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Circulating microRNA sequencing 
revealed miRNome patterns 
in hematology and oncology 
patients aiding the prognosis 
of invasive aspergillosis
Gábor Fidler1, Anna Anita Szilágyi‑Rácz1, Péter Dávid1, Emese Tolnai1, László Rejtő2, 
Róbert Szász3, Szilárd Póliska4, Sándor Biró1 & Melinda Paholcsek1*

Invasive aspergillosis (IA) may occur as a serious complication of hematological malignancy. Delays 
in antifungal therapy can lead to an invasive disease resulting in high mortality. Currently, there are 
no well‑established blood circulating microRNA biomarkers or laboratory tests which can be used to 
diagnose IA. Therefore, we aimed to define dysregulated miRNAs in hematology and oncology (HO) 
patients to identify biomarkers predisposing disease. We performed an in‑depth analysis of high‑
throughput small transcriptome sequencing data obtained from the whole blood samples of our study 
cohort of 50 participants including 26 high‑risk HO patients and 24 controls. By integrating in silico 
bioinformatic analyses of small noncoding RNA data, 57 miRNAs exhibiting significant expression 
differences (P < 0.05) were identified between IA‑infected patients and non‑IA HO patients. Among 
these, we found 36 differentially expressed miRNAs (DEMs) irrespective of HO malignancy. Of the 
top ranked DEMs, we found 14 significantly deregulated miRNAs, whose expression levels were 
successfully quantified by qRT‑PCR. MiRNA target prediction revealed the involvement of IA related 
miRNAs in the biological pathways of tumorigenesis, the cell cycle, the immune response, cell 
differentiation and apoptosis.

Globally, the incidence of fungal infections is evidenced by the worrisome prevalence values of approximately 
20 million cases of allergic fungal diseases and more than 1 million cases of invasive fungal infections (IFIs)1,2. 
IFIs are associated with dramatic mortality rates, ranging from 20 to 50% despite currently available powerful 
antifungal  agents3,4.

Underscoring the burden of invasive aspergillosis (IA), a marked increase in disease prevalence was observed 
due to improved diagnostics, an overall escalation in the use of immunosuppressive therapies, and an increased 
number of organ transplantations performed in recent  decades5,6. IA remains a major issue among patients who 
have undergone either stem cell or solid organ transplantation, with a prevalence of over 10%7–10. Considering 
the impact of the severity of infection, mold specific nucleic acid biomarkers and galactomannan antigen (GM) 
may prove to be valuable for a timely disease diagnosis.

Because of devastating statistics and high mortality rates, new and alternative diagnostic strategies are needed. 
To diagnose patients with IA in a timely manner, there is a comprehensive need to identify biomarkers with 
high specificity and sensitivity. Moreover, the application of minimally invasive procedures to obtain nucleic 
acid targets has become a research trend. Ultimately, biomarkers must be easily detectable with satisfactory 
positive and negative predictive values and must also discriminate hematology and oncology (HO) patients 
with or without IA.

MicroRNAs (miRNAs) are a class of typically small noncoding RNAs that can regulate gene expression 
posttranscriptionally through miRNA::mRNA interactions. By mediating the degradation of specific mRNAs, 
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miRNAs reportedly play an important role in the pathogenesis of infectious  diseases11,12. Because of their high 
diagnostic potential, stable, blood-born miRNAs have been evaluated as potential biomarkers of IFIs. Numerous 
studies have reported the aberrant expression of several miRNAs in various conditions, including hematological 
malignancies and bloodstream  infections13. There is promising evidence that despite the lack of standardized 
protocols in disease prognosis and current clinical practice, miRNAs constitute a reliable tool for future  use14.

In recent years, extraordinary progress has been made in terms of identifying miRNAs secreted in different 
body fluids. Cell-free miRNAs are not readily degraded by enzymes and are resistant to changes in temperature, 
storage, acids and alkalis that might also be exploited in  IA15. In addition to the major technical difficulties of 
“liquid biopsy”, standardization is also needed for their successful clinical  application16.

The evaluation of stable miRNA profiles in various biofluid samples is a feasible diagnostic procedure in clini-
cal laboratories. Although previous studies revealed that differentially expressed miRNAs (DEMs) were associated 
with IFIs, currently, there are no validated prognostic miRNA markers associated with  IA17–19.

Unlike SNPs and differential mRNA expressions, miRNAs are scarcely studied in fungal infections while 
having potential as a future host diagnostic and/or prognostic markers. This study provides a comprehensive 
dissection and discussion of differentially expressed miRNAs in hematology and oncology patients and thus 
presents a valuable resource on circulating biomarkers that might be involved in the progression of IA.

