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Hybrid confocal fluorescence 
and photoacoustic microscopy 
for the label‑free investigation 
of melanin accumulation in fish 
scales
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Lower vertebrates, including fish, can rapidly alter skin lightness through changes in melanin 
concentration and melanosomes’ mobility according to various factors, which include background 
color, light intensity, ambient temperature, social context, husbandry practices and acute or chronic 
stressful stimuli. Within this framework, the determination of skin chromaticity parameters in fish 
species is estimated either in specific areas using colorimeters or at the whole animal level using image 
processing and analysis software. Nevertheless, the accurate quantification of melanin content or 
melanophore coverage in fish skin is quite challenging as a result of the laborious chemical analysis 
and the typical application of simple optical imaging methods, requiring also to euthanize the fish in 
order to obtain large skin samples for relevant investigations. Here we present the application of a 
novel hybrid confocal fluorescence and photoacoustic microscopy prototype for the label‑free imaging 
and quantification of melanin in fish scales samples with high spatial resolution, sensitivity and 
detection specificity. The hybrid images are automatically processed through optimized algorithms, 
aiming at the accurate and rapid extraction of various melanin accumulation indices in large datasets 
(i.e., total melanin content, melanophores’ area, density and coverage) corresponding to different fish 
species and groups. Furthermore, convolutional neural network‑based algorithms have been trained 
using the recorded data towards the classification of different scales’ samples with high accuracy. 
In this context, we demonstrate that the proposed methodology may increase substantially the 
precision, as well as, simplify and expedite the relevant procedures for the quantification of melanin 
content in marine organisms.

Coloration patterns and skin morphological and physiological changes play a crucial role in the biology, physi-
ology, behavior and ecology of  fish1,2. Lightness (brightness), hue and chroma sophisticated properties of fish 
skin are based on the presence, density, distribution and mobility of pigment cells (chromatophores) and the 
concentration of associated chemical compounds (pigments). Chromatophores can be classified into two main 
categories: (1) the light-absorbing, melanophores, erythrophores, xanthophores and cyanophores, and (2) the 
light-reflecting, leucophores and  iridophores3. Melanophores, in particular, consists of relatively large mela-
nosomes that contain the light-absorbing pigment melanin, producing dark skin colors. Lower vertebrates, 
including fish, can rapidly alter skin lightness depending on various factors, including background color, light 
intensity, ambient temperature, social context and husbandry  practices1,4. Such rapid changes are due to changes 
in the mobility (aggregation or dispersion) of the melanosomes within the melanophore and are termed physi-
ological color  changes1,3–6.
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In aquaculture conditions, skin coloration, and especially lightness, has been related to product quality, animal 
 welfare2,7, as well as to consumer’s perception and economic value of marketable-sized  fish8–11. Changes in skin 
lightness are closely related to the melanin content and the number and shape of  melanophores3. The number of 
melanophores is considered to be more or less stable, with only slight changes after exposure to environmental 
 factors3. On the contrary, the area of skin covered by the melanosomes, i.e., whether melanin is aggregated or 
dispersed within the cell, is highly  variable1,3,4.

Changes in melanin concentration and melanosomes’ mobility are also observed following exposure of fish to 
environmental, social and husbandry (in the case of reared fish) acute or chronic stressful stimuli. Furthermore, 
are related to health status, since intra-specifically divergent melanin-based color morphs have been related 
to differential exposure to parasites, and, once infected, to differential abilities to cope with the  infection12,13. 
Moreover, a relationship between melanin-based color morphs and stress response has been described in rainbow 
 trout14 and Atlantic  salmon12, while genetic correlations between skin pigmentation and growth have also been 
documented in rainbow  trout15. Finally, due to the fact that individuals with higher melanin concentration and/
or dispersion have more protection against UV-radiation than conspecifics with lower melanin, dark individu-
als are considered to be less affected from global  warming16. This difference could potentially affect population 
dynamics in an evolutionary or plastic manner.

Although quantification of skin chromaticity parameters in fish species can be accurately estimated either in 
specific fish areas using  colorimeters2 or at the whole animal level using image processing and analysis  software17, 
measuring the melanin content or melanophore number and coverage in fish skin has been proven challeng-
ing until now. Melanin is insoluble in water and shows an irregular structure creating an obstacle for chemical 
analysis, particularly  quantification8. Additionally, in order to quantify melanin, fish need to be euthanized to 
obtain skin samples. Then melanin has to be extracted, determined indirectly (against a sepia melanin synthetic 
standard) and expressed roughly as melanin content per area of  skin4,5,18–20. Another, more accurate, method-
ology is based on the chemical degradation of eumelanin to pyrrole-2,3,5-tricarboxylic acid (PTCA) and of 
pheomelanin to aminohydroxyphenylalanine isomers (AHP), which can be quantified by High Performance 
Liquid  Chromatography21,22. Melanophores number and melanosomes coverage on fish scales, on the other 
hand, is traditionally measured optically, through stereoscopical imaging of the scales and image processing 
and analysis  software5,19,20,23, which is a challenging, laborious, and relatively slow process. In this context, novel 
techniques for fast and accurate analysis of melanin content and melanophores number in fish scales could 
significantly contribute to color analysis in fish.

Biomedical photoacoustic (PA) microscopy is a powerful and rapidly expanding imaging modality which 
exploits the weak attenuation of ultrasonic waves to provide imaging contrast deep inside  tissues24 with 100% 
relative sensitivity to optical  absorption25. In this direction, the capabilities of PA microscopy have been recently 
demonstrated in several applications involving the in-vivo acquisition of valuable anatomical, molecular, func-
tional, and flow dynamic  information26,27, towards the elucidation of fundamental mechanisms such as cancer 
formation and  growth28,29, the high-resolution monitoring of drug delivery  processes30, as well as, the detailed 
imaging of ocular structures through specialized PA  ophthalmoscopes31,32.

