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The development of Friedländer 
heteroannulation through a single 
electron transfer and energy 
transfer pathway using methylene 
blue  (MB+)
Farzaneh Mohamadpour

The radical Friedländer hetero-annulation of 2-aminoaryl ketone and -methylene carbonyl 
compound was used to develop a green tandem approach for the metal-free synthesis of 
polysubstitutedquinolines. At room temperature in an ethanol solvent, photo-excited state functions 
generated from  MB+ were used as single-electron transfer (SET) and energy transfer (EnT) catalysts, 
utilizing visible light as a renewable energy source in the air atmosphere. The purpose of this research 
is to increase the use of a nonmetal cationic dye that is both inexpensive and widely available. 
High yields, energy-effectiveness, high atom economy, time-saving features of the reaction, and 
operational simplicity, and the least amount of a catalyst are the benefits of this study. As a result, a 
wide range of ecological and long-term chemical properties are obtained. Polysubstitutedquinolines’ 
turnover number (TON) and turnover frequency (TOF) have been calculated. Surprisingly, such 
cyclization can be accomplished on a gram scale, indicating that the process has industrial potential.

The use of photo-redox catalysts in organic synthesis for the formation of C–C and C–heteroatom bonds via 
a single-electron transfer (SET)/photo-induced electron transfer (PET) pathway has increased dramatically in 
recent years. They are essential in a wide range of procedures, from small to large-scale. Various flow  reactors1 
utilizing visible light and dual photosensitized electrochemical  processes2 have been created as a result of tech-
nological advancements, resulting in more affordable, green, and efficient reactions.  MB+ is a cationic dye in the 
thiazine dye class.  MB+ has a singlet lifetime of τf ~ 1.0 ns, as well as an absorbance of near 650–670 nm (668 nm) 
and a molar absorbance (ε = 94,000)3,4. The triplet 3MB+* is a significantly more stable excited  state5, with a triplet 
lifespan of τf ~ 32 μs5,6. (More content and discussions about photoredox cycle catalyzed by  dye7 have been added 
to the supporting information file).

Furthermore, because visible light irradiation has enormous energy reserves, lower prices, and renewable 
energy sources, green chemists consider it a dependable method for environmentally friendly organic chemical 
 synthesis8–10. As visible light sources, compact fluorescent bulbs and light-emitting diodes are commonly used 
in many conversions.

The structures that make up quinolines have piqued the interest of biochemists and synthetic organic chem-
ists due to their biological and pharmacological actions (Fig. 1). Quinolines have been described in the scientific 
literature as inhibit  acetylcholinesterase11, butyrylcholinesterase family of  enzymes12,  antifilarial13,  antiparasitic14, 
tyrosine kinase inhibitory  agents15, HMG-CoA reductase  inhibiting16,  antitubercular17,  antifungals18,19, 
 antihypertensive20,21, antiallergic,  antiinflammatory22–24,  antibacterial25–28,  antimalarials29,  anticancer30–33, 
 antiproliferative34 and  antiasthmatic35,36. Quinoline nucleus can also be found in a variety of natural  products37–39.

Numerous strategies are available, including  DSIMHS40, Zn(OTf)2
41, NiO  NPs42, Zr(NO3)4

43,  I2
44, PEG-bound 

sulfonic  acid45, triflouroacetic  acid46, propylsulfonic  silica47,  HClO4·SiO2
48, Chitosan-SO3H49, oxalic  acid50, 