Results
Characteristics of the patient cohort. In this retrospective study, 50 participants (26 hematology and 
oncology patients and 24 healthy volunteers) were recruited from two hematology centers in Hungary (the 
University of Debrecen, Faculty of Medicine, Institute of Internal Medicine, Debrecen, Hungary and Insti-
tute of András Jósa County; and the Teaching Hospital, Division of Haematology, Nyíregyháza, Hungary) 
between May 2017 and November 2020. Participants in the cohort were balanced according to age (mean ± SD: 
47.19 ± 13.93 years) but not sex (16 males/10 females). The vast majority of participants suffered from acute lym-
phoid leukemia (ALL, 53.85%), followed by acute myeloid leukemia (AML, 19.23%), non-Hodgkin lymphoma 
(NHL, 15.38%), myeloid sarcoma (MS, 7.69%), and chronic lymphocytic leukemia (CLL, 3.85%) (Table 1). 17 
patients died during the study period. In case of 2 patients, IA was proven post-mortem by periodic acid-Schiff 
(PAS) staining. In total, 69.23% of the patients suffered from neutropenic fever, defined as a single oral tempera-
ture of ≥ 38.3 °C (101 °F) or a temperature of ≥ 38.0 °C (100.4 °F) sustained over a 1 h period, and 72.22% of these 
patients developed recurrent fever refractory to antibiotic treatment.

Sequencing the small RNA transcriptome of the patient cohort. The number of mapped cDNA 
reads was 3,450,028 ± 1,234,556 (75  bp each) per sample, totalling 81,075,658 reads per cDNA library. The 
majority of the sequences were 21–23 nucleotides long. More than 90% of clean reads were retained after filtering 
out low-quality tags, removing adaptors and cleaning up contaminants. Small RNA sequence types (represented 
by uniqueness) and length distribution were analysed. Overall, more than 95% (± 2%) of the clean reads were 
assigned as miRNAs.

Quantitative analysis of the small noncoding RNA transcriptome revealed shared and unique 
miRNAs. In this study, high-throughput small RNA sequencing followed by in silico data analysis was used 
to detect unique and conserved circulating miRNAs in the study cohort, including healthy controls (n = 24) and 
HO patients with (HO-proven IA; n = 4, HO-probable IA; n = 3) or without (HO-possible IA; n = 19) IA. In total, 
735 miRNAs were omitted from the analysis due to a very low read number (read per million [RPM < 10]) across 
all samples. We identified 364 miRNAs, with a read number above 10 (RPM > 10). We focused on these in our 
following analyses. Venn diagram was created to represent the number of miRNAs that were shared (“intersec-

Table 1.  Characteristics of the study participants. ALL acute lymphoid leukemia, AML acute myeloid 
leukemia, NHL non-Hodgkin lymphoma, MS myeloid sarcoma, CLL chronic lymphocytic leukemia, P1 proven 
IA, P2 probable IA, NF neutropenic fever, PMH postmortem histology, PAS periodic acid-Schiff.

Patients characteristics Values

No. of patients 26

Male/female ratio 16:10

Median age (years) of males (range) 63 (33–71)

Median age (years) of females (range) 40 (25–52)

No. of ALL patients 14/26 (53.85%)

No. of AML patients 5/26 (19.23%)

No. of NHL patients 4/26 (15.38%)

No. of MS patients 2/26 (7.69%)

No. of CLL patients 1/26 (3.85%)

No. of P1 and P2 patients 7/26 (26.9%)

NF 18/26 (69.23%)

PMH PAS+: 2/17; PAS−: 15/17
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tions”) and unique) between different datasets is (Fig.  1). Small RNA transcriptome compositions exhibited 
remarkable differences between our experimental groups (Fig. 1a). Overall, 190 miRNAs were uniformly present 
in all experimental groups, representing 19.02% of all identified miRNAs. By considering the global expression 
level distribution profiles of the common miRNAs, considerable differences were detected when comparing 
healthy controls to HO patients with or without IA (Fig. 1b). As shown, IA patient group exhibits remarkable 
expression changes in several miRNA read numbers. Analyses of the expressed conserved miRNAs revealed 
that most genes were uniformly up- or downregulated in the non-IA patient group. We also identified unique 
miRNAs in different experimental groups (Supplementary Fig. 1). In total, 21 and 20 miRNAs were present 
exclusively in healthy and non-aspergillosis HO controls. Based on our data we found 41 miRNAs that were pre-
sented in hemato-oncology patients with proven/probable IA. Of these, 21 were present in patients with proven 
IA (HO-proven), whereas 17 were present in patients with possible IA (HO-probable).

DEMs in HO patients with IA. Differential expression analysis was performed by retrieving the expressed 
reads of the 190 conserved miRNAs. Multiple miRNAs showed remarkable differences in expression when com-
paring HO patients with (HO-proven, HO-probable) or without (HO-possible) IA. Volcano plots were gener-
ated to identify the miRNAs showing fold differences with high statistical significance (P values ≤ 0.05) and 
expressing  log2-fold changes greater than 1 and lower than − 1 (− 1 > fold change < 1) using the LIMMA statistical 
model (Fig. 2). Based on these criteria, which were considered stringent, we were able to reduce the number of 
conserved miRNAs to 57. Thereafter, we further identified 21 miRNAs in the IA group, whose miRNA expres-
sion profile was significantly different (twofold change with P < 0.05) in comparison to non-IA patients. Hereaf-

Figure 1.  Conserved and unique miRNAs in different patient populations. (a) The number of individual 
and shared miRNAs was determined in healthy controls (H) and HO patients with proven (HO-proven), 
probable (HO-probable) and possible (HO-possible) IA. (b) Normalized distribution patterns of the 190 
conserved miRNAs in the H, HO-possible and HO-proven/probable groups are shown as circo plots, where 
red, orange and blue correspond to miRNAs with high (RPM >  log104), medium  (log102 < RPM <  log104) and 
low  (log101 < RPM <  log102) read per million values, respectively. In every case the order of the miRNAs (the 
representative bars) was the same. Bar lengths refer to the log10 RPM sequence number.