The underlying physical mechanism behind this diagnostic technique is the PA effect, which can be sim-
ply described as the formation of acoustic waves following the absorption of light with temporally-modulated 
intensity. More specifically, the irradiation of biological specimens through laser pulses with a typical width of 
a few nanoseconds, induces a local temperature rise of several milliKelvin in highly absorbing  regions33. Under 
such excitation settings, the transient response of the medium has the form of a rapid thermoelastic expansion, 
which in turn, generates an initial pressure perturbation propagating as broadband acoustic waves with pre-
dominant frequency content in the MHz regime. These ultrasonic waves are usually recorded by employing the 
same detection equipment (e.g., piezoelectric elements) as in traditional ultrasound  imaging34. When thermal 
and stress confinement conditions are sufficiently met (i.e., no considerable loss of heat and pressure is observed 
in the excitation region throughout the optical pulse duration), the peak-to-peak amplitude of the PA waves is 
directly proportional to the absorption coefficient of the medium for the excitation  wavelength35. The respective 
PA microscopy images are formed without using any reconstruction algorithms such as back-projection, either 
by restricting the excitation area through the well-defined optical focus of the laser beam (optical-resolution 
mode), or by constraining the signal detection region following the integration of spherically focused ultrasonic 
transducers (acoustic-resolution mode). These two PA microscopy approaches can be employed according to the 
required trade-off between the imaging detail and the maximum imaging depth, as optical-resolution mode may 
reveal fine spatial features up to 300 nm within depths not exceeding 1 mm, whereas the acoustic-resolution mode 
allows for deeper investigations (~ 3 mm) at the cost of a significantly reduced resolving power (~ 25–30 μm) 
in the lateral  dimensions26.

The most prominent biological absorbers which emit strong PA signals following their excitation with visible 
wavelengths are melanin and  hemoglobin36, providing thus rich intrinsic contrast of pigmented layers or tumors 
and capillary vessels respectively. As regards melanin, several previous studies have demonstrated the promis-
ing capabilities of PA microscopy on the detection, monitoring and quantification of melanin depositions in 
 skin37,  eye38, circulating melanoma  cells39 and several animal models including mice and  zebrafish40–42. With the 
exception of hemoglobin, all of the typical endogenous tissue chromophores present virtually negligible absorp-
tion coefficients in the visible part of the optical spectrum when compared to melanin. For a usual PA excita-
tion wavelength at 532 nm, melanin is characterized by an absorption coefficient of approximately 500  cm−143, 
which is at least 3 orders higher than the respective values for lipids (~ 0.01  cm−1)44, collagen (~ 0.25  cm−1)45 
and elastin (~ 0.5  cm−1)46. Within this context, the high potential of PA microscopy concerning the sensitive 
detection of endogenous optical absorbers in tissues, has been effectively combined with several pure optical 
techniques in multimodal instruments, such as confocal fluorescence  microscopy47–49, non-linear  imaging50–52 
and optical coherence tomography (OCT)53–56. These novel hybrid approaches have allowed for the extraction 
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of complementary information in several types of biological specimens, including ocular and vegetative tissues, 
aiming at an augmented PA diagnosis with high applicability in various biomedical studies.

In this work, we present the application of a hybrid optical-resolution PA and confocal fluorescence (CF) 
microscopy system for the label-free imaging and quantification of melanin content in fish scales with high spatial 
resolution, sensitivity and detection specificity. We initially demonstrate that the PA signals are predominantly 
generated by the melanophores of the scale, and subsequently show that the detected PA amplitude is directly 
proportional to the local melanin concentration in specially designed phantom samples simulating fish scales. 
The recorded hybrid images are automatically processed using novel optimized algorithms, aiming at the accu-
rate and rapid extraction of various melanin accumulation indices in large datasets corresponding to different 
fish species and groups. Furthermore, convolutional neural network-based algorithms are employed for the 
classification of these scales with high accuracy. Within this framework, we provide evidence that the proposed 
imaging methodology has the potential to increase substantially the accuracy, as well as, simplify and expedite 
the relevant procedures for the quantification of melanin in marine organisms.

Materials and methods
Scale sampling and storage. Scales from three teleost fish species were collected to develop a novel 
hybrid CF and PA microscopy platform in quantifying the content of melanin and the number of melanophores 
in fish scales. The species from which scales were collected were farmed European sea bass (Dicentrarchus lab-
rax) of mean weight (± SD) of 135.8 g (± 18.7), farmed gilthead seabream (Sparus aurata) of mean weight (± SD) 
of 202.5 f. (± 26.4), and wild-caught common pandora (Pagellus erythrinus) of mean weight (± SD) of 190.8 g 
(± 26.2). Species were chosen based on (a) their differences in skin lightness (high, intermediate and low), (b) 
high commercial value and (c) availability in the market.

For this purpose, scales (n = 10 to 20 per individual) were collected from the dorsal area, above the lateral line 
of fish using a forceps. Scales were fixed in 4% buffered formaldehyde and stored at 70% ethanol as previously 
 described57,58. In total, 100 scales from each species were collected and analyzed for melanin content under a 
hybrid CF and PA microscopy setup. Moreover, a second experiment was conducted on porgies purchased from 
two different fish suppliers from Crete (thereinafter termed as S1 and S2) based on macroscopic differences in 
skin lightness. Scales were collected as previously described and were analyzed under the hybrid CF and PA 
microscopy setup. The conducted research did not involve any experimentation in live animals. All tests were 
performed in specimens purchased by local super-markets or fish markets.

