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A method of blasted rock image 
segmentation based on improved 
watershed algorithm
Qinpeng Guo1*, Yuchen Wang1, Shijiao Yang1* & Zhibin Xiang2

It is of great theoretical significance and practical value to establish a fast and accurate detection 
method for particle size of rock fragmentation. This study introduces the Phansalkar binarization 
method, proposes the watershed seed point marking method based on the solidity of rock block 
contour, and forms an adaptive watershed segmentation algorithm for blasted rock piles images 
based on rock block shape, which is to better solve the problem of incorrect segmentation caused by 
adhesion, stacking and blurred edges in blasted rock images. The algorithm first obtains the binary 
image after image pre-processing and performs distance transformation; then by selecting the 
appropriate gray threshold, the adherent part of the distance transformation image, i.e., the adherent 
rock blocks in the blasted rock image, is segmented and the seed points are marked based on the 
solidity of the contour calculated by contour detection; finally, the watershed algorithm is used to 
segment. The area cumulative distribution curve of the segmentation result is highly consistent with 
the manual segmentation, and the segmentation accuracy was above 95.65% for both limestone and 
granite for rock blocks with area over 100  cm2, indicating that the algorithm can accurately perform 
seed point marking and watershed segmentation for blasted rock image, and effectively reduce the 
possibility of incorrect segmentation. The method provides a new idea for particle segmentation in 
other fields, which has good application and promotion value.

Blasting is widely used in mining and civil engineering due to its economy and  efficiency1–5. As an important 
technical indicator of blasting effectiveness, blasted block size distribution directly affects the cost and effi-
ciency of subsequent shoveling, crushing and grinding processes, and also provides a necessary basis for blasting 
parameter  optimization6–10. Therefore, it is of theoretical significance and practical value to establish a fast and 
accurate detection method for particle size of rock fragmentation to guide blasting construction and improve 
blasting efficiency. Blasted rock piles are characterized by large scale, serious adhesion and irregularly shaped rock 
clumps, large differences in particle size, and small differences in grayness, which make it difficult to accurately 
measure the particle size of blasted  rocks11,12. The existing measurement methods can be summarized into two 
categories: three-dimensional (3D) point cloud data segmentation measurement and two-dimensional (2D) 
image segmentation measurement. The 3D point cloud data is mainly obtained using 3D laser scans or a large 
number of high-resolution digital photos taken by Unmanned Aerial Vehicle (UAV)13,14. Han and  Song15 used 
stereophotogrammetry for 3D modeling of blasted rock piles to obtain surface block dimensions and corrected 
for errors in rock fast due to stacking by indoor tests, and validated the applicability of the method in small-scale 
tests in the field. Although the creation of point cloud data using stereophotogrammetry is more effective and 
cheaper, the large number of images received takes a lot of time to process and convert into point cloud  data16. 
3D laser scanners are widely used in mine surveying due to its directly, quickly and captures 3D geometry in 
 detail17–21. Engin et al.22 used a 3D laser scanner to obtain a 3D view of a rock piles of about 13 cm and used 
morphological methods to determine the position of the rock block and to correct the surface of the rock block, 
and finally used nonlinear order statistical filtering and histogram analysis to determine the blasted block size 
distribution of the rock piles, and by comparing the results of image analysis, the results obtained using this 
method were proved to be sufficiently reliable and accurate. Wang et al.23 used 3D laser scanning technology 
to obtain blasted rock piles point cloud data, and used the Voxel Cloud Connectivity Segmentation algorithm 
improved by discrete features to solve the influence of point clouds on the surface of small particles of ore on 
block recognition, and used the Locally Convex Connected Patches algorithm improved by plane fitting to solve 
the problem of over-segmentation of large rock blocks, and verified the generality and accuracy of the method 
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by comparing the number of rock blocks. The methods for rock segmentation measurement of 3D point cloud 
data are mainly clustering analysis or converting point cloud data into similar 2D images and then using 2D 
image segmentation  methods21,23,24. Compared with the 2D image rock segmentation measurement method, its 
main advantage is the high accuracy of the obtained point cloud data, but due to the expensive 3D laser scanner 
and the need for professional software for pre-processing, it cannot be widely used.