Figure 2.  Results of differential expression analysis of the 190 conserved miRNAs by comparing HO patients 
with (HO-proven, HO-probable) or without (HO-possible) IA. Volcano plot represents the DEMs showing 
statistically significant overexpression and underexpression (according to the  log2-transformed fold change in 
relation to the -log10-transformed P-value). The dashed line on the y-axis indicates the P-value = 0.05 threshold 
with statistically significant (P < 0.05) gene expression (up- and downregulation, respectively). Red circles 
indicate DEMs. Highlighted DEMs represent IA-specific miRNAs whose gene expression was not influenced by 
hematological malignancies.
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ter, we identified 36 IA-specific DEMs. Of these DEMs, the expression of 15 was upregulated, and the expression 
of 21 miRNAs was downregulated.

Differential expression analysis of the circulating DEMs led to the identification of distinct 
clusters. The DEM patterns were also clustered to confirm the diagnostic potential of circulating miRNA 
signatures due to IA disease progression. A hierarchically clustered heatmap was constructed by relating the 
 log2-fold change expression values of the 36 DEMs in patients with IA to those in healthy volunteers (Fig. 3). 
Of these miRNAs, 15 (hsa-miR-16-2-3p, hsa-miR-342-5p, hsa-miR-32-5p, hsa-miR-26b-5p, hsa-miR-223-5p, 
hsa-miR-26a-5p, hsa-miR-625-3p, hsa-let-7a-5p/7c-5p, hsa-miR-92a-3p, hsa-miR-7706, hsa-miR-423-3p, 
hsa-miR-130b-5p, hsa-miR-423-5p, hsa-let-7b-5p, hsa-miR-486-5p) were significantly upregulated while 21 
(hsa-miR-181b-5p, hsa-miR-152-3p, hsa-miR-23a/b-3p, hsa-miR-324-5p, hsa-miR-185-5p, hsa-miR-30a-5p, 
hsa-miR-130a-3p, hsa-miR-130b-3p, hsa-miR-191-5p, hsa-miR-361-5p, hsa-miR-93-3p, hsa-miR-339-5p, hsa-
miR-103a-3p, hsa-miR-15a-5p, hsa-miR-20a-5p, hsa-miR-93-5p, hsa-miR-106a-5p/17-5p, hsa-miR-20b-5p, 
hsa-miR-221-3p, hsa-miR-106b-5p, hsa-miR-500a-3p) were downregulated due to IA. Three miRNAs (hsa-
miR-1976, hsa-miR-423-5p, hsa-let-7b-5p) exhibited inconsistent expression patterns in IA patients.

Beta diversity relationships are summarized in two-dimensional multi-dimensional scaling (MDS) scatter-
plots (Fig. 4). Each point represents a sample, and distances between points are representative of differences in 
DEM expression. Diversity plots were generated to represent the DEM-induced alterations discriminating IA 
patients from controls, resulting in nonoverlapping clusters (cluster 1 and cluster 2) and representing different 
spatial ordinations. The MDS plot shows that on the basis of the expression patterns of the IA-related miRNA 
signatures, it is possible to discriminate patients (HO-proven, and HO-probable IA) from noninfected (HO-
possible IA and H, healthy) controls.

Validation of the DEMs. An essential component of reliable quantitative reverse transcription PCR (qRT-
PCR) analyses is the normalization of gene expression data because it controls for variations and allows com-
parisons of gene expression levels among different samples. An ideal reference gene must be stably expressed, 
abundant and without any significant variation in its expression  status20. Due to high heterogeneity, there is no 
consensus for the best reference gene to be used to normalize miRNA gene expression data in HO patients. In 

Figure 3.  DEMs measured in the whole blood of HO patients diagnosed with or without IA. Hierarchical 
clustering was performed using the  log2-transformed relative read counts of the 36 DEMs selected on the basis 
of the differential expression analysis in HO patients demonstrating a fold change difference greater than 2, 
P < 0.01 relative to healthy controls. Euclidian distances revealed two main clusters: Leaf 1 and Leaf 2. Leaf 1 
represents patients with high-risk IA (HO-proven IA and HO-probable IA). Leaf 2 represents patients with low-
risk IA (HO-possible IA).
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this study, 20 candidate reference genes were investigated to normalize the RT-qPCR data, and their stability 
was evaluated. On the basis of the overall ranking data, hsa-miR-181a-5p was found to be the most stable, show-
ing the highest stability among the 20 tested miRNAs (Supplementary Fig. 2). Of the 62 most abundant DEMs 
tested, 14 miRNAs were validated successfully by qRT-PCR across our sample groups. The 2-ΔΔCT method was 
used to quantify the relative fold changes in gene expression in patients (HO-proven and HO-probable vs. HO-
possible) relative to healthy controls. To calculate relative changes in gene expression, for each sample, the nor-
malized CT values of single miRNAs were related to the mean CT values measured in healthy controls according 
to Livak’s 2-ΔΔCT method (Fig. 5a). Based on these results, we found that the gene expression of 14 miRNAs 
(hsa-miR-191-5p, hsa-miR-106b-5p, hsa-miR-16-2-3p, hsa-miR-185-5p, hsa-miR-26a-5p, hsa-miR-26b-5p, 
hsa-miR-106b-3p, hsa-miR-15a-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-106a-5p, hsa-miR-103a-5p, 
hsa-miR-93-5p, hsa-miR-17-5p) exhibited significant changes due to IA.

