Correction to: Scientific Reports https://doi.org/10.1038/s41598-022-06404-3, published online 11 February 2022


The original version of this Article contained errors in the Reference list, where references 1,2,4,5,12,13,14,15,18,21,22,23,34,36,37,39,40,41,42,43,44 and 45 were incorrectly given as

  1. 1.

    Rosero, J., Garcia, A., Cusido, J., Romeral, L. & Ortega, J. A. in IEEE International Symposium on Intelligent Signal Processing, 2007. WISP 2007. 1–6.

  2. 2.

    Yang, Z., Yu, Z., Xie, C. & Huang, Y. Application of Hilbert-Huang Transform to acoustic emission signal for burn feature extraction in surface grinding process. Measurement 47, 14–21. https://doi.org/10.1016/j.measurement.2013.08.036 (2014).

  3. 4.

    Ryu, J., Carazo, A., Uchino, K. & Kim, H.-E. Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J. Electroceram. 7, 17–24. https://doi.org/10.1023/A:1012210609895 (2001).

  4. 5.

    Lach, M., Platte, M. & Ries, A. Piezoelectric materials for ultrasonic probes. The Open Access NDT Database 9 (1996).

  5. 12.

    Fukada, E. & Yasuda, I. On the piezoelectricity of bone. Jpn. J. Appl. Phys. 3, 117–121 (1964).

  6. 13.

    Kawai, H. Te piezoelectricity of poly(vinylidene fluoride). Jpn. J. Appl. Phys. 8, 975–976 (1969).

  7. 14.

    Wear, K. A., Gammell, P. M., Maruvada, S., Liu, Y. & Harris, G. R. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 62–75. https://doi.org/10.1109/TUFFC.2014.6689776 (2014).

  8. 15.

    Zuo, X. et al. Desalination of water with a high degree of mineralization using SiO2/PVDF membranes. Desalination 311, 150–155.

  9. 18.

    Panwar, V., Ko, S. Y., Park, J.-O. & Park, S. Enhanced and fast actuation of fullerenol/PVDF/PVP/PSSA based ionic polymer metal composite actuators. Sens. Actuators B Chem. 183, 504–517. https://doi.org/10.1016/j.snb.2013.04.037 (2013).

  10. 21.

    Stuetzer, O. M. Multiple refections in a free piezoelectric plate. J. Acoust. Soc. Am. 42, 502–508. https://doi.org/10.1121/1.1910607 (1967).

  11. 22.

    Day, R. A. PVDF and array transducers. The Open Access NDT Database 9 (1996).

  12. 23.

    Lei, X.-R. et al. Effect of niobium on dynamic recrystallization behavior of 5% Ni steel. J. Iron Steel Res Int. 20, 38–44. https://doi.org/10.1016/S1006-706X(13)60109-0 (2013).

  13. 34.

    Cheng, G., Cheng, Y.-L., Shen, L.-H., Qiu, J.-B. & Zhang, S. Gear fault identification based on Hilbert-Huang transform and SOM neural network. Measurement 46, 1137–1146. https://doi.org/10.1016/j.measurement.2012.10.026 (2013).

  14. 36.

    Cheng, J., Yu, D., Tang, J. & Yang, Y. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis. Mech. Mach. Theory 43, 712–723. https://doi.org/10.1016/j.mechmachtheory.2007.05.007 (2008).

  15. 37.

    Zhu, D., Gao, Q., Sun, D., Lu, Y. & Peng, S. A detection method for bearing faults using null space pursuit and S transform. Signal Process. 96(Part A), 80–89. https://doi.org/10.1016/j.sigpro.2013.04.019 (2014).

  16. 39.

    Pines, D. & Salvino, L. Structural health monitoring using empirical mode decomposition and the Hilbert phase. J. Sound Vib. 294, 97–124. https://doi.org/10.1016/j.jsv.2005.10.024 (2006).

  17. 40.

    Hamdi, S. E. et al. Acoustic emission pattern recognition approach based on Hilbert-Huang transform for structural health monitoring in polymer-composite materials. Appl. Acoust. 74, 746–757. https://doi.org/10.1016/j.apacoust.2012.11.018 (2013).

  18. 41.

    Redwood, M. Transient performance of a piezoelectric transducer. J. Acoust. Soc. Am. 33, 527–536. https://doi.org/10.1121/1.1908709 (1961).

  19. 42.

    Wang, Y. S., Ma, Q. H., Zhu, Q., Liu, X. T. & Zhao, L. H. An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine. Appl. Acoust. 75, 1–9. https://doi.org/10.1016/j.apacoust.2013.07.001 (2014).

  20. 43.

    Dybała, J. & Zimroz, R. Rolling bearing diagnosing method based on Empirical Mode Decomposition of machine vibration signal. Appl. Acoust. 77, 195–203. https://doi.org/10.1016/j.apacoust.2013.09.001 (2014).