The 2D image segmentation measurement method has been used for nearly 30 years, which is currently the 
most used method for blasting fragmentation size measurement. Researchers studying and applying this method 
have also developed various commercial software, such as Wipfrag and Gold Size developed in Canada, Split 
and Cias developed in the United States, Ipacs and Kth developed in Sweden, Fragscan developed in France, 
Tucips developed in Germany, Power Sieve developed in Australia, and India developed Fragalyst 3.0, of which 
Wipfrag and Split are the most commonly used commercial  software25–30. According to different principles, image 
segmentation methods are divided into four main categories: threshold segmentation, region segmentation, 
edge segmentation, and artificial neural network segmentation  methods31–37. Among them, the most applied 
methods in rock segmentation are region and artificial neural network segmentation methods. Li et al.38 used 
the GAN-Unet model to segment images on the ore delivery belt, and the results showed that the method can 
reduce the problems of unclosed edges, over-segmentation, and under-segmentation, and improve the graph 
segmentation accuracy. Liu et al.39 first extracted the contour of the conveyor belt ore image using the U-Net 
model and binarized the image, and then used the Res_UNet model for contour optimization. The results of 
segmentation show that the model based on U-Net and Res_UNet is more suitable for conveyor belt ore image 
segmentation compared with the watershed algorithm and the U-Net model without contour optimization. 
However, the training time of the Neural network for image segmentation method is extremely long, and the 
above study is aimed at the conveyor belt ore with small particle size differences, and whether it applies to the 
segmentation of large-scale blasted rock blocks with large particle size differences needs to be studied. Yang 
et al.40 adopt a new affinity image construction model to improve the superpixel image segmentation technique 
for rock block segmentation. DexiNed edge detection network was introduced by Li et al.41, and implemented 
rock block segmentation using morphological transformation and watershed algorithm to avoid the influence 
of noise in binary images on rock block segmentation. Li et al.42 adopt binarization of rock block images using 
the U-Net model and segmentation of cohesive rock blocks using the watershed algorithm to solve the mis-
segmentation of rock blocks caused by small differences in rock block grayness, and the results showed that the 
method is high robustness and high accuracy.

The watershed algorithm is widely used for rock particle image segmentation because of its good response 
to weak  edges43,44. Ma et al.45 introduced an improved algorithm based on distance transform and morpho-
logical gradient. The result proved that the method is effective, accurate and rapid, which basically meets the 
requirements of unsupervised automatic acquisition of ore granularity parameters. Yao et al.46 improved the 
watershed algorithm using local minimum with threshold, effectively segmenting adhesive grains while avoid-
ing over-segmentation.

To realize the accurate and rapid segmentation of blasted rock block image, the image pre-processing pro-
cess and the impact on the segmentation results are studied first in this study, and then the causes of redundant 
seed points generated by the watershed algorithm in the process of blasted rock block image segmentation are 
analyzed. To explore the new automatic marking method of seed points, the shape characteristics of blasted 
rock blocks are analyzed and introduced into the watershed algorithm, a seed point marking method based on 
the solidity of rock block contours is proposed, and finally, an adaptive segmentation algorithm for blasted rock 
blocks based on block shapes is proposed based on the distance-based optimized watershed algorithm. The 
important contributions of this study are as follows.

(1) Blasted rock block contours have a high solidity.
(2) An automatic seed point marking method based on the solidity of rock block contour is proposed.
(3) An adaptive segmentation algorithm for blasted rock blocks based on block shapes is proposed.

Image acquisition
Limestone quarries and granite quarries located in Huizhou, China were selected for the study, are both operated 
by Guangdong Xiyuan Blasting Technology Co., Ltd. Therefore, the blasting design parameters are the same, 
except for the charge quantity. The step height of the quarry is about 12, the diameter of the gun hole is 140 mm, 
using a digital electronic detonator to hole-by-hole detonation. Figures 1 and 2 show the 3D images established 
by aerial photography of a limestone quarry and a granite quarry after a certain blast using a UAV, respectively.

The UAV used the DJI Phantom 4 RTK, which is equipped with a multi-frequency and multi-system RTK 
module. The camera is synchronized with the RTK module µs-level time to provide real-time cm-level position-
ing data without the need to deploy image control points. The UAV is equipped with a high-precision anti-shake 
tripod head camera that supports up to 20 megapixels of still photo shooting. To avoid errors caused by rock 
block overlap, image acquisition of blasted rock piles is performed using tilt photogrammetry, where the camera 
orientation is perpendicular to the blasted rock piles surface. Figure 3 shows the flight schematic of the UAV. 
Firstly, determined point A, B and C. Then, the outward expansion was carried out from point C to A and B 
respectively until the flight range completely covered the rock piles, and the UAV automatically planned the flight 
route according to the overlap rate. To ensure clarity in images, the flight altitude was set to 25, which is the mini-
mum flight altitude of the UAV. The collected images of limestone and granite blasting blocks are shown in Fig. 4.
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Proposed methods
Image pre-processing. Due to the more complex and dustier environment of the quarry, there is more 
serious noise in the images of blasted rock piles collected through the camera, and the rock piles are heavily 
stacked and adhered to each other, with small background difference degree and inconspicuous color informa-
tion. To effectively segment the rock blocks, pre-processing is required for the blast rock piles images. There are 
many methods of image pre-processing47,48, and this study adopts the more commonly used methods in the field 
of rock segmentation. Firstly, the grayscale image is de-noising by bilateral filtering. Secondly, the rock block 

Figure 1.  3D view of limestone quarry after blasting.

