
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports

A new method of software
vulnerability detection based
on a quantum neural network
Xin Zhou 1,4*, Jianmin Pang1,4*, Feng Yue1, Fudong Liu1, Jiayu Guo1, Wenfu Liu1,3,
Zhihui Song1, Guoqiang Shu1, Bing Xia1 & Zheng Shan1,2

In the field of network security, although there has been related work on software vulnerability
detection based on classic machine learning, detection ability is directly proportional to the scale of
training data. A quantum neural network has been proven to solve the memory bottleneck problem
of classical machine learning, so it has far-reaching prospects in the field of vulnerability detection. To
fill the gap in this field, we propose a quantum neural network structure named QDENN for software
vulnerability detection. This work is the first attempt to implement word embedding of vulnerability
codes based on a quantum neural network, which proves the feasibility of a quantum neural network
in the field of vulnerability detection. Experiments demonstrate that our proposed QDENN can
effectively solve the inconsistent input length problem of quantum neural networks and the problem
of batch processing with long sentences. Furthermore, it can give full play to the advantages of
quantum computing and realize a vulnerability detection model at the cost of a small amount of
measurement. Compared to other quantum neural networks, our proposed QDENN can achieve higher
vulnerability detection accuracy. On the sub dataset with a small-scale interval, the model accuracy
rate reaches 99%. On each subinterval data, the best average vulnerability detection accuracy of the
model reaches 86.3%.

With the rapid development and popularization of 5G networks, network security is still a key issue to be solved
in the industry, including malware analysis and vulnerability detection1–3. As the core issue, there have been
researches such as static and dynamic analysis on vulnerability detection in the past few years. Among them, static
analysis includes vulnerability detection based on rule matching, code comparison, and symbolic execution4–6.
These methods do not require running programs and can efficiently and quickly complete amounts of program
code. However, with increasing software complexity, it is not suitable for large-scale unknown vulnerabilities7.
Dynamic analysis includes fuzzing8,9 and taint analysis10,11, but these methods have the problem of low path
coverage, path explosion and consumes extensive computing resources.

It is worth noting that with the rise of machine learning technology, vulnerability detection based on machine
learning has become a hot issue. At present, this field includes attribute-based software code measurement12,
code similarity detection13–15, etc. To detect the unknown vulnerability in an actual application environment, the
combination of word embedding and vulnerability detection came into being. Instruction2vec16 proposed for
assembly instruction word embedding combined with the Text-CNN model to achieve vulnerability analysis. An
instruction embedding method based on variational autoencoders has been proposed and named MDSeqVAE17.
It is worth noting that in the motivating research18, a novel intermediate code presentation “code gadget” was
proposed. A code gadget consists of multiple lines of code that are semantically related and can be extracted via
a program slicing technique. This work uses code gadgets as code representations and implements vulnerability
detection based on BLSTM. Furthermore, they19,20 have confirmed that it is appropriate to perform vulnerability
detection on code gadgets because each code gadget is associated with key points (for example, API calls) that
indicate vulnerabilities. Although previous works over the past few years have investigated the effectiveness of
code gadgets, there are indeed differences in quantum computing, so fully transfer is not suitable. In the motivat-
ing research18, they implement vulnerability detection based on the classic BLSTM. However, the classic LSTM
corresponding QLSTM21,22 model has obvious shortcomings. In the QLSTM, a large number of measurement

OPEN

1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, Henan,
China. 2Songshan Laboratory, Zhengzhou 450000, Henan, China. 3State Key Laboratory of Complex
Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471000, Henan,
China. 4These authors contributed equally: Xin Zhou and Jianmin Pang. *email: qf_zhouxin@126.com; jianmin_
pang@126.com

https://orcid.org/0000-0003-0231-2895
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-11227-3&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

operations are required in the implementation process, which greatly increases the time cost. We analyze it in
detail in “Analysis of variable length data processing” section. Although classic machine learning has been proven
to be applicable to vulnerability detection, there are certain limitations in this research. Vulnerability detection
capability based on neural networks is directly proportional to the scale of the training data, and the expansion
of training data will also lead to an increase in the cost of neural network training. Furthermore, the expan-
sion of a classical neural network structure will cause a storage performance bottleneck in a classical computer.
Therefore, there are still challenges and difficulties in solving vulnerabilities based on classic machine learning.

Quantum computing is based on the postulates and characteristics of quantum mechanics (i.e., quantum
bits (qubits), interference, superposition, and entanglement) for information processing. A qubit can have a one
state, zero state, or a combination of two states at the same time, which is known as linear superposition, unlike a
classical bit, which can represent one value, either 0 or 1, to store information23. Quantum computing solves the
storage performance bottleneck problem of classic computers. Quantum machine learning (QML) techniques are
more effective in many real-world applications than traditional machine learning in both speed and accuracy24.

Currently, quantum machine learning has made progress in related fields, such as natural language
 processing21,25–29, recommendation systems30,31, speech recognition, image classification, and the medical domain.
QML can improve the running time and efficiency of programs. It can obtain higher performance than classic
deep learning and traditional algorithms through low-cost big data training data32,33, which provides solutions
to the above problems.