Hybrid CF and PA microscopy setup. The hybrid microscopy setup (Fig. 1a) integrates two excitation 
beams and two corresponding optical paths, each of them dedicated to CF and PA microscopy modalities respec-
tively. The paths are merged using suitable dichroic mirrors (DM1 and DM2) exactly before the microscopy plat-
form, to achieve the simultaneous excitation and detection of AF and PA signals, which in turn provides dual con-
trast images. CF microscopy modality employs a compact continuous wave (CW) diode-pumped laser module 
(CPS450, Thorlabs, Newton, NJ, USA; output power 4.5 mW) emitting at 450 nm, as AF excitation source. Due 
to its highly elliptical shape, optical radiation is spatially filtered using a telescope consisted of two positive lenses 
(L1 and L2; F1 = 50 mm, F2 = 40 mm) and a 25 μm diameter pinhole (PH1), to obtain a near-Gaussian beam pro-
file. An optical system integrating another two positive lenses (L3 and L4; F3 = 75 mm, F4 = 50 mm) at a variable 
relative distance is subsequently used to control the divergence of the beam, adjusting precisely the axial overlap 
of optical foci on sample’s plane. The spatially filtered radiation is attenuated after passing through a set of neutral 
density filters (NDK01, Thorlabs, Newton, NJ, USA), to avoid any photodamage effects on the examined speci-
men. The beam is then reflected by a long-pass dichroic mirror (DM1; DMLP505, Thorlabs, Newton, NJ, USA; 
cut-off wavelength: 505 nm) and guided into a properly modified inverted optical microscope (Labovert, Leitz, 
Wetzlar, Germany), following a 3X expansion by a telescope (L5 and L6; F5 = 50 mm, F6 = 150 mm). An objec-
tive lens (OL; Achromat 8X, LOMO, St. Petersburg, Russia; air immersion; NA: 0.2) focuses the light directly on 
the scale (S), which is placed at the bottom of an optically transparent water tank (WT) and firmly fixed using 
a thin layer of ultrasound gel. The tank is further attached on a high precision 3D translational motion system 
(XYZ) composed of a fast motorized XY stage (8MTF-75LS05, Standa, Vilinius, Lithuania) raster-scanning the 
sample over the beam focus, and the built-in manual Z-control of the microscope, through which, the imaging 
focal plane is selected. A part of the back-scattered AF radiation is collected by the objective lens and transmit-
ted through the dichroic mirrors DM1 and DM2 (DMLP550, Thorlabs, Newton, NJ, USA; cut-off wavelength: 
550 nm), as well as, a long pass filter (F1; FGL570, Thorlabs, Newton, NJ, USA; cut-off wavelength: 570 nm) to 
cut-off the reflected excitation light. Using a positive lens (L7; F7 = 30 mm), AF radiation is then focused through 
a 50 μm diameter pinhole (PH2), to effectively reject any out of focus signals. The remaining in-focus AF light 
is finally detected by a low-noise photomultiplier (PMT) module (H6780-20, Hamamatsu, Hamamatsu City, 
Japan). The generated signals are recorded by a high-speed data acquisition (DAQ) card (PCIe-9852, ADLINK, 
Taipei, Taiwan; sampling rate: 200 MS/s; bandwidth: 90 MHz) and subsequently stored in a computer, following 
the averaging of 20 measurements for signal to noise ratio (SNR) improvement.

As regards the PA imaging path, a variable repetition rate pulsed Nd:YAG laser emitting at 1064 nm (QIR-
1064-200-S, CrystaLaser LC, Reno, NV, USA; maximum pulse energy: 29.4 µJ, pulse duration: 10 ns) has been 
employed as an excitation source. The laser is externally triggered by an arbitrary function generator (FG; 33600A 
Series Trueform, Keysight Technologies, Santa Rosa, CA, USA) at a selected pulse repetition rate of 5 kHz, 
synchronizing also data acquisition and raster scanning procedures. The beam is focused on a LBO (Lithium 
triborate) Second Harmonic Generation (SHG) crystal (Castech Inc, Fuzhou, China) to be partially transformed 
into a 532 nm wavelength, and subsequently collimated by a second lens (L8 and L9; F8 = F9 = 100 mm). A band-
pass filter (F2; FF01-531/40-25, Semrock, Rochester, NY, USA) is used to reject the remaining fundamental near 
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infrared radiation, whereas the transmitted visible wavelength is sufficiently attenuated by passing through a lin-
ear polarizer (P; LPVISE200-A, Thorlabs, Newton, NJ, USA). Subsequently, the PA excitation beam is reflected by 
DM2 but transmitted through DM1 to overlap spatially with AF excitation light. After passing through the beam 
expansion telescope (L5 and L6), pulsed radiation is finally focused by the same objective lens (OL) on the sample 
under observation. The generated PA waves are detected by a 20 MHz central frequency spherically focused 
piezoelectric ultrasonic transducer (UT; V373-SU, Olympus, Tokyo, Japan; − 6 dB bandwidth: 13.3–32.9 MHz, 
Focal distance: 31.3 mm), which is immersed into the water tank in a confocal and coaxial configuration with 

Figure 1.  Evaluation of hybrid microscope’s imaging performance on the investigation of fish scales. (a) 
Schematic representation of the developed hybrid microscopy system. L (1–9) lenses, M mirror, PH (1–2) 
pinholes, ND neutral density filters, DM (1–2) dichroic mirrors, F (1–2) optical filters, PMT photomultiplier 
tube, SHG second harmonic generation crystal, P linear polarizer, OL objective lens, XYZ 3D translation 
stages, WT water tank, S scale sample, UT ultrasonic transducer, A amplifier, DAQ data acquisition card, FG 
function generator, PC recording computer. (b) A close-up illustration of hybrid imaging procedure during the 
scanning of a fish scale sample. (c) Brightfield image of the posterior field in a porgy scale (field of view: 1.71 by 
0.44  mm2). (d) MAP PA reconstruction of the same region as in c using a pixel size of 6 μm. (e) Plot of average 
PA amplitude versus melanin’s concentration in agarose phantom samples. Error bars indicate a ± 5% signal 
deviation due to pulse energy variability. Solid black line represents a linear fitting of the data points  (R2 = 0.99). 
(f) High-resolution AF image of the posterior field in a sea bass scale. (g) Respective PA image of the same 
region. (h) Hybrid image integrating CF (grayscale) and PA (red color) contrast modes. Scale bar is equal to 
200 μm.
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respect to the optical focus. The distilled water in the tank serves as a coupling medium between signal source 
and the detector, ensuring the effective transmission of PA waves. The generated signals are enhanced by two 
low-noise RF amplifiers (A; TB-414-8A+, Mini-Circuits, Camberley, England; gain: 31 dB) connected in series 
to provide a total gain of 62 dB, prior their digitization and recording using a second channel of the DAQ card. 
To enhance the SNR level, 20 waveforms are averaged for the acquisition of each pixel value comprising the 
maximum amplitude projection (MAP) PA image. The total time required for the recording of a typical 400 by 
400 pixels hybrid CF and PA image is approximately 15 min. Pulse energy on sample’s focal plane is measured 
at 120 nJ, whereas the respective optical power of the CW laser at 450 nm is approximately equal to 400 μW. 
The lateral resolution of the system is ultimately determined by the optical diffraction limit, and is estimated at 
around 2.5 μm, (PA modality) and 2.2 μm (CF modality), taking into account the underfilling of the objective lens 
which yields an effective NA of 0.1. In the same respect, the depth of focus for the PA modality can be calculated 
at ~ 50 μm, which is considered adequate enough for the homogeneous detection of melanophores on the surface 
of the scale. Finally, a typical laser fluence over the focal plane can be estimated by dividing the pulse energy by 
the surface of the laser spot (~ 20 μm2), which corresponds to a value equal to 0.6 J/cm2. Control and synchro-
nization of the hybrid microscope has been performed using custom-developed programs. Finally, all recorded 
data have been processed by means of MATLAB environment and ImageJ open-source Java-based software.