Figure 2.  3D view of granite quarry after blasting.

Figure 3.  UAV flight image.
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edges are made more visible by limiting the contrast adaptive histogram equalization, then the image is binarized 
using the Phansalkar  method49 based on local image properties. Finally, the binary image is morphologically 
optimized and area filtered. Figure 5 shows the effect of limestone blasting rock block image after pre-processing.

The Phansalkar  method49 is an adaptive local thresholding method based on local image properties, which 
processes each pixel (x, y) in an image by considering a w × w window with the pixel as the center on that window 
with a grayscale mean is m(x, y) and standard deviation is s(x, y) , then the local threshold T(x, y) for the pixel is:

where p and q are constants. The Phansalkar method is flexible in that it determines the selection of the thresh-
old value based on the magnitude of the local mean and the standard deviation, and by adjusting the values of 
the parameters p , q and k , different processing results are obtained. the processing effects are shown in Fig. 5c.

To show indicate the effectiveness, the method is compared with the Otsu  method50, and the results of the 
processing of Fig. 5b using the Otsu method are given in Fig. 6, from which it can be seen that the Otsu method 
produces three kinds of errors: (1) incorrectly dividing regions into backgrounds, such as darker regions and 
zones obscured by shadows; (2) incorrectly dividing small rocks into backgrounds; (3) dividing part of the inner 
regions of large rocks into backgrounds. Some of the error areas are shown in the red box part of the image, 
which can seriously affect the subsequent rock identification. The Phansalkar method can accurately distinguish 
the background from the rock particles with satisfactory results.

Figure 5d shows the binary image of the blasted rock piles after morphological optimization. Comparing 
this image with Fig. 5c, we can see that morphological optimization can eliminate the small “holes” and noise 
points in the binary image and smooth the target edges, but some of them still cannot be completely removed. 
Figure 5e uses the area filtering elimination method to achieve more satisfactory results, but there are still some 
noise points, which affect the rock segmentation. When the area threshold increases, it causes some edges to 
be removed. As in the red box in Fig. 5d, small rock block contour are eliminated, which has an impact on the 
segmentation results.

Principle of watershed segmentation algorithm based on distance transformation. The prin-
ciple of the watershed algorithm is to visualize an image as a 3D topographic  image34. In the terminology of 
“topography”, three types of points are considered. In Fig. 7: ① a local min point (min value surface), which 
corresponds to the lowest point of a basin; ② points at other locations in the basin; ③ points at the edge of the 
basin, where the basin meets other basins. For a specific regional minimum, the set of points meeting condition 
② is called the catchment basin or watershed for that minimum, and the points meeting condition ③ form the 
front line of the ground called the division line or watershed line. The main goal of the algorithm is to find the 
watershed line, which is the contour of the rock block image. Assuming that a hole is punched at the minimum 
of each area, we let the water pass through the hole to flood the entire terrain at a uniform rate. As the water ris-
ing in the different catchment basins aggregates, a dam is built to stop this aggregation until the water floods the 
highest point of the topographic image, and the boundaries of these dams are the dividing lines of the watershed.

The traditional watershed algorithm is usually marker less segmentation, and the input object is a gradient 
image, which is based on the luminance change, and it only reflects the edge information of the image, which will 
result in unreasonable segmentation because of its noise-sensitive feature, leading to the following disadvantages 
of the watershed algorithm: ① the noise in the original image causes the segmentation contour shift; ② the image 
with low contrast, the contour of the target region is easily lost when segmenting; ③ there are many meaningless 

(1)T
(

x, y
)

= m
(

x, y
)

[

1+ pe−qm(x,y)
+ k

(

s
(

x, y
)

R
− 1

)]

,

Figure 4.  Blasted rock images acquired by UAV.
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local minima in the image. Therefore, the most common practice is to perform a distance transformation on 
the binary image.

The distance from each pixel in a binary image to its nearest zero-valued pixel is called the distance 
 transform51. Suppose a binary image I with a target set O and a background set B and a distance image D. The 
distance transformation is defined as in Eq. (2).