To the best of our knowledge, there is no research on the use of quantum neural networks for vulnerability
detection. Quantum neural networks have been proven to solve the memory bottleneck problem of classical
machine learning, so they have far-reaching prospects in the field of vulnerability detection. This work is the
first to implement vulnerability data word embedding based on a quantum neural network, which proves the
feasibility of a quantum neural network in the field of vulnerability detection.

The contributions of this work can be summarized as follows:

1. There have not yet been combined and applied in vulnerability detection with quantum neural networks.
To fill this gap, we propose a new quantum neural network structure, the quantum deep embedding neural
network (QDENN), for vulnerability detection.

2. Compared with classical neural network, quantum neural networks can process classical information at a
small memory consumption, taking advantage of the characteristics of quantum mechanics. Therefore, in
addition to verifying the feasibility of vulnerability detection based on quantum neural networks, this work
shows the far-reaching prospects of network security applications based on quantum neural networks.

3. In the field of large-scale vulnerability detection, vulnerability programs have longer lengths, and the lexical
structure is more complex. Experimental results demonstrated that, in the field of vulnerability detection,
our proposed QDENN can effectively solve the problem of inconsistent input lengths of quantum neural
networks. Furthermore, it can give full play to the advantages of quantum computing and realize a vulner-
ability detection model at the cost of a small amount of measurement.

4. Although there have been related works on NLP based on quantum neural networks, they generate quantum
circuits for each sentence based on tensor networks. However, this is not suitable for sophisticated vulner-
ability detection. Our proposed QDENN can also solve the problem of batch processing with long sentences.

5. Compared to other quantum neural networks, the proposed QDENN can achieve higher vulnerability detec-
tion accuracy. In the sub dataset of a small-scale interval, the model accuracy rate reaches 99%. In each
subinterval data, the best average vulnerability detection accuracy of the model reaches 86.3%.

Results
The advantage of a quantum neural network. Large-scale neural network training is a computation-
ally intensive task, and memory is one of its biggest challenges. Existing solution require amounts of custom
silicon, additional memory and computational resources34. Therefore, existing structure named “von Neumann”
has become a significant bottleneck of classical neural networks.

The emergence of quantum computing provides a solution to the structural bottleneck problem. Quantum
computers are based on quantum entanglement and quantum superposition states. Compared with the binary-
represented crystals in classical computers, qubits have stronger data representation capabilities, which is why
they can theoretically achieve higher computing capabilities. Since qubits operate in a completely different way
from classical computers, there will also be no so-called memory bottlenecks.

Related research35 has shown that compared with classical computing, quantum neural networks have rich
prospects. Meanwhile, the research36 quantitatively studied the computational advantages of quantum neural
networks through theoretical derivation. Cutting-edge research37,38 explained the quantum advantage from the
capacity of models.

Compared with classical neural networks, quantum neural networks can achieve significantly higher effective
dimensions. Furthermore, quantum neural networks with higher effective dimensions are trained to lower loss
values in fewer iterations, meaning that they can also fit data well.

Therefore, quantum neural networks have been proven to solve the memory bottleneck problem of classical
machine learning, so it has far-reaching prospects in the field of vulnerability detection.

Model overview. The motivation of our work is to demonstrate the feasibility of quantum neural networks
in vulnerability detection, which could solve the memory bottleneck problem of classic computers. Our goal is
to provide a program in which a quantum neural network can provide vulnerability detection results and the
location of a vulnerability. According to the relevant research39, it proposes a definition method of vulnerability

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

patterns and patch patterns for binary files. Based on the results of the taint analysis, they define vulnerability
patterns in the form of triples. Specifically, it defines the vulnerability pattern as <source, sink, sanity check>.
Among them, source refers to the pollution source of user or external input, sink refers to the relevant operation
involving the pollution source, and sanity check refers to the integrity check of the operation performed on the
input. Therefore, we can roughly define the concept of vulnerability as uncontrollable input sources and dan-
gerous uses. Among them, dangerous uses can be embodied as arrays, API calls, etc. According to analysis and
observation, insecure API calls often cause vulnerabilities. As a result, we take an API call as the research object
of this work and slice the relevant code to form code gadgets by slicing the key points of vulnerability triggering.
Through the word segmentation encoding of the code gadgets, we realize the vulnerability detection based on a
quantum neural network, using the expected values of the Z0 and Z1 hamiltonian.

Figure 1 shows the model architecture of this paper. It can be divided into three parts: the generation of code
gadgets, binary label representation, and a quantum deep embedding neural network. Next, we elaborate on the
proposed model in detail.

We regard API calls as the research object of this work, and code gadgets can be generated based on data
flow or control flow. Although each vulnerability may be associated with multiple vulnerability functions, in this
paper, we only consider the case where a vulnerability is associated with one function.

As shown in the Fig. 2, we choose a vulnerability program as the example to illustrate the extraction of code
gadgets. First, we locate the library function API according to the vulnerability indication information (such
as “BadSink: Copy data to string using memcpy” in the Fig. 2) and then slice the relevant code according to the
API. This can be divided into forward API function calls and backward API function calls. A forward API call
refers to the API parameters that receive data directly from the socket, and a backward API call refers to the API
parameters that do not directly receive data from the socket, such as the stack length setting. For forward API
calls, the uncontrollable input source of API parameters is more important. For backward API calls, parameter
setting transfer is more important. This corresponds to the rough definition of vulnerabilities, uncontrollable
input sources and dangerous use we previously put forward. Based on forward and backward slicing, we can
obtain code gadgets.