 Ag3PW12O4
51,  ImBuSO3H52, MNP@PEG-ImHSO4

53. Metal catalyst limitations, expensive reagents, harsh reac-
tion conditions, monotonous unacceptable yields, environmental risks, workup processes, and long reaction 
times have all resulted from these methods. Furthermore, it is difficult to separate a homogeneous catalyst from 
the reaction mixture.
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We’ve been attracted by the hunt for easy, efficient, and environmentally acceptable techniques to synthesiz-
ing biologically active chemicals utilizing  photocatalysts54–56 because of the aforementioned problems and our 
concern for environmentally favorable operations. Given prior and ongoing attempts to manufacture polysub-
stitutedquinolines, it’s critical to investigate environmentally friendly photocatalysts in green environments to 
ensure that these heterocyclic compounds are properly synthesized. This research focuses on the utilization of 
 MB+, a metal-free cationic dye photo-redox catalyst, in the aforementioned photochemical synthesizing tech-
nique. Finally, a green tandem strategy for the metal-free synthesis of polysubstitutedquinolines was developed 
using the radical Friedländer hetero-annulation57 of 2-aminoaryl ketone and -methylene carbonyl molecule. 
Photo-excited state functions produced from  MB+ as single-electron transfer (SET) and energy transfer (EnT) 
catalysts were employed at room temperature in an ethanol solvent, exploiting visible light as a renewable energy 
source in the air atmosphere. The goal of this study is to increase the usage of an inexpensive and widely available 
nonmetal cationic dye. The benefits of this study include excellent yields, energy efficiency, high atom economy, 
time-saving aspects of the reaction, operational simplicity, and the use of the least amount of a catalyst. Fur-
thermore, the use of organic solvents under reflux conditions, as well as the need for column chromatography to 
purify the products, is a source of environmental pollution. The products were produced with simple filtration 
and recrystallization with ethanol in this study, with no need for column chromatographic separation. Surpris-
ingly, gram-scale cyclization is possible, indicating that the technique has industrial potential. This is a successful 
one-pot reaction that was carried out in a very efficient, cost-effective, and simple manner.
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Figure 1.  Compounds with biologically active quinolines rings.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7253  | https://doi.org/10.1038/s41598-022-11349-8

www.nature.com/scientificreports/

Experimental
General. All substances’ physical properties are determined using electrothermal 9100 equipment. On a 
Bruker (DRX-300) device, the spectra (1HNMR) were also recorded using nuclear magnetic resonance with 
 CDCl3 as the solvent. We purchased the reagents in bulk from the chemical companies Fluka, Merck, and Acros 
and used them exactly as they were.

General procedure for preparation of polysubstituted quinolines (3a‑r). MB+ (1 mol%) was added to a mixture 
of 2-aminoaryl ketone (1, 1.0 mmol) and -methylene carbonyl compound (2, 1.5 mmol) in EtOH (3 mL) and 
stirred at room temperature under white LED (12 W) irradiation. TLC was used to monitor the reaction’s pro-
gress, with n-hexane/ethyl acetate as the eluent (3:2). Following the reaction, the resulting material was screened 
and washed with water, and the crude solid was crystallized again from ethanol to produce the pure substance 
without further purification. Even if we could produce the aforementioned compounds using gram scale meth-
ods, we wanted to see if we could scale up to the level required for pharmaceutical process R&D. In one experi-
ment, 50 mmol 2-aminobenzophenone was mixed with 75 mmol acetylacetone. The large-scale reaction went 
off without a hitch and finished in just 6 min, with the product collected using simple filtration, rinse with water 
and then recrystallize with ethanol. This material’s 1HNMR spectrum indicates that it is spectroscopically pure.

After comparing spectroscopic data, the commodities were classified. After comparing spectroscopic data, 
the commodities were classified (1HNMR).

1‑(2‑Methyl‑4‑phenylquinolin‑3‑yl)ethanone (3k). 

N

Ph O

 

Yield: 94%; M.p. 110–112 °C; 1HNMR (300 MHz,  CDCl3): 2.03 (3H, s,  CH3), 2.65 (3H, s,  CH3), 7.39–7.46 (6H, 
m, ArH), 7.53 (1H, d, J = 7.2 Hz, ArH), 7.64–7.66 (1H, t, J = 7.2 Hz, ArH), 8.02 (1H, d, J = 8.4 Hz, ArH).

1‑(6‑Chloro‑2‑methyl‑4‑phenylquinolin‑3‑yl)ethanone (3l). 

N

Ph O

Cl

 

Yield: 97%; M.p. 152–154 °C; 1HNMR (300 MHz,  CDCl3): 2.01 (3H, s,  CH3), 2.69 (3H, s,  CH3), 7.36–7.41 (2H, 
m, ArH), 7.50–7.59 (5H, m, ArH), 8.04 (1H, d, J = 8.4 Hz, ArH).