The Euclidean distance is generally chosen as the disf () . The calculation method is as follows:
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Figure 5.  Image pre-processing effect of limestone blasting block.
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Defects of watershed segmentation algorithm based on distance transformation. Figure  8 
gives the distance transformed image of the binary image of the blasted rock piles. From Fig. 8b, the distance 
image of the binary image is similar to image skeletonization and still retains the general shape.

Figure 9 shows the distance transformation detail image and seed point image of a rock block, where (a) is 
a rock block in the image; (b) is the distance transformation image; (c) is the local extreme value point (seed 
point). From Fig. 9c, it can be seen that there are multiple extreme value points, i.e., redundant seed points, in 

Figure 6.  Otsu method image binarization.

Figure 7.  2D topographic image of watershed.

Figure 8.  Distance transformation.
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the center of the block (in the red box), which will cause more serious over-segmentation, and there are also 
more extreme value points in the sticky part of the two blocks (in the yellow box), which seriously affects the 
segmentation effect of the adhesion block.

For this problem, the commonly used methods are mainly to merge adjacent maximal points and merge 
expanded maximal points. But as shown in Fig. 9c, the distance between the maximal points inside the rock 
block and the maximal points in the adhering part of the rock block is large. The above method is difficult to 
achieve accurate merging. Moreover, for the complex image, the distribution of the maximal points is irregular, 
and the above maximum point elimination method is less effective.

Solidity of rock block contour. In the segmentation process of some special adherent objects, such as 
adherent cells, spherical particles, etc., some prior knowledge, such as the color of cell nuclei, shape of spherical 
particles and others, can be used in turn to correct the seed points. However, for the segmentation of blasted 
rock block, there is no a priori knowledge available other than the shape, and the shape of blasted rock block is 
irregular polygons. To investigate the rule of blasted rock block shape, this study performs manual segmentation 
of blasted rock images, as shown in Fig. 10.

Statistical information of rock blocks, including area, contour convex hull, solidity of rock block, through 
image contour detection technology, and it should be noted that the solidity is the ratio of area to the contour 
convex hull. Due to the limitation of space and considering the large segmentation error of small rocks, only 
part of the information of larger blocks is shown in Tables 1 and 2. The histograms of solidity distribution of 
limestone and granite blocks are shown in Figs. 11 and 12, respectively.

From Fig. 11 can be seen in the graph of the larger rock solidity range of 0.82–0.97, mainly concentrated 
between 0.87 and 0.95; from Fig. 12 can be seen in the graph of the larger rock solidity range of 0.83–0.95, mainly 

Figure 9.  Detailed image of distance transformation and seed point image of rock block.

Figure 10.  Manual segmentation image.
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concentrated between 0.85 and 0.95. The solidity of the contour of block is high, which can be concluded that 
the shape of the blasting rock blocks closes to convex polyhedron.

The seed point marking method based on the solidity of rock block contour. Based on the above 
study, the seed point marking method based on the solidity of rock block contour is proposed on the basis 
of the distance transformation optimized watershed algorithm. The method makes the adhesion part (that is, 
adherent rock blocks in the blasted rock image) in the distance transformation image segmented by selecting 
an appropriate gray threshold, and calculates the solidity by image contour detection technology, and marks it 

Table 1.  Limestone rock block information.

Area  cm2 Convex hull  cm2 Solidity Area  cm2 Convex hull  cm2 Solidity Area  cm2 Convex hull  cm2 Solidity

8910 9475 0.94 3039 3487 0.87 2157 2355 0.92

7463 8076 0.92 2949 3148 0.94 2138 2526 0.85

6989 7247 0.96 2879 3007 0.96 2119 2355 0.90

6582 7249 0.91 2849 3237 0.88 1977 2277 0.87

6072 6360 0.95 2824 2986 0.95 1975 2133 0.93

5588 5906 0.95 2733 2868 0.95 1969 2201 0.89

5506 5801 0.95 2624 2884 0.91 1938 2145 0.90

5362 6260 0.86 2585 2860 0.90 1920 2262 0.85

5325 5964 0.89 2575 2947 0.87 1914 2026 0.94

5008 5964 0.84 2554 2989 0.85 1902 2151 0.88

4254 4529 0.94 2536 2771 0.92 1867 2037 0.92

3984 4392 0.91 2484 2791 0.89 1854 2018 0.92

3748 4139 0.91 2389 2733 0.87 1840 2108 0.87

3725 3938 0.95 2355 2657 0.89 1831 2040 0.90

3646 3970 0.92 2332 2723 0.86 1825 1994 0.92

3607 3901 0.92 2331 2574 0.91 1780 1989 0.89

3365 3758 0.90 2247 2405 0.93 1779 2163 0.82

3328 3614 0.92 2241 2506 0.89 1767 1868 0.95

3286 3773 0.87 2195 2329 0.94 1765 2071 0.85

3238 3470 0.93 2162 2563 0.84 1751 1814 0.97

Table 2.  Granite rock block information.