At the same time, according to the vulnerability indication information, each code gadget is labelled. If the
code gadgets have vulnerabilities, they are marked as 1; otherwise, they are marked as 0.

Next, the API is pre-processed and standardized. First, we delete non-ascii characters and comments in
the source code. Then, with code gadgets as the unit, the variable names are standardized to “VAR1”, “VAR2”,
etc. according to their order of appearance. At the same time, the function names are standardized to “FUN1”,
“FUN2”, etc. according to their order of appearance. In this way, the generalization ability of the model can be
improved, and the quantum neural network can learn the causes of vulnerabilities instead of only learning the
causes of specific API function calls. Finally, we obtain code gadgets for vulnerability detection.

Next, we construct a dictionary based on the obtained code gadgets, encode the vulnerable source code seg-
mentation according to the binary labeled method, and input it into the next quantum neural network model in
the form of quantum state angel encoding.

Quantum deep neural network. To explain our quantum neural network model more clearly, we define
the vulnerability detection problem.

The task of vulnerability detection is to perform supervised learning on the set L = {1, 2, ..., l} of l labels.
Among them, we give a training set T and a validation set V , and assume that there is a label mapping relation-
ship m|T∪V(T ∪ V → L). For the quantum neural network model we propose, both T and V , and the mapping
relationship of m|T(T → L).

Figure 1. The framework for using a quantum neural network to detect vulnerabilities. The centre represents
the overall structure of the three parts. (a) Generating and dealing with code gadgets. Generate code gadgets by
slicing the relevant code according to the API functions and dealing with standardized processes. (b) Encoding
code gadgets using binary labels. The code gadgets are encoded using binary labels, and the obtained word
vector is used as the input to the quantum neural network. (c) Quantum deep embedding neural network. The
value of each word vector is encoded in the quantum neural network. Based on quantum circuit simulation, the
probability result of vulnerability detection is finally output through measurement.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

The goal of the quantum neural network model is to train the speculation ability (m̃ : V → L) on the verifi-
cation set V based on m|T , that is, to improve accuracy probability m|V (�v) = m̃(�v) as much as possible, among
which �v ∈ V .

In the field of quantum computing, a common method is to construct a computable function m̃ :
(

�θ ,V
)

→ L ,
in which �θ is a set of weight parameters that can be trained. What is different from classical neural networks is
that these parameters have physical meanings such as angle information. Consistent with a classic neural network,
these parameters can be optimized and trained by constructing a classic cost function.

In our work, we propose a quantum neural network model structure QDENN for vulnerability detection,
which is a VQC-based quantum neural network40. A VQC model constructs a separating hyperplane in the state
space of n qubits. The QDENN is built up to use entanglement from quantum computing to model complex and
highly correlated distributions, which is expected to achieve higher performance over a classical neural network.
The algorithm consists of two main parts: the training phase and the detection phase.

Figure 2. The example of extracting code gadgets. To illustrate the extraction of code gadgets, we choose
CWE121_Stack_Based_Buffer_Overflow__CWE806_char_alloca_memcpy_16.c as an example. In the
flowchart, we generate code gadgets by slicing the relevant code according to the API functions and dealing with
standardized processes.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

Algorithm 1 The training phase of the QDENN

Input Labelled training samples , where is both the dimension

of the binary labels and the number of qubits, and is the maximum length of the code gadgets

Parameters Initial parameter

Process:
Set initial values of the variational parameters for the unitary transformation

while Optimization of has not converged do
for to do

for word in (dimension of is) do

Use to prepare initial feature-map state

end for
Apply a measurement in the Z-basis as Hamiltonian

Record the expectation outcome label

Evaluate

Calculate the cost function

end for
Use the optimization routine to propose a new with information from

end while
return the final parameter and the value of the cost function

Algorithm 2 The detection phase of the QDENN

Input Unlabelled validate samples , where is both the

dimension of the binary labels and the number of qubits, and is the maximum length of the code

gadgets

Optimal parameters from the training phase.

Process:
Set the variational parameters for the unitary transformation

for to do
for word in (dimension of is) do

Use to prepare initial feature-map state

end for
Apply a measurement in the Z-basis as Hamiltonian

Record the expectation outcome label

end for
return label

Figure 3 shows the general framework of the QDENN, which consists of three components: (1) a series of
quantum gates with non-adaptable parameters α for state preparation; (2) a series of quantum gates with adapt-
able parameters θ to mimic biological neurons; and (3) a set of measurement operations to extract output.

When constructing a quantum neural network structure, quantizing the characteristics of the vulnerable
source code is very important. In this section, we first introduce how to encode the word vector obtained in
the previous section into quantum state data. Feature mapping is first run through a unitary operator applied
to a set of quantum nodes as a method of encoding the classical information in the new qubit space. A unitary
matrix, needed to encode the information, must be classically derived before applying it to a quantum circuit.
Its parameters are determined by the values of the preceding classical nodes at the point of insertion.