To strengthen the congruent gene expression tendencies of small RNA-seq data and qRT-PCR measurements, 
the normalized read counts (in RPM) of IA patients relative to healthy controls with their density distributions 
were also determined throughout the IA-infected (HO-proven and HO-probable IA) vs. noninfected (HO-
possible IA) hematology and oncology patients (Fig. 5b).

Diagnostic performance of miRNA biomarkers from whole blood. To estimate the capabilities 
of DEMs to discriminate aspergillosis-infected and noninfected patients from whole blood samples, receiver 
operating characteristic (ROC) curve analyses were applied (Fig. 6). On the basis of qRT-PCR-validated gene 
expression analyses, eight DEMs were found to display high discriminatory power (hsa-miR-191-5p, hsa-miR-
106b-5p, hsa-miR-16-2-3p, hsa-miR-26a-5p, hsa-miR-15a-5p, hsa-miR-20a-5p, hsa-miR-106a-5p and hsa-miR-
17-5p). All of these miRNAs were downregulated in the IA confirmed group, representing statistically signifi-
cant fold changes (P < 0.05) relative to noninfected controls. Five miRNAs (hsa-miR-191-5p, hsa-miR-106b-5p, 
hsa-miR-15a-5p, hsa-miR-20a-5p, hsa-miR-106a-5p) demonstrated excellent discriminatory power, with AUC 
values of 1. Three additional miRNAs (hsa-miR-16-2-3p, hsa-miR-26a-5p and hsa-miR-17-5p) displayed AUC 
values greater than 98%. In addition to examining the distribution of the CT values and the discriminatory 
power of the miRNAs, normalized CT values for cases (proven and probable IA) and controls (possible IA) were 
also dichotomized by mapping the sensitivity values in relation to 1-specificity to estimate the optimal cutoff 
values for these biomarkers. In every case, we also estimated the optimal cutoffs, defined as the points that maxi-
mized sensitivity and specificity.

Computational prediction reveals genes and biological functions affected by dysregulated 
miRNAs. The biological effects of miRNAs depend on various factors. Predicted interactions were retrieved 
from the integrated databases. Target recognition refers to the process by which mature miRNAs recognize their 

Figure 4.  Multidimensional scaling (MDS) plot representing healthy controls (H) and HO patients diagnosed 
with (HO-proven, HO-probable) or without (HO-possible) IA. Red and orange circles represent proven and 
probable IA, gray circles represent healthy controls (H), and blue circles represent non-IA HO patients (possible 
IA). On the basis of distance matrices, the healthy controls and non-IA HO patients clustered together, and the 
IA-infected patients formed distinct clusters.
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complementary mRNA sequences and regulate gene expression. An online webtool algorithm, miRabel, was 
employed to predict the target genes or biological pathways related to the dysregulated miRNAs considering 
their evolutionary conservation, Watson–Crick complementarity, and thermodynamic properties between the 
seed region of the miRNA and its target  mRNA21.

On the basis of in silico data predictions, we generated a list of 55 target genes whose expression might be 
posttranscriptionally influenced by at least three IA-specific DEMs (Fig. 7).

Pathway analysis was performed with the KEGG database (Supplementary Fig. 3). On the basis of the in silico 
pathway analyses, twelve relevant biological functions, “cell homeostasis”, “trafficking/vascular transport”, “extra-
cellular matrix (ECM)”, “cell adhesion”, “cell differentiation”, “cell cycle”, “tumorigenesis”, “apoptosis”, “immune 
response”, “infectious diseases”, “synaptic plasticity” and “catabolic pathways”, were found to be influenced by 
changes in the IA-affected miRNAs. Of these, tumorigenesis (27 hits), the cell cycle (20 hits), the immune 
response (17 hits), cell differentiation (14 hits) and apoptosis (13 hits) were the top 5 affected pathways. The 
associations of these miRNAs with the regulated genes of these pathways were experimentally proven by other 
previous  studies22–172.

Figure 5.  Representation of the fold changes in the qRT-PCR data and sequencing read numbers with 
their density distributions of validated DEMs measured in the whole blood of IA-infected and noninfected 
HO patients. (a) The downregulated gene expression of 14 DEMs was confirmed by qRT-PCR. Scatter plots 
represent the whole blood miRNA levels as relative miRNA concentrations with the formula 2-ΔCt (normalized 
to hsa-miR-181a-5p). Significant median differences in the miRNA levels between each group were determined 
by the nonparametric Mann–Whitney test (*P < 0.05, **P < 0.01, ***P < 0.001). (b) Density bars represent the 
normalized sequencing read numbers in patients relative to healthy controls, where the trend line indicates 
IA-infected (red) and noninfected (blue) patients.
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Discussion
IFIs are a major cause of mortality in immunosuppressed patients. IA is the most common mold infection in 
immunocompromised hosts associated with a poor prognosis and high mortality if diagnosis is delayed. Missed 
diagnoses are encountered when appropriate diagnostic tools are not available, especially in low-income and 
middle-income  areas173. Currently, the early detection of IA is very difficult because most patients have nonspe-
cific symptoms, leading to postponement of a correct diagnosis and therapy. The identification of easily acces-
sible, noninvasive, blood-born biomarkers at early stages of disease progression is crucial for the evaluation of 
high-risk subjects to establish follow-up strategies.