Area cm2 Convex hull  cm2 Solidity Area  cm2 Convex hull  cm2 Solidity Area  cm2 Convex hull  cm2 Solidity

10,296 10,877 0.95 3778 4394 0.86 2434 2742 0.89

10,053 11,500 0.87 3643 4383 0.83 2420 2548 0.95

9542 10,393 0.92 3587 4183 0.86 2320 2652 0.87

8577 9579 0.90 3553 3934 0.90 2313 2563 0.90

6889 7875 0.87 3369 3784 0.89 2301 2483 0.93

6340 7412 0.86 3090 3411 0.91 2298 2684 0.86

6226 7117 0.87 3063 3510 0.87 2241 2418 0.93

6218 7230 0.86 3061 3494 0.88 2241 2684 0.83

4701 4990 0.94 3021 3318 0.91 2220 2383 0.93

4640 5188 0.89 3009 3350 0.90 2204 2527 0.87

4583 5027 0.91 2991 3142 0.95 2203 2480 0.89

4535 4970 0.91 2957 3348 0.88 2193 2428 0.90

4486 4746 0.95 2841 3177 0.89 2178 2469 0.88

4374 5098 0.86 2822 3021 0.93 2178 2585 0.84

4292 4856 0.88 2818 3008 0.94 2149 2425 0.89

4192 4645 0.90 2776 3086 0.90 2125 2456 0.87

4090 4514 0.91 2629 2892 0.91 2107 2417 0.87

3984 4246 0.94 2569 2823 0.91 2093 2258 0.93

3812 4201 0.91 2492 2952 0.84 2086 2426 0.86

3783 4051 0.93 2449 2600 0.94 2054 2369 0.87
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as a seed point if the contour solidity is greater than the set solidity threshold. As shown in Fig. 13, (a) is a 3D 
schematic image of the distance image, and the height is the gray value of the corresponding coordinate; (b1) is a 
3D schematic image of the distance image when the gray threshold value is 50, and (b2) is its corresponding 2D 
cross-section; (c1) is a 3D schematic image of the distance image when the gray threshold value is 100, and (c2) 
is its corresponding 2D cross-section.

When the grayness threshold is too small, although smaller blocks can be split and seed point marked, more 
large rock blocks are not divided, as can be seen in Fig. 13b1,b2. And most of the contour solidity is less than the 
solidity threshold value, which does not work as seed points. It can be seen from Fig. 13c1,c2 that when the gray 
threshold is too large, only the large size rock blocks can be segmented. Due to the large size difference, a single 
gray threshold does not satisfy the seed point marking of rock blocks, so multiple gray thresholds need to be 
processed and the solidity is calculated for the contours in the 2D image after each gray threshold is processed. 
If it is greater than the solidity threshold, the interior of the contour is filled and marked as a seed point.

It should be noted that since this seed point marking method is based on the distance transform image, there 
may be two cases as follows: ① When the solidity of the contour of a background region in a binary image is too 
high, a depressed structure as in Fig. 14a will be formed in this background region after the distance transforma-
tion process, when the contour is taken using the gray threshold, a contour as in Fig. 14b will be formed, and the 
solidity of this contour is greater than the solidity threshold, which will cause wrong segmentation if the contour 
is marked as a seed point. ② As shown in the red marker in Fig. 15, this noise is caused by the wrong differentia-
tion of Phansalkar. Obviously, morphological optimization and area filtering do not eliminate this noise, and 
the contour is smaller than the solidity threshold value. Therefore, when determining whether the contour is a 
seed point or not, it is necessary to determine whether there is a background area or noise within the contour, 
and if it exists, it is necessary to determine whether the contour is generated by the background area or noise.

The pseudo code of the seed point marking method based on the solidity of rock block contour is shown in 
steps 8–12 of algorithm 1.

The adaptive watershed algorithm based on the solidity of rock block contours. Achieving 
accurate segmentation of blasted rock images requires a complete process, which mainly consists of image 
denoising, histogram equalization, image binarization, morphological optimization, distance transform, seed 
point marking and watershed segmentation. Based on the above research, an adaptive watershed segmentation 
algorithm is proposed for blasted rock piles images based on the solidity of rock contours. The method per-
forms adaptive segmentation based on the gray feature of blasted rock piles image and the rock contour features 

Figure 11.  Histogram of limestone solidity distribution.