By converting the decimal label to binary representation, we can use log2 N qubits representing the diction-
ary consists of N words. The quantum encoding method adopt angle encoding, which can be realized based on
different gate operations. Therefore, the binary label and angel encoding method occupies O(log(N)) qubit. In
this paper, we first apply a Hadamard gate to place the qubits in a superposition state and then apply Rx gates to
the qubits to rotate the angle to the same eigenvalues previously entered. In this encoding method, there is no
entanglement, and classical nodes are merely replaced with a parameter quantum node41. In our work, we use
nq to represent the number of qubits and Uenc(α) to represent the unitary transformation of the encoding circuit.
Meanwhile, there are a series of quantum gates with adaptable parameters θ to mimic biological neurons after
the encoding circuit. We use U(θ) to represent the unitary transformation of an ansatz circuit.

The unitary transformation Usw that processes a single word in code gadgets is composed of Uenc(α) and U(θ) .
The relevant calculation formula is as follows:

Usw = U(θ)Uenc(α),

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

The circuit to process a single word in code gadgets returns the state

where Uenc(α) and U(θ) are the processing of single words in code gadgets. After lmax iterations of calculation,
the measurement is performed to obtain the final output. lmax is the maximum length of the code gadget dataset.

The overall unitary transformation Uoval is composed of Usw . The relevant calculation formula is as follows:

The entire circuit return state is:

In our work, we apply a measurement in the Z-basis as the Hamiltonian. Finally, the expectation calculation
formula is as follows:

Therefore, the model depth of the quantum neural network structure QDENN we propose for vulnerability
detection depends on the maximum length of the dataset. The depth of the quantum circuit is O(maxlen), maxlen
is the maximum length of the code gadgets.

As for the classical neural network, the foremost is the word embedding using neural network or frequency
statistics. This requires amounts of storage space to fully represent the semantic information, many works set
the word embedding vector dimension to 128 and 256 usually. The input vector dimension of a classic recurrent
neural network is seqlen× hvc , where seqlen is the length of sequence and hvc is the dimension of word embed-
dings. According to relevant research statistics42, the complexity per layer of recurrent is O(nd2) and convolutions
is O(knd2), where k is the kernel size of convolutions.

Uenc(α) = ⊗
nq
i=0(Rx(αi)),

U(θ) = ⊗
nq
i1=0

(

Ry
(

θi1
))

⌊nq/3⌋
∏

i2=0

CX3i2,3i2+1

⌊nq/3⌋
∏

i3=1

CX3i3−2,3i3−1⊗
nq
i4=0

(

Ry
(

θi4
))

⌊nq/4⌋
∏

i5=0

CX4i5,4i5+3.

|ϕi� =

{

UswH|ϕ0� , i = 1
Usw|ϕi−1� , i > 1

,

|ϕi� = ⊗
nq
i1=0

(

Ry
(

θi1
))

⌊nq/3⌋
∏

i2=0

CX3i2,3i2+1

⌊nq/3⌋
∏

i3=1

CX3i3−2,3i3−1⊗
nq
i4=0

(

Ry
(

θi4
))

⌊nq/4⌋
∏

i5=0

CX4i5,4i5+3⊗
nq
i6=0

(

Rx
(

αi6
))

|ϕi−1� , i > 1,

Uoval =⊗lmax
i=0 (Usw(αi , θi))

=U (lmax)(θ)U (lmax)
enc

(α) · · ·U (2)(θ)U (2)
enc

(α)U (1)(θ)U (1)
enc

(α).

|ϕ� =UovalH|ϕ0�

= ⊗lmax
i=0 (Usw(αi , θi))|ϕ0�

=U (lmax)(θ)U (lmax)
enc (α) · · ·U (2)(θ)U (2)

enc(α)U
(1)(θ)U (1)

enc(α)|ϕ0�.

E(Z) =�ϕ|z ⊗ z ⊗ I ⊗ · · · ⊗ I|ϕ�

=�ϕ0H
†U†

oval�|z ⊗ z ⊗ I ⊗ · · · ⊗ I|UovalHϕ0�.

Figure 3. Overview of the quantum deep embedding neural network used in this study. Gate Rx(α) is the
rotation gate generated by Pauli X. According to the algorithm illustrated in this study, the rotation angle is
determined using the given classical data x. U(θ) represents a general gate with Ry (the rotation gate generated
by Pauli Y) and a controlled X-gate (CNOT-gate). Because the layer is repeated maxlen times, we measure
the expectation of Pauli Z based on the first two qubits as the result of the quantum deep embedding neural
network.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

In our work, can use log2 N qubits representing the dictionary consists of N words. The input vector dimen-
sion of QDENN is max len× log (N).

Analysis of variable length data processing. Quantum neural networks can already be used for image
classification, but they also have certain limitations. They can be roughly divided into two modes: 1. A quantum
neural network is used to realize a convolutional layer or a fully connected layer, and it needs to work with a clas-
sical neural network. 2. A complete quantum neural network structure. If the first type is used, the advantages of
quantum computing will not be realized. However, the second type often limits the input size of an image, which
requires the image to be scaled first and then input to the quantum neural network. Regardless of the mode,
image classification can scale an image to achieve the same length of data input to the quantum neural network.