K‑means clustering algorithm. A custom-made k-means clustering algorithm has been developed in 
MATLAB programming environment aiming at the automated detection of fish scale area in CF microscopy 
images. The selected region is further used for the rapid and accurate quantification of PA data, allowing for 
the extraction of melanin accumulation indices and the statistical processing of a large number of specimens. 
K-means is an iterative algorithm that tries to partition a dataset into k pre-defined distinct non-overlapping 
subgroups where each data point belongs to only one group. An analytical description of the k-means algorithm 
can be found  elsewhere59. However, a short explanation of the clustering process can be summarized in the fol-
lowing steps: (a) Specification of cluster number k. (b) Assignment of some initial centroid values (arithmetic 
mean of data points) for each cluster either randomly or by providing predetermined values. (c) Estimation of 
the sum of the squared distance between data points and all centroids. (d) Assignment of each data point to the 
nearest cluster (centroid). (e) Computation of the centroids for the clusters by taking the average of data points 
that belong to the cluster. (f) Iteration of steps c, d and e until there is no change to the estimated centroids.

A pre-processing of the normalized to the maximum CF images is initially performed by applying a 2-D 
median filter (medfilt2; 10 by 10 neighborhood around each pixel) and a non-linear gamma-correction operation 
(γ = 0.2) to suppress the high spatial frequencies and smooth the varying brightness values across the scale. The 
CF image matrix is subsequently reshaped into a row vector prior the application of k-means intrinsic MATLAB 
operation, which attempts to partition data points into two clusters (i.e., scale area and background) using initial 
centroid values equal to 0.7 and 0.5 respectively. The average of the estimated centroids for the two clusters is 
then used as a brightness threshold to generate a 2-D binary mask marking the scale area. The mask is further 
corrected for possible “hole” artifacts using the intrinsic “imfill” MATLAB command and the “noholes” option. 
As more than a single region can appear in the mask due to background noise, the algorithm detects and chooses 
exclusively the largest area representing the fish scale with high accuracy in all CF images. The corresponding PA 
data falling into the selected scale area are finally quantified to generate different melanin accumulation indices 
which are representative of total melanin content, total melanophore area, density and % coverage, as well as, 
the average melanin content per point.

Machine learning model for image classification. A Convolutional Neural Network (CNN) was 
trained to classify a dataset of 300, 400 by 400 pixels, single-channel, PA images (100 images of each fish scale 
class, i.e., common pandora, sea bass, and gilthead seabream). Initially, we randomly split the original dataset 
into a training plus validation (80%) and a test (20%) set. Then, we separate the training and the validation set by 
randomly splitting it into a training set (90%) and a validation set (10%). This process concludes with a training 
set of 216 images, a validation set of 24 images, and a test set of 60 images. To increase the number of images in 
the training set, a data augmentation method was applied by flipping the original images once horizontally (left–
right) and once vertically (up–down), resulting in a set of 648 training images. Further augmentation (firstly 
horizontally and then vertically on the output image) was also checked but without improving our results.

Several different architectures and combinations of the hyper-parameters of models were tested to conclude 
to the one with the best performance. That model takes as input a single-channel 400 by 400 PA image and passes 
it through a feature extraction network that consists of six convolutional layers containing 4, 8, 16, 32, 64 and 
128, 3 by 3 pixels, kernels respectively. A 2 by 2 pixels stride is applied on the first convolutional layer and a 3 
by 3 max pooling layer after the second convolutional layer, to further reduce the size of the input image. Each 
one of the other convolutional layers is followed by a max pooling layer with a 2 by 2 kernel. The output of the 
feature extractor is then flattened and connected to a fully connected classifier containing two layers of 100 and 
50 nodes respectively, leading to a 3 nodes output layer with a soft-max activation function.

The model was created using  Keras60 as implemented in TensorFlow 2.461 and compiled with an Adam 
 optimizer62 with a learning rate of 0.001 and a categorical cross entropy loss function. The training process of 
the model was monitored on the validation set and an early stopping criterion was applied on the training loop 
with a patient of 20 epochs to avoid overfitting.
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Results
Hybrid CF and PA microscopy platform. The hybrid CF and PA microscopy system presented in this 
study has been developed by modifying a conventional inverted optical microscope (Fig.  1a, “Materials and 
methods” section). CF imaging mode employs a CW diode laser module emitting at 450 nm for the efficient 
excitation of the investigated scale samples. Initially, the beam is spatially filtered, attenuated and reflected into 
the microscope by a dichroic mirror following its expansion by a telescope system consisting of two positive 
lenses. Optical radiation is subsequently focused on the sample by an objective lens to excite AF photons, part 
of which are collected back by the lens and pass through the dichroic mirrors of the system. Finally, the AF light 
is spatially filtered using a pinhole to reject the out of focus signals blurring the image, before being detected by 
a sensitive photomultiplier tube (PMT). On the other hand, PA imaging mode employs a Q-switched Nd:YAG 
laser emitting nanosecond pulses at 1064  nm wavelength, which is partially converted into 532  nm using a 
Second Harmonic Generation (SHG) crystal. The generated radiation is subsequently filtered, attenuated and 
guided towards the microscope through dichroic mirrors to overlap spatially with the CW beam. Following its 
expansion by the telescope, pulsed beam is focused by the objective lens on the sample which is in turn placed at 
the bottom of an optically transparent water tank. The generated PA signals are detected by a spherically focused 
immersion ultrasonic transducer in a confocal and coaxial configuration in respect to the optical focus (Fig. 1b). 
Hybrid images are generated by raster scanning the specimen over the optical foci of the two beams using a 
motorized XY stage, achieving a point-by-point acquisition over the region of interest.