Figure 12.  Histogram of granite solidity distribution.
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without any manual intervention. The process is shown in Fig. 15, and algorithm 1 shows the main steps of the 
adaptive watershed algorithm based on the solidity of rock block contours.

Figure 13.  3D schematic image of distance image and 2D cross-sectional image under different gray thresholds.
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Figure 14.  Recessed structure formed in the background area and 2D cross-sectional profile.

Rock image

Image grayscale

Bilateral filtering

Phansalkar method 
image binarization

Morphological 
optimization

Area filtering

Distance transformation

Seed points 
adaptive marking

Watershed segmentation

Contrast limited adaptive 
histogram equalization

Rock segmentation image

Figure 15.  Flow chart of the proposed rock image segmentation method.
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Experimental results and analysis
Seed point marking and segmentation results. Using the blasted rock block images of limestone and 
granite in Fig. 4 as the test objects, the applicability and accuracy of the adaptive watershed algorithm based on 
rock block contour solidity for blasted rock images are verified. Firstly, the images are preprocessed, and the 
binary images of limestone blasted rock is shown in Fig. 8a, and the binary images of granite blasted rock are 
shown in Fig. 16. Then the blasted rock images are segmented using the method proposed in this study. Fig-

Figure 16.  Granite blasted rock binary image.
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ures 17, 18 and 19 show the effect of seed point labeling and segmentation with solidity threshold values of 0.8, 
0.85, and 0.9, respectively.

Analysis of seed point marking results. From the seed point images in Figs. 17, 18 and 19, it can be seen 
that the seed point marking method based on the solidity of rock block contours can effectively mark the rock 
blocks, especially the larger ones. Comparing the seed point image of the blasted rock piles with its pre-processed 
binary image, it is found that the seed point marking method can avoid the effect of noise inside the binary image 
on the segmentation, as shown in the red box in Fig. 16. However, the method also has some problems.

(1) Some of the severely adhered blocks are not separated, as shown in the red boxes in the seed point images 
of Figs. 17, 18 and 19. It can be seen from the image that the problem is likely to arise when a large block 
heavily adheres to a small block and the difference in grayscale is small, due to the result that there are no 
local minima in the small block after the distance transformation and that solidity of the contours formed 
by the small and large rock blocks during seed point marking is greater than the solidity threshold.

(2) Multiple seed point markings were performed on some of the rock blocks, as shown in the yellow boxes 
in the seed point images of Figs. 17, 18 and 19. From the figures, it can be seen that the rock blocks with 
multiple seed points fall into two main categories: the presence of multiple faces and large surface undula-
tions in the image, which, due to natural light, cause the presence of shadows on the back of the block or 
lower areas of the surface, which affect the seed point marking.

(3) There are no seed point markers for some of the smaller size rock blocks, as shown in the green boxes 
in the seed point plots of Figs. 17, 18 and 19. The main reason for this problem is the elimination of the 
background in the area of smaller rock blocks during morphological optimization and area filtering.

Figure 17.  Blasted rock seed point marking effect and segmentation effect for a solidity threshold of 0.8.
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By comparing the seed point images with different solidity thresholds, it can be found that with the increase 
of solidity threshold, the case of no segmentation of the adherent rock block gradually decreases, but the case of 
multiple seed point marking of the rock block gradually increases, so it is necessary to select a suitable solidity 
threshold for seed point marking of the rock block to achieve the best segmentation effect.

Analysis of image segmentation results of blasted rock piles. From the segmentation results in 
Figs. 17, 18 and 19, it can be seen that the adaptive watershed algorithm based on the solidity of rock block con-
tours can achieve more accurate segmentation of the severely stacked and adhered blast rock images, especially 
the limestone blast rock images with less noise. In contrast, the segmentation effect of granite blast rock images 
is poor compared with that of limestone blast rock images due to the influence of rock block shadows and other 
problems. In order to evaluate the segmentation results with quantitative indexes, this study uses the manual 
segmentation image as the segmentation criterion to evaluate the segmentation effect of two blasted rock images, 
in which the manual segmentation image of limestone blasted rock is shown in Fig. 10a and the manual segmen-
tation image of granite blasted rock is shown in Fig. 10b.

Figure 20 show the cumulative distribution curves of the area of rock blocks in the images of limestone and 
granite blasted rock piles. The calculation formula is shown in Eq. (4).

where P is the cumulative area ratio of rock blocks; Stotal is the sum of the areas of all identified rock blocks across 
the blasted rock image; and Sx is the cumulative area of rock blocks in part x of area classification.