However, Quantum neural networks can already be used for image classification, but they also have certain
limitations. Especially in the field of vulnerability detection that this paper focuses on, the length of a vulnerability
program has multiple styles, which also means that the length of the treatment is the key issue that needs to be
solved next. To solve this problem, classical machine learning uses an LSTM neural network structure. At the
same time, existing research has implemented a QLSTM21,22 model architecture based on VQC. However, they
only combine the inapplicability of LSTM and VQC, which consumes considerable time. As been illustrated in
the QLSTM, each QLSTM unit is implemented by 6 VQC circuits, and each VQC requires N measurements to
obtain the QLSTM intermediate vector result, where N is the number of qubits required to encode the hidden
layer vector into the quantum state. The principle of QLSTM is the same as the classic LSTM, and each word in
the input sentence requires 1 calculation by the QLSTM unit. This means that if the input is a sentence of length
L, which requires L calculations based on the QLSTM unit, a total of L × 6 × N measurement is required. The use
of a hybrid classical and quantum structure undoubtedly offsets the advantages of quantum computing, but the
time cost is extremely high. However, the QDENN model proposed in this paper only performs 2 measurements
in the last measurement, which undoubtedly greatly reduces the number of measurements required.

Furthermore, in natural language processing, there have been related works based on quantum neural
 networks26–29. However, this part of the research is based on lexical analysis, which generates quantum circuits
for each sentence based on tensor networks. However, this research can show considerable results in small-scale
natural language processing tasks. However, in the field of large-scale vulnerability detection, vulnerability
sentences are longer, and the lexical structure is more complex. Therefore, these methods are not suitable for
vulnerability detection applications, and it is extremely critical to propose a set of neural networks that can be
applied to vulnerability detection.

The QDENN structure proposed in this paper can solve the time consumption problem of a QLSTM model
and can also solve the problem of batch processing with long sentences. To solve the problem of length incon-
sistency, this paper uses the maximum length of the dataset to fill the insufficient digits, and the filling character
is the special <PAD> character. Although this method can effectively achieve the same length, the depth of the
network structure of the QDENN is positively related to the maximum length of the dataset, which may also
impact the accuracy rate.

Experimental environment. Based on the method and our proposed QDENN quantum circuit, we
employ SARD datasets43 to validate the correctness of QDENN software vulnerability detection. To increase
code reliability and reproducibility, we conduct experiments based on the open-source program slicing in pre-
vious work18. Specifically, we divide the dataset according to the maximum length and conduct related experi-
ments. We use ml to represent the maximum length of the code gadgets and define the length interval of code
gadgets as �r . This helps us to explore the impact of adding padding data more fully on model performance.
For example, the length of code gadgets in a certain set of data is limited between 40 and 70; then, we set
�r = 30,ml = 70 . We randomly choose 5000 code gadgets generated from the programs as the dataset (50%
of which are vulnerable and the remaining 50% are not), where �r = 10 and ml = 50, 60, 70, 80, 90 . Among
them, the dataset is divided according to ml , and each interval contains 1000 code gadgets. For the sub dataset
of �r = 30, 40 , we obtain it by merging the datasets in the subintervals. In our work, we divide the training set
and validation set using a ratio of 8:2.

Our experiment is conducted with the open-source Python framework, with mindspore as the employed
quantum neural network and mindquantum for quantum circuit simulation. The biggest feature of mindspore
is that it adopts the industry’s latest source-to-source automatic differentiation, which can use the underlying
technology of compilers and programming languages to further optimize and support better differential expres-
sion. We use the classical parameter optimizer as the SGD optimizer for the quantum neural network. For other
hyperparameter settings, the momentum is set to 0.9, the weight decay is set to 0.0001, the batch size is set to
32, and the number of epochs is set to 10.

Experimental analysis of model depth. In the QDENN model, the depth of the model is determined
by the maximum length of the dataset. If the code gadgets of the dataset are too long, the depth of the QDENN
model will be too deep. Therefore, we conduct related experiments to explore the impact of model depth changes
brought about by different data intervals on the detection ability.

We confirm the training and validation statements for all data intervals with the experiment illustrated in
Fig. 4. Using a cross-entropy loss function, training 10 epochs, we plot the training loss values and validate the
accuracy values in Fig. 4. With the decrease in �r , the loss value of the quantum neural network converges faster
and can achieve lower loss. Under the condition of �r = 10 , the loss of the quantum neural network can be
trained to the lowest loss value, which converges faster than other subintervals. With regard to the SARD datasets,
the accuracy of the QDENN quickly converges to at least 98% with �r set to 10 and ml set to 60. Conversely,

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

with the increase in ml , the change in the depth of the model also affects the vulnerability detection accuracy of
the quantum neural network. Specifically, it is negatively correlated.

To fully explore the boundary capabilities of our proposed model, we add padding data on the basis of a
fixed-length interval and merge the related to obtain sub datasets with �r set to 30 and 40. It can be inferred
that the padding data have a certain impact on the accuracy of the model, but the model is also robust to the
padding dataset. With more padding data, the model can still learn the vulnerability characteristics and realize
source code vulnerability detection.

Moreover, based on this experiment, we also have reason to believe that with the improvement of the quan-
tum neural network model, under the influence of solving the depth of the model, the sensitive problem of the
model’s padding data will also be solved.