  21. 44.

    Kalvoda, T. & Hwang, Y.-R. Analysis of signals for monitoring of nonlinear and non-stationary machining processes. Sens. Actuators A Phys. 161, 39–45. https://doi.org/10.1016/j.sna.2010.05.032 (2010).

  22. 45.

    Cao, H., Lei, Y. & He, Z. Chatter identification in end milling process using wavelet packets and Hilbert-Huang transform. Int. J. Mach. Tools Manuf. 69, 11–19. https://doi.org/10.1016/j.ijmachtools.2013.02.007 (2013).


The correct references are the following:

  1. 1.

    Renshaw, J. Variable Valve Timing (VVT) Systems. Advice & How-Tos / Car Technology (11–9-2019).

  2. 2.

    Markel, A. Diagnosing Variable Valve Timing. Brake and Front End https://www.brakeandfrontend.com/diagnosing-variable-valve-timing/ (Mar 4, 2014).

  3. 4.

    Abdullah, S., Deros, B. M., Khamis, N. K., Ghani, J. A. & Abdullah, S. An approach to work Design: in-depth: audit to determine the modifiers of musculoskeletal disorder symptom among vehicle maintenance personnel. Jurnal Kejuruteraan 2, 281–287 (2020).

  4. 5.

    Abdullaha, S., Khamisa, N. K., Ghania, J. A. & Kurniawanb, R. Posture Evaluation of the Automotive Maintenance Workers: A Case Study. Jurnal Kejuruteraan 3, 65–70 (2020).

  5. 12.

    Ahmed, R., Sayed, M. E., Gadsden, S. A., Tjong, J. & Habibi, S. Automotive internal combustion engine fault detection and classification using artificial neural network techniques. IEEE Trans. Veh. Technol. 64, 21–33 (2014).

  6. 13.

    Shah, M., Gaikwad, V., Lokhande, S. & Borhade, S. Fault identification for I.C. engines using artificial neural network. International Conference on Process Automation, Control and Computing (PACC) (2011).

  7. 14.

    Chen, J., Patton, R. J. & Liu, G.-P. Optimal residual design for fault diagnosis using multi-objective optimization and genetic algorithms. Int. J. Syst. Sci. 27, 567–576 (2015).

  8. 15.

    Bay, Ö. F. & Bayir, R. R. A fault diagnosis of engine starting system via starter motors using fuzzy logic algorithm. Gazi Univ. J. Sci. 24, 437–449 (2011).

  9. 18.

    Wu, J.-D. & Chen, J.-C. Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines. NDT&E Int. 39, 304–311 (2006).

  10. 21.

    Candon, M. et al. Characterization of a 3DOF aeroelastic system with freeplay and aerodynamic nonlinearities – Part II: Hilbert–Huang transform. Mech. Syst. Signal Process. 114, 628–643 (2019).

  11. 22.

    Nasir, N. N. M. et al. Time–frequency strain data analysis of suspension using the Hilbert-Huang transform. J. Mech. Eng. 1, 59–77 (2018).

  12. 23.

    Nasir, N. N. M., Singh, S., Abdullah, S. & Haris, S. M. Accelerating the fatigue analysis based on strain signal using Hilbert–Huang transform. Int. J. Struct. Integrity 10(1), 118–132(2019).

  13. 34.

    DODGE-Journey-Forum.com. https://www.dodgejourneyforum.com/topic/6371-cutting-out/ (2020).

  14. 36.

    Sawant, P. & Bari, S. combined effects of variable intake manifold length, variable valve timing and duration on the performance of an internal combustion engine. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition IMECE2017 (2017).

  15. 37.

    Bell, A. G. Four-Stroke Performance Tuning (Cambridge University Press, 1998).

  16. 39.

    Torenbeek, E. & Wittenberg, H. Low-speed aerodynamics, in Flight Physics (Springer, 2009).

  17. 40.

    Picard, C. e., Tsingos, N. & Faure, F. Retargeting Example Sounds to Interactive Physics-Driven Animations. In AES 35th International Conference (2009).

  18. 41.

    Hadfield, C. & Nussler, R. Automotive Engine Repair & Rebuilding, Classroom Manual and Shop Manual (Spiral bound Version. Cengage Learning, 2017).

  19. 42.

    Nayeri, M. H. Cylinder-by-Cylinder Torque Model of an SI-Engine for Real-Time Applications, Master thesis (Avdelning Institution, 2005).

  20. 43.

    Kiencke, U. & Nielsen, L. Automotive Control Systems for Engine, Driveline, and Vehicle (Springer, 2005).

  21. 44.

    Hibbeler, R. C. Mechanics of Materials (Prentice Hall, 2014).

  22. 45.

    Park, D., System for variably controlling operation of an intake/exhaust valve for an internal combustion engine, in United States Patent (Hyundai Motor Company, Seoul, 1999).


The original Article has been corrected.