(4)P =
Sx

Stotal
,

Figure 18.  Blasted rock seed point marking effect and segmentation effect for a solidity threshold of 0.85.
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As can be seen from Fig. 20, for rock segmentation of limestone blasted rock piles images, the agreement 
between the cumulative distribution curves of the area of the algorithm proposed in this study and the manual 
segmentation results gradually increases with the increase of the solidity threshold. but rock segmentation of 
granite blasted rock images becomes progressively worse as the solidity threshold increases. From Fig. 20c1, it can 
be seen that there are some differences in the segmentation results of limestone rocks with area ranges between 
3600–4300 and 5500–6000  cm2. From Fig. 20a2, it can be seen that there are some differences in the segmenta-
tion results of granite rocks in the area range between 4000–5000 and 6000–7000  cm2, and the maximum area 
rock segmentation error is larger.

Table 3 gives a comparison of the three characteristic area parameters, Area20 , Area50 and Area80 , at differ-
ent solidity thresholds, which represent the areas corresponding to cumulative area distribution percentages of 
20%, 50%, and 80% respectively. As can be seen from the table, like the solidity threshold increases, the Area20 
error for limestone gradually increases, while the Area50 and Area80 errors gradually decrease. The opposite is 
true for granite, where the Area20 error decreases with increasing solidity threshold, while the Area50 and Area80 
errors gradually increase.

Tables 4 and 5 give the comparison of the number of rocks in different area zones for the image segmentation 
of limestone and granite blasted rock piles, respectively, and it should be noted that only the number of rocks 
with an area of 100  cm2 or more is counted. As can be seen from Table 4, the accuracy of block segmentation 
for limestone blasted rock images above 100  cm2 is above 95.80%. with the increase of solidity threshold, the 
number of rocks in the 100–1000 cm2 interval gradually increases, and the rocks above 1000  cm2 are less affected 
by the solidity threshold. Table 5 shows that the accuracy of rock segmentation for granite blasted block images 
above 100  cm2 is above 95.65%, and the number of rocks in the 100–1000  cm2 interval gradually increases with 
the increase of solidity threshold, while the number of rocks above 1000  cm2 gradually decreases. This is mainly 
due to the fact that as the solidity threshold increases, the area of large rock seed points gradually decreases and 
even splits into multiple seed points, resulting in an increase in the number of small rocks and a decrease or no 

Figure 19.  Blasted rock seed point marking effect and segmentation effect for a solidity threshold of 0.9.
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Figure 20.  Cumulative area distribution curve.

Table 3.  Three characteristic area parameters.

Limestone Granite

Area20 Area50 Area80 Area20 Area50 Area80

Manual segmentation 354.2 1034.1 2580.7 325.7 1084.7 3050.5

Proposed algorithm segmentation

Solidity threshold = 0.8 349.9 1163.5 2927.0 335.4 1112.4 3136.5

Relative error ( %)  − 1.21 12.5 13.4 2.97 2.53 2.82

Solidity threshold = 0.85 340.2 1081.1 2689.5 329.3 1001.2 2651.8

Relative error ( %)  − 3.95 4.55 4.22 1.11  − 7.70  − 13.07

Solidity threshold = 0.9 332.3 1020.8 2602.8 323.3 952.3 2556.9

Relative error ( %)  − 6.18  − 1.28 0.86  − 0.74  − 12.21  − 16.18

Literature45 494.3 1324.5 3240.0 386.9 1178.4 2871.9

Relative error (%) 39.55 28.08 25.55 18.79 8.64  − 5.85

Literature46 296.9 917.1 2489.9 294.4 958.3 2582.5

Relative error (%)  − 16.18  − 11.31  − 3.52  − 9.61  − 11.65  − 15.34
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change in the number of large rocks in the segmentation result, as shown in the seed point marking images in 
Figs. 18 and 19.

Therefore, among the three solidity thresholds, the best solidity threshold interval for limestone blasted rock 
image segmentation is 0.85–0.9, the best solidity threshold interval for granite blasted rock image segmentation 
is 0.8–0.85, considering the cumulative area distribution curve, characteristic area parameters and the number of 
rock blocks. In general, the algorithm proposed in this paper is consistent with the manual segmentation results 
under the condition that a suitable solidity threshold is selected.

Comparison with current methods. To evaluate the performance of the algorithm proposed in this 
study, the algorithm was compared with two other watershed improvement methods for rock segmentation, as 
described in the  literature45,46, respectively. Figures 21 and 22 show the segmentation results using the segmenta-
tion methods from the  literature45,46, respectively. Figures 23 and 24 show the cumulative area distribution curve 
of the  literature45,46 segmentation results, respectively. The three characteristic area parameters, Area20 , Area50 
and Area80 , are shown in Table 3. The comparison of the number of rocks in different area for the segmentation 
of limestone and granite blasted rock images is shown in Tables 4 and 5, respectively.