Comparison experiments with another quantum neural network. To demonstrate the novelty of
our proposed QDENN, we conduct comparison experiments with another quantum neural network. In cutting-
edge research44–46, the JQub team present a neural network and quantum circuit codesign framework named
QuantumFlow. In the QuantumFlow framework, a new type of quantum awareness is designed to realize basic
operations based on quantum circuits, including linear and nonlinear operations of vectors and batch normali-
zation operations, named QF-Net. Moreover, QF-Circ is proposed to automatically generate and optimize a cor-
responding quantum circuit.

There have indeed been many quantum neural networks proposed to address specific problems. For exam-
ple, QCNN and QuantumFlow, which have been demonstrated the effectiveness in image domain. Meanwhile,
QLSTM proposed to combine the quantum neural networks with RNN structures. However, there is no research
that combines quantum computing in the field of vulnerability detection. As described in the “The advantage of
a quantum neural network” section, the QLSTM needs amounts of measurement, which greatly increases the
time cost. Due to the excellent performance of QuantumFlow in quantum neural networks, we choose it as the
baseline in this research.

Different from our proposed QDENN structure, which performs quantum encoding on each vulnerability
code word, QuantumFlow only supports quantum encoding of classical data with fixed qubits to form normal-
ized quantum circuits. As mentioned above, vulnerability code gadgets, like other natural language data, are
characterized by inconsistent sentence lengths. Moreover, the input to the vulnerability detection model is long
code gadgets. Therefore, to apply QuantumFlow to the vulnerability detection field as a baseline for comparative
experiments, we pretrain code gadgets of different lengths based on doc2vec47 to obtain fixed-length vectors. The
method implements sentence embeddings based on classical neural networks and is trained for independent
sentence embeddings. Therefore, intuitively speaking, the combined model based on doc2vec and Quantum-
Flow should have better vulnerability detection ability. However, this is false because the method of combining
models can lead to an inappropriate combination of classical data and quantum encoding. The experimental
results are illustrated in Fig. 5.

To ensure the credibility of the results, we adopt a dynamic learning rate adjustment strategy when training
QuantumFlow. Specifically, we use the method of multi-step decay to adjust the learning rate. For hyperparameter
settings, the milestones are set to5,13,15, gamma is set to 0.1 and initial learning rate is set to 0.01. In order to ensure
the comparability of experiments, we also use SGD optimizer and a cross-entropy loss function to train 10 epochs.

Figure 4. Training loss and validation accuracy values. Using the SARD datasets, we train QDENN models at
different data intervals, with the batch size set to 32. The SGD optimizer is used as the parameter optimizer. To
make the loss curve smoother, we process it based on the average value of a rolling window when drawing the
curve, and the rolling window size is set to 3. Since the data intervals (�r is 30 and 40) are obtained by merging
the subintervals, more iterations are required for training. In this study, we plot the training loss with 250 fixed
iterations. Meanwhile, we plot the validation accuracy with the validation datasets under 10 epochs.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

We draw box plots based on the validated accuracy values of each epoch to show the fluctuations in the
vulnerability detection capabilities of the QDENN and QuantumFlow. In the case of a lower model depth, the
accuracy of the QDENN is higher than that of QuantumFlow, and it is more stable. However, when �r is 40, the
training and verification accuracy and stability of the QDENN model are lower than those of QuantumFlow. At
the same time, we draw a line chart and a histogram based on the best accuracy values of the models on each
subinterval. Through the line chart, we can clearly see the influence trend of the ml value of the subinterval on
the accuracy of the model. On the subinterval data, our proposed model has the best vulnerability detection
effect, and the best accuracy rate is as high as 99%. On each subinterval data with �r is 10, the best average
vulnerability detection accuracy of the model is 86.3%. Based on the QuantumFlow model, the best accuracy on
the subinterval data of �r = 10 and ml = 50 is 86%, and the overall best accuracy average with �r = 10 is 78.9%.

Therefore, it can be inferred based on this experimental analysis that the vulnerability detection ability of our
proposed QDENN is significantly better and more stable in the case of low depth. However, in the case of high
depth, although the overall accuracy of the model is slightly higher than QuantumFlow, its stability is poor, and
more epochs are required to train to the best performance.

Figure 5. Validation accuracy value distribution during training. Here, the box plots reveal the distribution of
accuracy values using different quantum neural networks during training. Meanwhile, the line chart and the
histogram reveal the best accuracy comparison of the QDENN and QuantumFlow, which was chosen as the
baseline in this study.

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

Discussion
We propose and demonstrate a new method based on a quantum neural network to detect vulnerability. In stark
contrast to classical models, a quantum neural network structure can solve the memory bottleneck problem
and has great potential. To the best of our knowledge, no such analysis has been performed for quantum neural
networks.

To fill the gap in this field, we propose a quantum neural network structure named QDENN for vulnerability
detection. This work is the first attempt to implement word embedding of vulnerability codes based on a quantum
neural network, which proves the feasibility of a quantum neural network in the field of vulnerability detection.
Compared to other quantum neural networks, our proposed QDENN can achieve higher vulnerability detec-
tion accuracy. On the sub dataset with a small-scale interval, the model accuracy rate reaches 99%. On each
subinterval data, the best average vulnerability detection accuracy of the model reaches 86.3%. Meanwhile, our
proposed QDENN can effectively solve the inconsistent input length problem of quantum neural networks and
the problem of batch processing with long sentences.