Evaluation of hybrid microscope performance. We have initially investigated the relative imaging 
performance of the developed hybrid microscopy system in terms of contrast specificity, dependence of PA 
amplitude on local concentration of melanin, as well as, the discrimination of fine spatial features in fish scale 
samples. A brightfield image showing the posterior field of a porgy scale is presented in Fig. 1c, covering a total 
region of 1.71 by 0.44   mm2. Dispersed skin melanophores are visible as individual spots of various sizes, or 
in aggregate form especially at the central part of the image. Figure 1d demonstrates a MAP PA reconstruc-
tion of the same area using a pixel size equal to 6 μm, highlighting the direct correspondence with Fig. 1c as 
regards the accurate detection of melanophores in the examined sample. It is apparent that melanin provides 
the predominant imaging contrast of PA modality among other chromatophores, as a result of its high optical 
absorption coefficient in the visible range. Having qualitatively identified the main signal sources in fish scales, 
we proceeded to the investigation of PA amplitude dependence on local melanin concentration. In this direc-
tion, we imaged four agarose-based phantom samples containing melanin at different relative concentrations 
ranging from 0.625 to 10 mg  ml−1 using a pixel size equal to 20 μm (see “Materials and methods” section). A 
representative statistical sample of 2500 pixels was selected in each recorded MAP image for the estimation of 
an average peak-to-peak PA amplitude corresponding to each sample. Figure 1e shows a plot of the average PA 
signal versus melanin concentration in the agarose phantoms. Error bars indicate a typical ± 5% signal deviation 
due to the pulse energy variability of the laser excitation source. Data points have been fitted by a linear function 
(solid black line; slope: 4.57 mV per mg  ml−1;  R2 = 0.99) to highlight the direct proportionality of recorded PA 
amplitude with the local concentration of melanin. Finally, we have recorded high-resolution hybrid images of 
the posterior field in a sea bass scale sample, demonstrating the capabilities of the developed microscopy system 
on the extraction of fine spatial details. A field of view of 1 by 1  mm2 was selected and sampled using 400 by 
400 pixels (pixel size: 2.5 μm). Figure 1f depicts an AF image of the scanned area, presenting several dispersed 
bright spots with a diameter of ~ 20 μm over a rather homogeneous signal background. These high-emission 
regions most probably correspond to known autofluorescent chromatophores such as xanthophores, contain-
ing pteridines and carotenoids of high quantum yield. On the other hand, the lower intensity AF background 
can be attributed mainly to collagen, which is found at high concentrations in fish scales. Figure 1g shows the 
respective PA image for the same region, providing the visualization of densely packed melanophores with high 
sensitivity and contrast. The spatial resolution of the image is sufficient enough to distinguish the dispersion of 
melanosomes to the periphery of the cells, as well as, local inhomogeneities of melanin’s distribution within mel-
anophores. A hybrid microscopy image incorporating both AF and PA modalities is finally presented in Fig. 1h, 
to provide multiparametric information of the examined fish scale with high contrast complementarity in an 
absolutely label-free diagnostic approach.

Automated scale selection using k‑means clustering. An automated image processing algorithm 
based on standard k-means clustering method has been implemented for the quantification of AF and PA data 
and the extraction of melanin accumulation indices in fish scales (see “Materials and methods” section). The 
algorithm takes advantage of the AF signal distribution in CF images to detect the scale with high accuracy, 
measuring also the corresponding PA signals in the selected area. Figure 2a shows a CF image of a seabream 
scale characterized by an inhomogeneous spatial distribution of AF signals, with the posterior field present-
ing an increased emission intensity most probably due to the higher collagen concentration in this region. The 
image is initially pre-processed by the algorithm using a 2-D median filter (10 by 10 neighborhood) and a 
subsequent gamma-correction (γ = 0.2) to balance pixel brightness variability across the scale area. By applying 
the pre-processing operations to the original data shown in Fig. 2a, a smoothed, low spatial frequency content 
image is generated (Fig. 2b), enabling thus the k-means clustering method to differentiate the scale area from the 
background. A binary mask delineating the scale area (white color) using the k-means algorithm is presented 
in Fig. 2c to demonstrate the typical accuracy of the automated image processing approach. A normalized pixel 
histogram for the pre-processed image is shown explicitly in Fig. 2d, to reveal a high concentration of normal-
ized brightness values between 0.45 and 0.50 corresponding to the background, and an approximately even 
distribution of pixels in the range of 0.60–0.85 associated predominantly to the scale area. In this case, k-means 
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clustering method has provided the centroid value for each sub-group (i.e., the scale and the background) at 
0.718 and 0.472 respectively, as denoted by the dotted red lines in the histogram of Fig. 2d. An average of these 
centroid values has been estimated at 0.595 (black dotted line), serving as a normalized brightness threshold 
for the differentiation between the sub-groups. To further investigate the relative performance of the developed 
k-means based algorithm as regards the accurate selection of the scale area, we have generated a Bland–Altman 
plot (Fig. 2e) analyzing the agreement between the automated process and a careful manual selection of the scale 
from recorded CF images. By employing a total number of 40 seabream scales, we have estimated the individual 
selected area differences between the manual and k-means method and plotted the resulting values as a function 
of the corresponding mean areas by averaging the results from both approaches. The average difference value 
between the two methods was found to be equal to 667 pixels (horizontal solid line in Fig. 2e), indicating that 
the manual selection method results into slightly larger scale area estimations. The 95% confidence intervals 
for the differences were additionally calculated at − 1728 and 3062 pixels respectively and are indicated by the 
dashed lines of the Bland–Altmann plot. As the mean area for all scales was equal to 29,148 pixels, we can finally 
estimate an average of ~ 2.3% difference between the two methods, which demonstrates the excellent agreement 
of the novel k-means clustering algorithm with traditional manual image processing approaches.