Results and discussion
To begin, the reaction of 2-aminobenzophenone (1.0 mmol) and dimedone (1.5 mmol) in EtOH (3 mL) at room 
temperature was studied under LED irradiation. There was a trace of 3a at rt in 3 mL EtOH for 40 min with no 
photocatalysts (Table 1, entry 1). Methylene blue, erythrosin B, acenaphthenequinone, rhodamine B, alizarin, 
riboflavin,  Na2 eosin Y, xanthene, rose Bengal, phenanthrenequinone, 9H-xanthen-9-one (Fig. 2) were all tested 
in identical conditions to promote the reaction. This reaction progressed in 55–94% yields while achieving 
the acceptable matched product 3a (Table 1). According to the findings, methylene blue fared better in such a 
response. The yield was increased to 94% by using 1 mol%  MB+ (Table 1, entry 4). THF, toluene, DMSO and 
DMF all had lower product yields, as shown in Table 2. In  H2O,  H2O/EtOH (1:1), MeOH, EtOAc,  CH3CN, and 
solvent-free conditions, the reaction rate and yield were increased. The reaction was carried out in EtOH at an 
excellent yield and rate. Under identical conditions, a yield of 94% was obtained, as shown in Table 2 (entry 2). 
Different light sources were used to screen the yield, demonstrating the effect of white light (Table 2). There was 
a minuscule of 3a without using the light source, according to the test control. According to the findings, visible 
light and  MB+ are required for the successful synthesis of product 3a. Furthermore, the improved settings were 
determined by illuminating white LEDs of varying intensities (10, 12, and 18 W). The best results, according to 
the researchers, were obtained when white LED (12 W) were used (Table 2, entry 2). A wide range of substrates 
were investigated under the right conditions (Table 3 and Fig. 3). It is worth noting that the methylene carbonyl 
compounds had no effect on the reaction’s outcome (Table 3). The reaction patterns of 2-aminobenzophenone 
and 5-chloro-2-aminobenzophenone were comparable (Table 3). Table 4 also includes turnover number (TON) 
and frequency of turnover information (TOF). The greater the TON and TOF numerical values, the less catalyst 
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is used and the greater the yield, and the catalyst becomes more effective as the value increases. 1HNMR data 
some of known products has also been compared to literature (Table S1). (In the supporting information file, 
Table S1 has been added.)

Figure 4 denotes the preferred mechanism. Photoexcited modes derived from methylene blue can act as a 
single-electron transfer (SET) and energy transfer (EnT) catalyst. The ground-state MB and the intermediate (A) 
are regenerated by an electron transfer (ET) between the MB radical and the -methylene carbonyl compound 
(2). A reactive intermediate (B) is formed when this radical anion (A) is nucleophilically added to 2-aminoaryl 
ketone (1). A single-electron transfer (SET) mechanism promotes the production of the cation radical (C) by 
visible light-triggered *MB+. The dehydrated cyclized is then added for a total of 3.

Table 5 compares the catalytic capability of various catalysts discussed in this literature for the synthesis of 
polysubstitutedquinolines. It could have a variety of applications, including the use of a small amount of photo-
catalyst, a fast reaction time, and the absence of by-products when exposed to visible light. The atom-economic 
protocol is extremely successful at multigram scales and has significant industrial implications. These materials 
stand out in terms of efficiency and purity.

Conclusion
The photo-excited state functions generated by  MB+ can be used to metal-free manufacture polysubstitutedqui-
nolines via radical Friedländer hetero-annulation of 2-aminoaryl ketone and -methylene carbonyl compound 
via a single-electron transfer (SET)/energy transfer (EnT) method, according to the findings. This procedure 
employs visible light as a renewable energy source in an EtOH solvent and air atmosphere at room temperature. 
The use of the least amount of catalyst, excellent yields, an efficient side of the reaction, secure reaction condi-
tions, a renewable energy source, and a quick procedure without the use of toxic solvents or catalysts are the 
most noticeable features of this green protocol. No chromatographic purification was required. According to a 
multigram scale reaction of model substrates, this reaction can be scaled up without compromising the outcome. 
As a result, this process provides additional benefits in terms of meeting industrial requirements and addressing 
environmental concerns.