As can be seen from Figs. 23a and 24a, the method of  literature46 gives better results for limestone compared 
to the method of  literature45, with cumulative area distribution curve over 1000  cm2 is more similar to the result 
of manual segmentation. As can be seen from Figs. 23b and 24b, the results of the method of  literature45 are better 
than those of  literature46 for granite. From Tables 3, 4 and 5, it can be seen that among the three segmentation 
methods, the method proposed in this study has the best segmentation results, and its segmentation results will 
be closer to the manual segmentation after selecting a suitable solidity threshold.

Conclusion
In this study, to avoid errors caused by rock block overlap, image acquisition of blasted rock piles is performed 
using tilt photogrammetry. Then, the accurate rock target area was obtained through the image pre-processing 
process. Finally, the binary image is segmented using the adaptive watershed segmentation algorithm of blasted 
rock image based on rock block shape. This method enables automatic segmentation of blasted rock piles rock 

Table 4.  The number of rock blocks in the image segmentation result of limestone blasted rock piles.

100–max 100–1000 1000–3000 3000–max

Manual segmentation 904 750 132 22

Proposed algorithm segmentation

Solidity threshold = 0.8 872 715 132 25

Relative error ( %)  − 3.54  − 4.67 0.00 13.64

Solidity threshold = 0.85 915 761 131 23

Relative error ( %) 0.22 1.47  − 0.76 4.55

Solidity threshold = 0.9 942 787 131 24

Relative error ( %) 4.20 4.93  − 0.76 9.09

Literature45 780 604 148 28

Relative error (%)  − 13.2  − 19.47 12.12 27.27

Literature46 978 833 124 21

Relative error (%) 8.19 11.07  − 6.06  − 4.55

Table 5.  The number of rock blocks in the image segmentation result of granite blasted rock piles.

100–max 100–1000 1000–3000 3000–max

Manual segmentation 1196 1006 156 34

Proposed algorithm segmentation

Solidity threshold = 0.8 1144 946 164 34

Relative error ( %)  − 4.35  − 5.96 5.13 0.00

Solidity threshold = 0.85 1184 993 160 31

Relative error ( %)  − 1.00  − 1.29 2.56  − 8.82

Solidity threshold = 0.9 1221 1033 158 30

Relative error ( %) 2.09 2.68 1.28  − 11.76

Literature45 1161 950 178 33

Relative error (%)  − 2.93  − 5.57 14.10  − 2.94

Literature46 1301 1107 166 28

Relative error (%) 8.78 10.04 6.41  − 17.65
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Figure 21.  The segmentation effect using the segmentation method of the  literature45.

Figure 22.  The segmentation effect using the segmentation method of the  literature46.

Figure 23.  The cumulative area distribution curve for segmentation results in the  literature45.
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blocks is achieved. We compared the performance of the proposed method with the manual sieving results and 
with three methods in the  literature45,46. The main conclusions are as follows:

(1) The pre-processing process of blasted rock image and its influence on the segmentation results are described, 
and the Phansalkar method is introduced. By comparing the results with the Otsu method, it is proved that 
the method is more applicable to the binarization of blasted rock images.

(2) The principle of the watershed algorithm based on distance transformation is described, and the reasons 
why the algorithm is prone to serious over-segmentation are analyzed. The study revealed a high-solidity 
of the blasted rock block contour by analyzing the shape of blocks, a seed point marking method based on 
the solidity of rock block contours is proposed, and forms an adaptive watershed segmentation algorithm 
for blasted rock images based on block shapes. The algorithm solves the problem of mis-segmentation of 
blasted rock images caused by severe adhesion and large differences in particle size.

(3) The algorithm can effectively mark the seed points of blasted rock blocks and avoid the effect caused 
by noise inside the rock blocks of binary images, the segmentation results are highly similar to the area 
cumulative distribution curve of the manual segmentation results, and the errors of the different indexes 
are smaller than the segmentation methods adopt in the  literature45,46, which proves the effectiveness and 
superiority of the algorithm for rock block segmentation of blasted rock piles images.

The adaptive watershed algorithm based on the solidity of rock block contours proposed in this study consid-
ers the contour properties of rock blocks in the segmentation, resulting in a more significant improvement in 
segmentation accuracy. However, it should be acknowledged that the method requires different solidity thresh-
olds for different block image segmentation to achieve the best segmentation results. In future research, solidity 
thresholds for more kinds of rock will be investigated and determined, making the proposed method more 
widely applied.

Data availability
All data used to support the findings of this study are available from the corresponding author upon request.
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