Investigation of melanin accumulation in different fish species. To demonstrate the capabilities 
of the hybrid microscopy system as regards the detection and quantification of melanin accumulation, we have 
investigated scales that were collected from three different fish species, namely, common pandora, gilthead sea-
bream and European sea bass. A sample of 100 scales per fish species was selected for the statistical processing of 
melanin’s measurements and the relative comparison of results among the different groups. Figure 3a depicts a 
CF image of a typical common pandora scale with a field of view equal to 8 by 8  mm2, which is sampled using 400 
by 400 pixels (pixel size: 20 μm). The scale is generally characterized by a homogeneous AF signal distribution 
across its extent, demonstrating though, some dispersed small regions of high emission intensity. A PA image of 
the same region is shown in Fig. 3b, to reveal a small number of scattered melanophores located mainly in the 

Figure 2.  K-means based image processing algorithm for the automated selection of scale area. (a) Original 
CF image of a seabream scale. Scalebar is equal to 2 mm. (b) Pre-processed image of the scale shown in (a) by 
applying a 2-D median filter and a gamma-correction operation. (c) Respective binary mask generated by the 
k-means clustering algorithm, marking the scale area. (d) Histogram of normalized pixel brightness values for 
the pre-processed image shown in (b). Red dashed vertical lines show the final centroid predictions for the 
scale area (0.718) and the background (0.472) respectively. Black dashed vertical line stands for the average 
value (0.595) of the two centroids serving as a brightness threshold for the differentiation of the scale region. 
(e) Bland–Altmann plot for the evaluation of the agreement between manual selection of the scale area and 
automated k-means algorithm’s prediction. Solid black line corresponds to the mean value of differences (667 
pixels), whereas dashed lines indicate the 95% confidence intervals (− 1728 and 3062 pixels respectively).
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posterior field of the scale. A hybrid contrast image combining CF (grayscale) and PA (red color) modalities is 
shown in Fig. 3c, providing multiparametric information of the specimen in a label-free diagnostic approach. 
Similar data are presented in Fig. 3d–f for a gilthead seabream scale using identical imaging parameters. In this 
case, it can be observed that the PA image (Fig. 3e) demonstrates a larger population of melanophores compared 
to the common pandora’s scale (Fig. 3b). The individual melanophores (or melanophore aggregates), appear 
as dispersed bright spots with typical diameters in the order of 100 μm. Finally, hybrid microscopy images are 
presented for a sea bass scale (Fig. 3g–i), using this time a field of view of 6 by 6  mm2 due to the relatively smaller 
average size of these specimens (pixel size: 15 μm). As it is clear from the PA image (Fig. 3h), the sea bass scale 
presents a dense accumulation of melanophores in the posterior field, which is significantly higher compared to 
both of the previous specimens.

Using the developed k-means image processing algorithm and by defining a fixed PA signal threshold for 
the effective rejection of background noise, we have generated six different indices which aim at the accurate 
quantification of melanin accumulation in fish scales. These indices include: (a) the total scale area  (mm2), as 
extracted directly by the k-means clustering process (see Fig. 2 for more details), (b) the total melanin content 
(V), which is estimated by summing all PA amplitude contributions exceeding a pre-defined threshold of 0.15 V 
over the detected scale area, (c) the total melanophore area  (mm2), given by the summation of pixels with PA 
values greater than the threshold and the subsequent conversion in  mm2 using the selected pixel size, (d) the 
melanophore density (V/mm2), derived by taking the ratio between index (b) and (a), (e) the percentage of mel-
anophore coverage (%), calculated similarly by dividing index (c) with (a), and finally (f) the average melanin 
content per point (V), given by the division of index (b) with the total number of pixels exceeding the threshold 
in the scale area. The extracted quantified results for the three investigated fish species are graphically presented 
in the form of boxplots (Fig. 4a–f), where red dots represent the distribution of individual measurements, box 

Figure 3.  Hybrid label-free imaging of scales belonging to different fish species. (a) CF image of a common 
pandora scale, recording the spatial distribution of emitted AF signals. (b) PA image of the same region, 
indicating a minimal melanin accumulation. (c) Hybrid image of the scale incorporating CF (grayscale) and PA 
(red color) contrast modes. (d–f) Respective imaging data obtained for a typical gilthead seabream scale. (g–h) 
Similar images for a sea bass scale presenting an apparent high melanin accumulation. All scale bars are equal to 
2 mm.
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corresponds to the interquartile range (IQR; Q3–Q1), horizontal line in the box is the median, black square stands 
for the mean value, and whiskers, indicating the variability of the statistical sample, extend up to 1.5 * IQR. The 
estimated mean values and corresponding standard errors for all melanin accumulation indices are explicitly 
presented in Table 1. To compare the estimated means for the three fish categories, we have performed one-
way ANOVA with respective post-hoc tests (Bonferroni and Tukey), confirming that resulting differences are 
statistically significant in all indices (p < 0.001). Common pandora group demonstrated the lowest melanin 
accumulation levels, whereas sea bass category revealed the highest ones, both in terms of absolute content and 
relative density, as expressed by all extracted quantitative measures (Fig. 4b–e).

As a next step, we evaluated the performance of the trained machine learning model on the test set (unseen 
data during training) as described in the respective section of “Materials and methods” section. Due to the rela-
tively limited amount of data, we need to make sure that the performance of our model does not depend on the 
preparation of the training validation and test sets. Thus, we further examine the robustness of the predictive 
capabilities of the trained model by applying a cross validation (CV) method. For this reason, we used 100 dif-
ferent, randomly assigned, training, validation and test sets of 216, 24 and 60 images respectively in each set, to 
train and evaluate our model. The average and the standard deviation of the precision, recall, F1 and accuracy 
over 100 different sets is shown in Table 2.

