc. Biol. 105, 243–255 

(2019).
 61. Tsimberidou, A. M. et al. T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors. J. Hematol. Oncol. 

14, 102 (2021).
 62. Sia, J., Szmyd, R., Hau, E. & Gee, H. E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. 

Biol. 8, 41 (2020).
 63. Adjemian, S. et al. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, 

and iron-dependent cell death. Cell Death Dis. 11, 1003 (2020).
 64. Strasser, A. & Vaux, D. L. Cell death in the origin and treatment of cancer. Mol. Cell 78, 1045–1054 (2020).
 65. Westhoff, M. A., Marschall, N. & Debatin, K. M. Novel approaches to apoptosis-inducing therapies. Adv. Exp. Med. Biol. 930, 

173–204 (2016).
 66. Nonnenmacher, L. et al. Cell death induction in cancer therapy – past, present & future. Crit. Rev. Oncog. 21, 253–267 (2016).

Acknowledgements
We thank all donors for providing blood samples and participating in this study. We also would like to thank L. 
Pieters and G. De Smet for technical assistance, and S. Vermaut for flow cytometry assistance.

Author contributions
ED performed the experiments. ED analyzed the data. ED, AV, and AB wrote, revised, and prepared the final 
version of the manuscript. All authors have read and agreed to the published version of the manuscript.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7687  | https://doi.org/10.1038/s41598-022-11364-9

www.nature.com/scientificreports/

Funding
This work was supported by the grants T000118N and G051918N from the Research Foundation—Flanders 
(FWO) and the Grant BOFSTA 20170018 from Special Research Fund (BOF; Ghent University).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 11364-9.

Correspondence and requests for materials should be addressed to A.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-11364-9
https://doi.org/10.1038/s41598-022-11364-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An updated view into the cell cycle kinetics of human T lymphocytes and the impact of irradiation
	Materials and methods
	Sample collection. 
	Irradiation procedure. 
	CFSE proliferation assay for isolated PBMCs. 
	EdU pulse-chasing method for whole blood cultures. 
	Analysis by flow cytometry. 
	Quantitative data analysis. 

	Results
	Examining the proliferative characteristics of isolated T lymphocytes using the CFSE assay. 
	T lymphocytes complete a first division between 48 and 72 h of culture with PHA. 
	The proportion of T lymphocytes completing a first division is not altered by exposure to irradiation. 
	The division rate of T lymphocytes is not significantly affected by irradiation. 

	Tracking the cell cycle progression of T lymphocytes in whole blood cultures using EdU pulse-chase analysis. 
	The EdU pulse-chase method was successfully optimized for T lymphocytes cultured in whole blood. 
	Quantitative analysis of the cell cycle phase durations of non-irradiated T lymphocytes. 
	Quantitative and qualitative analysis of the effects of irradiation on the cell cycle progression of T lymphocytes. 
	T lymphocytes remain in G2 arrest up to 25 h after irradiation. 
	T lymphocytes irradiated in the G1 phase do not undergo G1 arrest. 


	Discussion
	References
	Acknowledgements