Technological advances in high-throughput molecular methods have provided possibilities to detect miRNA 
expression patterns in different biological samples. Obtaining circulating miRNAs from the blood represents 
a minimally invasive method for the early detection of disease or to aid in treatment options. The discovery of 
disease-specific miRNA expression signatures is essential to obtain an accurate diagnosis and to better understand 
disease pathology. Blood is an easily obtained biofluid that can be used to identify  biomarkers174.

Considering the increasing evidence from the literature showing that the dysregulated expression of miRNAs 
plays a pivotal role in various infections, we proposed that certain circulating miRNAs may play a significant 
role in the outcome of IA, suggesting that their relative gene expression levels might also serve as indicators of 
disease  progression175,176.

By performing small RNA sequencing, this study has undertaken a comprehensive exploratory evaluation 
to establish the full repertoire of circulating miRNAs in whole blood among critically ill patients at high risk of 
IFIs. Circulating miRNAs were also recently recognized as promising disease biomarkers in infectious diseases, 
but relatively few studies have examined their role in IA. The regulatory roles of hsa-miR-132-5p and hsa-miR-
212-5p have been associated with fungal  infections18.

By considering baseline patient characteristics and underlying malignancies, our primary goal was to deci-
pher aberrant miRNA expression patterns. We hypothesized that by comparing distinct miRNA-seq profiles of 
shared miRNAs between cases and controls, we can decipher specific prognostic markers that can aid in disease 
diagnosis. In this study, the most abundant, conserved miRNAs constituted 19.02% of the pool.

Differential expression analysis was employed to systematically search the small RNA transcriptome data 
for a subset of circulating miRNAs representing the most promising combinations of DEMs. Of the potential 
DEMs, we identified a subset of miRNAs whose expression signatures are unlikely influenced by hematological 
malignancy but likely to indicators of IA infection. In miRNA-based biofluid analyses, when a continuous variable 
is considered a diagnostic marker, the method adopted for data normalization and the choice of the reference 
gene is very important. Using hsa-miR-181a-5p as a reference, we found that dysregulated hsa-miR-191-5p, 

Figure 6.  ROC curves were constructed to assess and visualize the performance of 8 preselected miRNAs. To 
measure the diagnostic accuracy of the miRNAs, relative fold changes were converted to qualitative (proven 
IA, probable IA vs. possible IA) indexes. The normalized CT values of eight miRNAs revealed their significant 
downregulation in IA-infected hematology and oncology patients (proven/probable) relative to noninfected 
patients (possible), indicating IA. Line graphs were used to calculate the optimal cutoff points. Scatter graphs 
represent the distribution of the CT values in cases and controls, and area plots represent the discriminatory 
power of the biomarkers.
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hsa-miR-106b-5p, hsa-miR-16-2-3p, hsa-miR-26a-5p, hsa-miR-15a-5p, hsa-miR-20a-5p, hsa-miR-106a-5p and 
hsa-miR-17-5p showed strong discriminatory power, with AUC values greater than 98%.

Despite continued progress, target prediction of miRNAs remains a challenge, since aggregated databases 
often show inconsistent results. To date, approximately 3000 mature human miRNAs have been referenced in 
miRBase, but several recent studies suggest that there may be a larger  number177. Furthermore, the bioinformat-
ics identification of miRNA targets remains a challenge because mammalian miRNAs are characterized by poor 
homology toward their target  sequence21. Confirmation of the potential biological relevance of these predicted 
targets is laborious, and it was not the goal of the current project. In relation to IA, the in silico analysis of 
miRNA-influenced genes suggested an enrichment of pathways associated with tumorigenesis, the cell cycle, 
the immune response, cell differentation and apoptosis.

Figure 7.  Representation of the target genes affected by dysregulated miRNAs and the metabolic pathways 
involved. miRabel scores were generated to rank miRNA::mRNA interactions and are inversely proportional 
to the rank of a given interaction. As suggested by the developers, the threshold was set to 0.05. The heatmap 
represents the miRabel scores. Numbers in the right part of the figure point to references supporting the 
association of the miRNAs, corresponding genes and pathways.
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Interestingly, hsa-miR-16-2-3p was shown to have no influence on these genes, and hsa-miR-191-5p affected 
only the gene encoding the product of the microtubule-associated protein RP/EB family member 3 (MAPRE3). As 
a member of the transmembrane protein family, the product of the gene transmembrane protein 100 (TMEM100) 
was also experimentally proven to be involved in cell differentiation, apoptosis and synaptic  plasticity22–24. Two 
genes, TMEM100 and MAPRE3, were epigenetically influenced by five miRNAs, and both were markedly tar-
geted by hsa-miR-17-5p (TMEM100 miRabel score: 0.00056, MAPRE3 miRabel score: 0.00069), hsa-miR-20a-5p 
(TMEM100 miRabel score: 0.00048, MAPRE3 miRabel score: 0.0012), and hsa-miR-106b-5p (TMEM100 miRabel 
score: 0.00036, MAPRE3 miRabel score: 0.00108) and weakly targeted by hsa-miR-106a-5p (TMEM100 miRa-
bel score: 0.0485, MAPRE3 miRabel score: 0.0488). Previous studies have also implied a direct link between 
TMEM100 and miR-106b-5p related to  tumorigenesis25–27.