The average accuracy of the model is 85%, with a standard deviation of 5%, revealing the stability of the 
performance of the model. The model achieves high scores in the classification of the common pandora and 
the sea bass classes and lower scores in the gilthead seabream one. This is because the characteristics of melanin 
accumulation in seabreams are in between of those of the common pandora’s and sea bass’ ones as shown in 
Fig. 4, and thus it is harder for the model to correctly classify the gilthead seabream class. Nevertheless, in all 
cases, the deviation of the average scores is at most 10%, indicating the generalizability of the proposed model.

Figure 4.  Box plots of melanin accumulation indices for the three investigated fish species (common pandora, 
gilthead seabream, European sea bass). (a) Total scale area in  mm2. (b) Total melanin content in V. (c) Total 
melanophore area in  mm2. (d) Melanophore density in V/mm2. (e) Percentage of melanophore coverage (%). (f) 
Average melanin content per point (V). A total number of 300 scales (100 per fish category) was measured and 
processed for the extraction of these results.

Table 1.  Mean values of melanin accumulation indices for the investigated fish groups. Value in parenthesis 
represents the standard error of the mean. All differences are statistically significant at 0.001 level.

Fish group Scale area  (mm2)
Melanin content 
(V)

Melanophore area 
 (mm2)

Melanophore 
density (V/mm2) Coverage (%)

Melanin content/
point (V)

Common pandora 17.67 (± 0.36) 86.83 (± 9.63) 0.129 (± 0.014) 4.83 (± 0.50) 0.718 (± 0.071) 0.256 (± 0.003)

Seabream 14.28 (± 0.40) 411.48 (± 42.50) 0.521 (± 0.047) 27.32 (± 2.38) 3.486 (± 0.262) 0.296 (± 0.005)

Sea bass 8.91 (± 0.15) 624.36 (± 39.86) 0.737 (± 0.042) 71.60 (± 4.57) 8.419 (± 0.468) 0.320 (± 0.005)
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Investigation of melanin in porgies. Having verified the significant melanin accumulation variability 
among different fish species by means of the hybrid microscope, we proceeded to the investigation of scales 
extracted from porgies purchased from different fish suppliers in Crete (S1 and S2). A total number of 40 scales 
(20 per group) were imaged by means of the hybrid microscope to extract the respective melanin accumulation 
indices, similarly to the previous study involving different fish species. In Fig. 5a, we present a CF image (8 by 
8  mm2; pixel size: 20 μm) of a porgy scale belonging to the S1 group, to observe an intense emission of AF in the 
posterior field, as a result of the increased collagen concentration. The strong AF region is additionally character-
ized by a large number of dispersed spots demonstrating lower emissions than the average signal background. 
Moreover, Fig. 5b depicts an extended and dense accumulation of melanophores through the recording of high-
amplitude PA signals, whose spatial distribution virtually coincides with the previously detected low AF spots. 
In this manner, Fig. 5b provides complementary contrast in respect to the CF image, as can been validated by the 
hybrid reconstruction of the scale presented in Fig. 5c. A CF image of a typical scale belonging to the S2 group 
is shown in Fig. 5d, to reveal a highly similar AF emission behavior to the previous scale (Fig. 5a). Nevertheless, 
the respective PA image (Fig. 5e) indicates the presence of melanophores at a substantially lower spatial density 
in comparison to the previously mapped distribution (Fig. 5b). The hybrid reconstruction incorporating the two 
contrast modes is finally shown in Fig. 5f, to delineate scale’s morphological and optical absorption information 
with high resolution and imaging specificity.

The k-means automated signal quantification algorithm was employed for the estimation of the mean melanin 
accumulation indices in the two fish groups (S1 and S2). T-tests were additionally conducted to investigate the 
statistical significance of the differences between the groups. The results of the processing are presented both 
graphically as box plots (Fig. 6a–f) and in analytical form (Table 3), to reveal statistically significant differences 
between the means of the groups as regards the total scale area (p < 0.001), the melanophore density (p < 0.05) 
and coverage (p < 0.001).

Table 2.  The average and the standard deviation, in parenthesis, of the precision, recall, f1 and accuracy over 
100 different sets for training, validation and test.

Common pandora Sea bream Sea bass

Precision 0.89 (± 0.08) 0.80 (± 0.10) 0.87 (± 0.08)

Recall 0.92 (± 0.07) 0.75 (± 0.10) 0.85 (± 0.10)

F1 0.90 (± 0.05) 0.76 (± 0.09) 0.85 (± 0.07)

Accuracy 0.85 (± 0.05)

Figure 5.  Scales of porgies from different fish suppliers. (a) CF image of a scale extracted from a fish of S1 
group. (b) Corresponding PA image depicting a dense distribution of melanin. (c) Hybrid reconstruction 
merging CF (grayscale) and PA (red color) images. (d) CF image of a scale extracted from S2 group. (e) PA 
image revealing a sparser distribution of melanophores. (f) Respective hybrid image of the sample. Both scale 
bars are equal to 1 mm.
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Discussion and conclusions
The present study introduced a novel hybrid CF and optical-resolution PA microscopy methodology to quantify 
melanophore number and melanin content in fish scales. Using this approach, it was possible to quantify inter-
specific differences in melanophore number and melanin content in scales from three different marine teleost 
fish species. Moreover, images produced using this methodology were automatically classified to the respective 
species with high accuracy when analyzed using a machine learning model for image classification.