Table 1.  Table of photocatalyst optimization for 3a production. Reaction conditions: At room temperature, 
2-aminobenzophenone (1.0 mmol) and dimedone (1.5 mmol) in EtOH were used, along with a white LED 
(12 W) and a variety of photocatalysts. Significant values are in bold.

Ph

NH2

O O

O N

Ph O

 

Entry Photocatalyst Solvent (3 mL) Time (min) Isolated yields (%)

1 – EtOH 40 Trace

2 Methylene blue (0.2 mol%) EtOH 20 56

3 Methylene blue (0.5 mol%) EtOH 10 77

4 Methylene blue (1 mol%) EtOH 7 94

5 Methylene blue (1.5 mol%) EtOH 7 94

6 Erythrosin B (1 mol%) EtOH 7 73

7 Acenaphthenequinone (1 mol%) EtOH 7 56

8 Rhodamine B (1 mol%) EtOH 7 78

9 Alizarin (1 mol%) EtOH 7 55

10 Riboflavin (1 mol%) EtOH 7 75

11 Na2 eosin Y (1 mol%) EtOH 7 86

12 Xanthene (1 mol%) EtOH 7 65

13 Rose bengal (1 mol%) EtOH 7 70

14 Phenanthrenequinone (1 mol%) EtOH 7 62

15 9H-Xanthen-9-one (1 mol%) EtOH 7 58
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Figure 2.  In this study, photocatalysts were put to the test.
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Table 2.  Table of solvent and visible light optimization for 3a synthesis. Reaction conditions: 
2-aminobenzophenone (1.0 mmol) and dimedone (1.5 mmol) were added to  MB+ at room temperature 
(1 mol%). Significant values are in bold.

Ph

NH2

O O

O N

Ph O

 

Entry Light source Solvent (3 mL) Time (min) Isolated yields (%)

1 White light (12 W) H2O 7 85

2 White light (12 W) EtOH 7 94

3 White light (12 W) H2O/EtOH (1:1) 7 89

4 White light (12 W) MeOH 9 82

5 White light (12 W) EtOAc 10 51

6 White light (12 W) CH3CN 7 80

7 White light (12 W) – 20 57

8 White light (12 W) THF 30 33

9 White light (12 W) Toluene 30 27

10 White light (12 W) DMSO 35 24

11 White light (12 W) DMF 30 38

12 White light (10 W) EtOH 7 83

13 White light (18 W) EtOH 7 94

14 – EtOH 35 Trace

15 Blue light (12 W) EtOH 7 87

16 Green light (12 W) EtOH 7 81
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Table 3.  Using photoexcited  MB+ as a catalyst, this photocatalyst produces polysubstitutedquinolines.

Ph

NH2

O

N

R3
Ph

R2

3a-r21

R2 R3
O

R1 R1

MB+ (1 mol%)
White LED (12 W)

EtOH, rt
Air atmosphere

 

N

Ph O

 
3a (7 min, 94%)
Mp. 194–196 °C
Lit. 192–194 °C40

N

Ph O

Cl

 
3b (7 min, 92%)
Mp. 206–208 °C
Lit. 207–209 °C40

N

Ph

 
3c (5 min, 97%)
Mp. 137–139 °C
Lit. 139–141 °C46

N

Ph

Cl

 
3d (5 min, 96%)
Mp. 161–163 °C
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N

Ph
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N

Ph

Cl
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N

Ph

OEt

O

 
3 g (7 min, 95%)
Mp. 97–99 °C
Lit. 98–100 °C52

N

Ph

OEt

O
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Figure 3.  Polysubstitutedquinoline synthesis.
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Table 4.  Calculated turnover number (TON) and turnover frequency (TOF).

Entry Product TON TOF Entry Product TON TOF

1 3a 94 13.4 10 3j 97 13.8

2 3b 92 13.1 11 3k 94 15.6

3 3c 97 19.4 12 3l 97 13.8

4 3d 96 19.2 13 3m 92 10.2

5 3e 93 18.6 14 3n 90 9

6 3f 96 13.7 15 3o 93 15.5

7 3g 95 13.5 16 3p 94 15.6

8 3h 93 13.2 17 3q 95 19

9 3i 96 13.7 18 3r 93 18.6
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Figure 4.  A mechanistic method for producing polysubstitutedquinolines has been proposed.
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Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].
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