Based on our data, dysregulated hsa-miR-17-5p, hsa-miR-20a-5p and hsa-miR-106b-5p target the signal 
transducer and activator of transcription 3 (STAT3) gene in HO-IA patients. The STAT3 gene encoding the tran-
scription factor, which is a member of the STAT protein has also been proven to play an important regulatory role 
in both bacterial and fungal infectious  diseases28,29. A defect in the IFN-γ response in STAT3-deficient patients 
has already been proven upon stimulation with heat-killed Staphylococcus aureus and Candida albicans30,31.

In addition, the involvement of the tyrosine protein phosphatase nonreceptor type 4 protein, encoded by the 
PTPN4 gene, in infectious diseases was also proven that also plays a role in immunity and cell  homeostasis32–36.

We found that the PTPN4, STAT3 and RAP2C genes were the main targets with important roles in relevant 
biological processes. In humans, loss-of-function mutations of the STAT3 gene are frequently associated with sus-
ceptibility to bacterial as well as fungal  infections178. Francois Danion and colleagues proved that STAT3-deficient 
patients with aspergillosis were associated with a defective adaptive immune response against A. fumigatus infec-
tion and produced lower levels of cytokines, including IFN-γ, IL-17, and IL-22178. Based on their estimations, 
one major protective host mechanism against A. fumigatus infection is via IFN-γ. Furthermore, a recent study 
showed that the majority of lung-derived T cells upon A. fumigatus infection were Th17 cells, suggesting that 
the decreased production of Th1 and Th17 cytokines in STAT3-deficient patients could be the reason for their 
susceptibility to A. fumigatus179,180.

The tumor suppressor protein encoding TMEM100 gene was found to be targeted by five IA-related miRNA 
biomarkers; hsa-miR-15a-5p, hsa-miR-17-5p, hsa-miR-20a-5p and hsa-miR-106a/b-5p. The fact that all of the 
miRNAs targeting TMEM100 have shown significant changes in gene expression in HO patients with aspergil-
losis also suggests its involvement in both potentially oncogenic and infection-related biological  pathways26.

Interestingly, in previous studies, the regulatory roles of some of these miRNAs were associated with infectious 
mycobacterial disorders. By binding to the 3’-untranslated region of cathepsin S (CtsS) mRNA, hsa-miR-106b-5p 
was found to be involved in the posttranscriptional gene regulation of CtsS during mycobacterial  infection181. 
Additionally, the involvement of miR-26a-5p was defined upon Mycobacterium tuberculosis infection by targeting 
the IFNγ signaling  cascade182,183. Finally, by targeting STAT3, the involvement of hsa-miR-17-5p in the regulation 
of tuberculosis-induced autophagy in macrophages was also  proven184.

The experimental design of this study led us to decipher complex miRNA signatures associated with IA by 
integrating small RNA sequencing and multiple bioinformatics tools. A miRNA::mRNA regulatory network was 
also constructed to investigate relevant downstream molecular mechanisms of the predicted targeted genes of the 
captured miRNAs. To our knowledge, this is the first effort to understand the levels of blood-born, circulating 
miRNAs per IA to identify stable, abundant disease-specific biomarkers.

Our results suggest that some DEMs have the potential to serve as good and abundant blood-born biomark-
ers for IA. Our data may also lead to a better understanding disease pathogenesis and provide insight into the 
complexity and diversity of small RNA molecules that regulate immunodeficient IA.

Study limitations
Regarding its incidence, IA can be considered a rare disorder. Based on epidemiological data on IA the estimated 
occurrence of IA is 5–13% in HSCT recipients and 10–20% in patients receiving intensive chemotherapy for 
 leukemia185–187. In our study, disease prevalence exceeded 25% which might be explained by the relatively small 
hemato-oncology population size (HO-proven/probable IA). Due to the imbalance and limited size of the study 
cohort, this study may be considered exploratory.

For a higher level of confidence, differential expression of the miRNome should be studied in an extended 
cohort by recruiting patients from a more diverse HO population. Therefore, validation of the results in an 
extended population with a broader range of patients is needed.

There is a lack of standardized protocols for miRNA extraction or quality and quantity assessment either. 
Furthermore, due to the high levels of endogenous ribonuclease activity and low RNA content quantity of cir-
culating miRNAs seem to vary widely between commercially available  kits188. Because of the poor RNA yield 
many profiling methods are using total RNA. Furthermore, nanospectrophotometry is highly sensitive for low 
RNA concentration, resulting to poor quality criteria.