Among skin pigments, melanin is present in almost all vertebrates, apart from albino forms, and affects the 
lightness of the skin coloration. Fish display a huge color diversity, with skin coloration being crucial for their 
biology, including  health12,13,63,64, conspecific recognition and social  behavior65, shoaling  preference66, and mate 
 choice67,68. However, the currently available techniques to quantify melanin concentration and/or measure the 
number and coverage of melanophores in fish skin and scales are laborious and not automated. Apart from that, 
in order to measure melanin content with traditional methods fish have to be sacrificed to collect skin samples. 
The method developed and evaluated in the present study provides an accurate, repeatable and fast way to meas-
ure both melanin concentration and melanophore number and area coverage in fish scales, while additionally 
being non-invasive since it can be performed in single scales without the need to sacrifice fish.

When this imaging technique was coupled with scale photographs obtained using an optical stereoscope 
the signal of melanin, and therefore the melanosomes, in the PA images was scattered in the same way as in the 
optical image. The accompanying development of an automated image processing algorithm based on standard 
k-means clustering method allowed for a fast and reliable estimation of the fish scale area and the melanin and 
melanophore concentrations.

In order to examine the capability of this technique to quantify inter-specific differences, scales from three 
marine teleost showing different skin lightness in their dorsal area were analyzed. These species were the Euro-
pean sea bass (dark dorsal area), the common pandora (light dorsal area) and the gilthead seabream (intermediate 
lightness in dorsal area). The PA imaging not only recorded differences in the number of melanophores between 
the three species, as was expected, but also managed to quantify the total melanin content of each scale, which 

Figure 6.  Box plots of melanin accumulation indices for porgies purchased from different fish suppliers. (a) 
Total scale area in  mm2. (b) Total melanin content in V. (c) Total melanophore area in  mm2. (d) Melanophore 
density in V/mm2. (e) Percentage of melanophore coverage (%). (f) Average melanin content per point (V). A 
total number of 40 scales (20 per group) was measured and processed for the extraction of these results.

Table 3.  Mean values of melanin accumulation indices for the investigated fish groups. Value in parenthesis 
represents the standard error of the mean. *Statistically significant at 0.05 level. **Statistically significant at 
0.001 level.

Fish group Scale area  (mm2)**
Melanin content 
(V)

Melanophore area 
 (mm2)

Melanophore 
density (V/mm2)* Coverage (%)**

Melanin content/
point (V)

S1 10.10 (± 0.41) 1650.12 (± 164.60) 1.873 (± 0.157) 166.98 (± 17.45) 18.797 (± 1.580) 0.343 (± 0.013)

S2 12.95 (± 0.57) 1398.65 (± 172.12) 1.497 (± 0.130) 108.53 (± 12.88) 11.639 (± 0.954) 0.346 (± 0.019)
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also differed between the three species. On top of that, when the images produced by the PA system were ana-
lyzed using a machine-learning algorithm, it was possible to distinguish the species to which each scale belong 
to with high accuracy.

Due to the fact that melanin is involved in many processes, not only restricted to skin coloration and its 
derivatives, but also to metal ion homeostasis and antioxidant  function69, response to parasites and  pathogens64,70 
and can be used as bio-detectors in pharmaceutical and pollutants  research69,71, its measurement is gaining much 
attention in fish and therefore this novel quantification technique can find many applications. A few examples 
include, but are not restricted to (1) scale culture assays testing the effects of substances in melanophores, as 
 in71, (2) the effects of parasitic load on the demelanization of fish, as  in64,70 and (3) the effects of climate change 
on population dynamics, as  in16. With climate change leading to increased UV-radiation, due to the thin ozone 
layer, and water temperatures, due to global warming, fishes might suffer color changes, such as hypermelanosis, 
or move to deeper waters in order to cope with the environmental conditions formed. Natural selection of darker 
colors might be the case in the future and the need to monitor and study those changes will lead to an increased 
need to measure skin color and melanin contents. Moreover, this technique could find application in aquaculture, 
since skin coloration affects the economic value of harvested fish. Red porgy, for instance, is a species character-
ized by its light red coloration in the wild, but a significant darkening when  cultured2,20. Studies in red porgy 
(Pagrus pagrus) have shown that it requires low light intensity rearing conditions to avoid  hypermelanosis2. In 
addition, when reared in 45 m submerged sea cages, red porgy presented significantly brighter skin color and 
lower skin melanin content compared with the control group reared in a surface  cage72.

Such differences in biological, for instance health and the depth that fish dwell, as well as managerial, as for 
example the site of fishing in wild-caught or the site of culture in cultured fish, factors can potentially affect the 
skin color and melanin content of fish sold in the market under the same common species name. Indeed, in this 
study it was shown that the presented methodology was able to detect differences in porgies purchased from 
different suppliers in terms of their melanophore density and coverage (%). Moreover, the developed machine-
learning algorithm was able to automatically attribute the scales to the correct group with high accuracy. It is, in 
this regard, shown that this methodology is highly precise in its analysis and managed to attribute small changes 
in the layout of fish scales in terms of their melanin content and melanophore coverage.

The technological capabilities of the demonstrated imaging system could be further upgraded using tunable 
nanosecond laser sources for the efficient PA excitation of several chromatophores in various types of fish scales, 
presenting strong optical absorption in different spectral regions. The multi-wavelength PA excitation may be 
enhanced with custom-developed spectral unmixing algorithms for the identification and relative concentra-
tion measurement of the investigated pigments. In addition, the generation of a calibration curve between the 
recorded PA amplitude and the local molar concentration of melanin could be performed in a future study, 
providing thus absolute values of the total melanin content in fish scales. Furthermore, an upgraded version 
of the presented hybrid microscope could be employed for the direct imaging of scales in an anesthetized fish 
in vivo, eliminating the need of sampling. To achieve this, the PA microscopy technique has to be re-designed 
in reflection mode, either by using a combination of prisms or a reflective objective, in order to couple both 
excitation light and ultrasonic detection on the same side. Finally, the mechanical raster scanning procedures can 
be replaced by galvanometric mirror beam scanning, allowing for the rapid collection of large datasets, which 
in turn may result in the improved training of the employed CNN algorithms, increasing thus the accuracy of 
scale classification. Such further developments, combined with the already demonstrated performance of the 
developed hybrid label-free microscope, are expected to expand substantially the applicability of the presented 
technique as regards the accurate quantification of chromatophores in various fish species.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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