This work attempts to address the gap in vulnerability detection but leaves room for further research. A feature
map plays a large role in a quantum neural network. Different variational circuits can also influence the model’s
landscape, which should be investigated. The accuracy of the quantum neural network could be further increased
with a more sophisticated neural network architecture and training procedure. This work validates the use of a
quantum neural network for vulnerability detection and opens a route for future applications.

Overall, we have shown that quantum neural networks can possess vulnerability detection—a promising rev-
elation for quantum machine learning, which we hope leads to further studies on the power of quantum models.

Data availability
All the data that support the findings of this study are available from the corresponding authors (qf_zhouxin@126.
com, jianmin_pang@126.com).

Received: 23 February 2022; Accepted: 20 April 2022

References
 1. Qiu, J. et al. Artificial intelligence security in 5G networks: Adversarial examples for estimating a travel time task. IEEE Veh. Technol.

Mag. 15, 95–100 (2020).
 2. Lu, H. et al. DeepAutoD: Research on distributed machine learning oriented scalable mobile communication security unpacking

system. IEEE Trans. Netw. Sci. Eng. https:// doi. org/ 10. 1109/ TNSE. 2021. 31007 50 (2021).
 3. Chai, Y., Du, L., Qiu, J., Yin, L. & Tian, Z. Dynamic prototype network based on sample adaptation for few-shot malware detection.

IEEE Trans. Knowl. Data Eng. https:// doi. org/ 10. 1109/ TKDE. 2022. 31428 20 (2022).
 4. Thomé, J., Shar, L. K., Bianculli, D. & Briand, L. Search-driven string constraint solving for vulnerability detection. In 2017 IEEE/

ACM 39th International Conference on Software Engineering (ICSE), 198–208. https:// doi. org/ 10. 1109/ ICSE. 2017. 26 (2017).
 5. Ramos, D. A. & Engler, D. {Under-Constrained} Symbolic Execution: Correctness Checking for Real Code, 49–64 (2015).
 6. Qiang, W. et al. Patch-related vulnerability detection based on symbolic execution. IEEE Access 5, 20777–20784 (2017).
 7. Zhou, Y. & Sharma, A. Automated identification of security issues from commit messages and bug reports. In Proc. 2017 11th Joint

Meeting on Foundations of Software Engineering, 914–919. https:// doi. org/ 10. 1145/ 31062 37. 31177 71 (ACM, 2017).
 8. Ognawala, S., Hutzelmann, T., Psallida, E. & Pretschner, A. Improving function coverage with munch: A hybrid fuzzing and

directed symbolic execution approach. In Proc. 33rd Annual ACM Symposium on Applied Computing, 1475–1482. https:// doi. org/
10. 1145/ 31671 32. 31672 89 (ACM, 2018).

 9. Peng, H., Shoshitaishvili, Y. & Payer, M. T-Fuzz: Fuzzing by program transformation. In 2018 IEEE Symposium on Security and
Privacy (SP), 697–710. https:// doi. org/ 10. 1109/ SP. 2018. 00056 (2018).

 10. Newsome, J. & Song, D. Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on com-
modity software. In In Network and Distributed Systems Security Symposium (2005).

 11. Cheng, K. et al. DTaint: Detecting the taint-style vulnerability in embedded device firmware. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 430–441. https:// doi. org/ 10. 1109/ DSN. 2018. 00052 (2018).

 12. Wang, S., Wang, P. & Wu, D. Semantics-aware machine learning for function recognition in binary code. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 388–398. https:// doi. org/ 10. 1109/ ICSME. 2017. 59 (2017).

 13. Zhang, X., Sun, W., Pang, J., Liu, F. & Ma, Z. Similarity metric method for binary basic blocks of cross-instruction set architecture.
In Proc. 2020 Workshop on Binary Analysis Research. https:// doi. org/ 10. 14722/ bar. 2020. 23002 (Internet Society, 2020).

 14. Xu, X. et al. Neural network-based graph embedding for cross-platform binary code similarity detection. In Proc. 2017 ACM
SIGSAC Conference on Computer and Communications Security, 363–376. https:// doi. org/ 10. 1145/ 31339 56. 31340 18 (ACM, 2017).

 15. Sun, H. et al. VDSimilar: Vulnerability detection based on code similarity of vulnerabilities and patches. Comput. Secur. 110,
102417 (2021).

 16. Lee, Y. et al. Instruction2vec: Efficient preprocessor of assembly code to detect software weakness with CNN. Appl. Sci. 9, 4086
(2019).

 17. Le, T. et al. Maximal Divergence Sequential Auto-Encoder for Binary Software Vulnerability Detection, 15 (2019).
 18. Li, Z. et al. VulDeePecker: A deep learning-based system for vulnerability detection. In Proc. 2018 Network and Distributed System

Security Symposium. https:// doi. org/ 10. 14722/ ndss. 2018. 23158 (2018).
 19. Zou, D., Wang, S., Xu, S., Li, Z. & Jin, H. μμVulDeePecker: A deep learning-based system for multiclass vulnerability detection.