It also needs to be considered, that many miRNAs reported as circulating cancer biomarkers reflect a sec-
ondary effect on blood cells rather than a tumor cell-specific  origin189. The fact, that circulating miRNAs are 
influenced by blood cell counts and hemolysis, establishing a correct and optimal miRNA extraction is crucial for 
biomarker studies. While of major interest for future biomarker development, this study presents a retrospective 
evaluation of our patient cohort, and no prospective validation of the identified miRNAs in independent cohorts 
has been performed. Therefore, for future studies of circulating miRNA biomarkers that are expressed in blood 
cells, miRNA expression levels should also be interpreted in light of blood cell counts.
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Conclusions
The most recent advances in the diagnosis of invasive fungal diseases indicate miRNAs. However, the number 
of patients at risk of IA is increasing globally, and data on disease-specific circulating miRNAs are scant. Micro-
biological laboratories still struggle to achieve a timely and adequate diagnosis. Numerous scientists tend to 
identify biomarkers that could help in the early diagnosis of IA. Therefore, the discovery of specific predisposing 
factors is essential to obtain an accurate diagnosis and a better understanding of disease pathophysiology. As 
circulating miRNAs are promising biomarkers for various diseases, in this study, we analyzed the small RNA 
transcriptomes of HO patients and healthy controls through next-generation sequencing to reveal IA-specific 
miRNA expression patterns. The identification of IA-specific miRNA signatures might also be essential for the 
elucidation of disease pathophysiology.

Materials and methods
Patient population. This retrospective case–control study was performed from May 2017 to November 
2020 and involved two hematology centers in Hungary: the University of Debrecen, Faculty of Medicine, Insti-
tute of Internal Medicine, Debrecen, Hungary; and the Institute of András Jósa County and Teaching Hospital, 
Division of Hematology, Nyíregyháza, Hungary. The patient population comprised 26 adults: 16 males, with a 
median age of 63 (range 33–71) years, and 10 females, with a median age of 40 (range 25–52) years, with differ-
ent hematological malignancies (mainly acute leukemia: 73.08%) receiving stem cell transplantation and inten-
sive chemotherapy (neutrophil count < 0.5 × 109 cells/L) (Table 1). Patients who developed neutropenic fever 
(NF) (temperature > 38 °C of fever recorded twice or > 38.5 °C recorded once) were recruited. Children aged 
< 17 years were excluded from the study. Twenty-four healthy controls with no previous history of hematological 
and oncological diseases were also included [median age: 36 years (range 25–52)].

Stratification of episodes. Patients were retrospectively stratified as follows using standard criteria 
according to the revised European Organization for the Research and Treatment of Cancer/Mycosis Study 
Group (EORTC/MSG)190: proven IA—4 patients (15.38%), probable IA—3 patients (11.54%), and possible 
IA—19 patients (73.08%).

RNA extraction, quantification and quality control. Whole blood was drawn from patients and col-
lected into EDTA-coated tubes for microRNA analyses. Analyses were carried out in a class II laminar-flow 
cabinet to avoid environmental contamination. Total RNA was extracted using a miRNeasy Serum/Plasma Kit 
(Qiagen, Hilden, Germany). RNA extraction was performed on 250 μl of whole blood according to the manu-
facturer’s instructions. A no template control (NTC) of nuclease-free water was purified with the samples. RNA 
quantity was measured in each sample using fluorometric quantification (Qubit™ 4 Fluorometer, Thermo Fisher 
Scientific, USA) with a Qubit miRNA Assay Kit (Q32881, Invitrogen by Thermo Fisher Scientific, USA). The 
RNA integrity number (RIN) and RNA quality were measured using two different methods: spectrophotom-
etry (NanoDrop™ 2000 Spectrophotometer, Thermo Scientific) and automated electrophoresis with Agilent 4200 
Tapestation System (G2991A, Agilent Technologies, USA) using RNA ScreenTape (5067–5576, Agilent Tech-
nologies, USA) and RNA ScreenTape Buffer (5067–5577, Agilent Technologies, USA). For all samples, the RIN 
value was above 5. After RNA quality control, the purified RNA samples were stored at − 80 °C.

Library preparation and sequencing. Libraries for small RNA sequencing were prepared using a NEB-
Next® Small RNA Library Prep Set for  Illumina® (New England Biolabs Inc., United Kingdom) following the 
manufacturer’s instructions. Two sequencing runs were performed, samples were divided to batches in a random 
manner and both runs contained samples from all study groups in order to address batch effects (Supplementary 
Fig. 4). Six microliters of 500 ng total RNA was used as the starting material to prepare the libraries. Multiplex 
adapter ligations (using 3′ and 5′ SR adaptors), reverse transcription primer hybridization, reverse transcription 
reactions and PCR amplifications were performed as described in the protocol. After PCR amplification, the 
cDNA constructs were purified with a QIAQuick PCR Purification Kit (28104, Qiagen, Hilden, Germany) and 
MagSI-NGSPREP Plus beads (MDKT00010075, magtivio BV, The Netherlands) following the modifications sug-
gested in the NEBNext Multiplex Small RNA Library Prep protocol. Size selection of the amplified cDNA con-
structs was performed using E-Gel® EX 2% Agarose (G401002, Invitrogen by Thermo Fisher Scientific, Israel) 
with an E-Gel™ Power Snap Electrophoresis Device (G8100, Invitrogen by Thermo Fisher Scientific, Singapore) 
following the manufacturer’s protocol. The 150 nt bands correspond to adapter-ligated constructs derived from 
RNA fragments of 21 to 30 nt in length. An agarose slice was excised from the gel, melted, and purified using a 
QIAQuick Gel Extraction Kit (28,704, Qiagen, Hilden, Germany) following the manufacturer’s recommended 
protocol. The purified cDNA libraries were checked on Agilent 4200 Tapestation System using D1000 Screen-
Tape (5067–5582, Agilent Technologies, USA) and D1000 Sample Buffer (5067–5602, Agilent Technologies, 
USA). All libraries were adjusted to a concentration of 4 nM using 10 mM Tris (pH 8.5) as the diluent and pooled 
in the same proportion. Thereafter, libraries were denatured with 0.2 N NaOH. A standard 1% PhiX Control 
Library (Illumina, USA) was also denatured and used as an internal control. Finally, the libraries and PhiX con-
trol were sequenced on an Illumina NextSeq 550 Sequencing System (Illumina, USA) with read lengths of 75 
base pairs and 3.5 million single-end reads per sample, on average.

Bioinformatic and statistical analyses. Sample preprocessing and determining DEMs. The demulti-
plexed library was checked for residual adapter sequences with Cutadapt software, and AGA TCG GAA GAG CAC 
ACG TCT GAA CTC CAG TCAC query sequences were  filtered191. Read qualities were assessed using the FastQC 
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program. We summarized the sequencing quality across samples grouped by batches in order to detect outliers 
with poor quality (Supplementary Fig. 4). Additional trimming was performed with Trimmomatic (4:20 sliding 
window parameter)192. miRNA annotation was performed with miRge 2.0  software193. Sequencing reads were 
divided into two partitions with a target read length threshold of 28 bases. For the lower portion (< 28 bases) 
annotation reports showed that circa 95% of the reads were assigned miRNAs, while for the upper part of the 
reads (> 28 bases) no miRNAs were detected. Differential expression analysis was performed with the edgeR R 
package. Libraries in the program were normalized by trimmed mean of M values (TMM). Volcano plots from 
the edgeR result were generated using the EnhancedVolcano R  package194. Statistical comparisons among groups 
were also checked with nonparametric Kruskal–Wallis test where sequencing read numbers were converted to 
RPM (reads per million reads) in order to normalize libraries. P values were adjusted with Benjamini–Hoch-
berg method, and P < 0.05 was determined as significant difference. Additionally, clustermap was generated in 
Python (ver3.6.14) with the seaborn package (0.11.1)195, where dendograms were also created with hierarchical 
agglomerative clustering.

Diagnostic performances of the DEMs. The diagnostic values of the preselected miRNA biomarkers were meas-
ured by easyROC, a web-based tool for ROC curve  analysis196. The ROC curve was edited by plotting the true 
positive rates (sensitivity values on the y-axis) versus the false positive rates (1-specificity values on the x-axis). 
The area under the ROC curve (AUC) was also calculated and used as an accuracy index to evaluate the diag-
nostic performances of the selected miRNAs.

Target and pathway prediction. miRabel21, a miRNA target prediction tool, was used to determine the 
gene targets of the 7 selected miRNAs. For every miRNA, the top 100 hits were chosen according to the gener-
ated miRabel scores. Pathway analysis was carried out with the Kyoto Encyclopedia of Genes and Genomes 
(KEGG)  database197–199.

Validation of miR‑seq data by qRT‑PCR. Total RNA (1.5 ng) was used for miRNA-specific reverse tran-
scription using a TaqMan™ Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific, USA). Quantita-
tive real-time PCR with 62 TaqMan™ Gene Expression Assays (Thermo Fisher Scientific, USA) was performed to 
detect miRNA expression profiles in 3 independent technical repeats, including negative controls (no template 
from RNA isolation and reverse transcription), using a  LightCycler® 480 Real-Time PCR System (Roche Diag-
nostics, Risch-Rotkreuz Switzerland). PCR conditions were as follows: 20 s at 95 °C, 50 cycles of 3 s at 95 °C and 
30 s at 60 °C followed by 1 cycle of 3 min at 37 °C. To identify a stable endogenous miRNA control in whole blood 
samples from healthy controls and study participants, twenty candidate miRNAs were selected by  RefFinder200. 
Among the 20 reference miRNAs, hsa-miR-181a-5p was the most stable and used for normalization.

Postmortem histology. The specificity of Aspergillus infection morphology via PAS staining was 
addressed because open lung biopsy was performed via postmortem  thoracotomy201. Histological samples were 
taken from the major organs according to a standard protocol. Lung sampling was performed from three inde-
pendent parts of the potentially infiltrated lung parenchyma.

Ethical statement. The study protocol was approved by the Ethics Committee of the University Hospitals 
of Debrecen, Hungary (MK-JA/50/0096-01/2017) and carried out in accordance with the approved guidelines. 
Informed consent was obtained from the participants in the study.

Data availability
All sequence data used in the analyses were deposited in the Sequence read Archive (SRA) (http:// www. ncbi. 
nlm. nih. gov/ sra) under PRJNA754268 accession number.
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