IEEE Trans. Depend. Secure Comput. 18, 2224–2236 (2021).
 20. Li, Z. et al. SySeVR: A framework for using deep learning to detect software vulnerabilities. IEEE Trans. Depend. Secure Comput.

https:// doi. org/ 10. 1109/ TDSC. 2021. 30515 25 (2021).
 21. Di Sipio, R., Huang, J.-H., Chen, S. Y.-C., Mangini, S. & Worring, M. The dawn of quantum natural language processing. Preprint

at http:// arXiv. org/ 2110. 06510 (2021).
 22. Chen, S. Y.-C., Yoo, S. & Fang, Y.-L. L. Quantum long short-term memory. Preprint at http:// arXiv. org/ 2009. 01783 (2020).
 23. Computing, Q. An Environment for Intelligent Large Scale Real Application Vol. 33 (Springer, 2018).
 24. Abohashima, Z., Elhosen, M., Houssein, E. H. & Mohamed, W. M. Classification with quantum machine learning: A survey. http://

arXiv. org/ 2006. 12270 (2020).
 25. O’Riordan, L. J., Doyle, M., Baruffa, F. & Kannan, V. A hybrid classical-quantum workflow for natural language processing. Mach.

Learn. Sci. Technol. 2, 015011 (2020).

https://doi.org/10.1109/TNSE.2021.3100750
https://doi.org/10.1109/TKDE.2022.3142820
https://doi.org/10.1109/ICSE.2017.26
https://doi.org/10.1145/3106237.3117771
https://doi.org/10.1145/3167132.3167289
https://doi.org/10.1145/3167132.3167289
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1109/DSN.2018.00052
https://doi.org/10.1109/ICSME.2017.59
https://doi.org/10.14722/bar.2020.23002
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.1109/TDSC.2021.3051525
http://arXiv.org/2110.06510
http://arXiv.org/2009.01783
http://arXiv.org/2006.12270
http://arXiv.org/2006.12270

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:8053 | https://doi.org/10.1038/s41598-022-11227-3

www.nature.com/scientificreports/

 26. Abbaszade, M., Salari, V., Mousavi, S. S., Zomorodi, M. & Zhou, X. Application of quantum natural language processing for lan-
guage translation. IEEE Access 9, 130434–130448 (2021).

 27. Kartsaklis, D. et al. lambeq: An efficient high-level python library for quantum NLP. Preprint at http:// arXiv. org/ 2110. 04236 (2021).
 28. Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D. & Coecke, B. QNLP in practice: Running compositional models of

meaning on a quantum computer. Preprint at http:// arXiv. org/ 2102. 12846 (2021).
 29. Meichanetzidis, K. et al. Quantum natural language processing on near-term quantum computers. Electron. Proc. Theor. Comput.

Sci. 340, 213–229 (2021).
 30. Tang, E. A quantum-inspired classical algorithm for recommendation systems. In Proc. 51st Annual ACM SIGACT Symposium on

Theory of Computing, 217–228. https:// doi. org/ 10. 1145/ 33132 76. 33163 10 (ACM, 2019).
 31. Kerenidis, I. & Prakash, A. Quantum recommendation systems. Preprint at http:// arXiv. org/ 1603. 08675 (2016).
 32. Dunjko, V., Taylor, J. M. & Briegel, H. J. Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016).
 33. Li, R. Y., Di Felice, R., Rohs, R. & Lidar, D. A. Quantum annealing versus classical machine learning applied to a simplified com-

putational biology problem. NPJ Quantum Inf. 4, 14 (2018).
 34. Nandakumar, S. R. et al. Mixed-precision architecture based on computational memory for training deep neural networks. In 2018

IEEE International Symposium on Circuits and Systems (ISCAS), 1–5. https:// doi. org/ 10. 1109/ ISCAS. 2018. 83516 56 (2018).
 35. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
 36. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).
 37. Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).
 38. Coles, P. J. Seeking quantum advantage for neural networks. Nat. Comput. Sci. 1, 389–390 (2021).
 39. Xu, Z., Chen, B., Chandramohan, M., Liu, Y. & Song, F. SPAIN: Security patch analysis for binaries towards understanding the

pain and pills. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), 462–472. https:// doi. org/ 10. 1109/
ICSE. 2017. 49 (IEEE, 2017).

 40. Sim, S., Johnson, P. D. & Aspuru-Guzik, A. Expressibility and entangling capability of parameterized quantum circuits for hybrid
quantum-classical algorithms. Adv. Quantum Tech. 2, 1900070 (2019).

 41. Beer, K. et al. Training deep quantum neural networks. Nat. Commun. 11, 808 (2020).
 42. Lioutas, V. & Guo, Y. Time-aware large kernel convolutions. In Proc. 37th International Conference on Machine Learning, 6172–6183

(PMLR, 2020).
 43. Black, P. E. SARD: A Software Assurance Reference Dataset, 48.
 44. Jiang, W., Xiong, J. & Shi, Y. A co-design framework of neural networks and quantum circuits towards quantum advantage. Nat.

Commun. 12, 579 (2021).
 45. Wang, Z. et al. Exploration of quantum neural architecture by mixing quantum neuron designs: (Invited paper). In 2021 IEEE/

ACM International Conference on Computer Aided Design (ICCAD), 1–7. https:// doi. org/ 10. 1109/ ICCAD 51958. 2021. 96435 75
(2021).

 46. Jiang, W., Xiong, J. & Shi, Y. Can Quantum Computers Learn Like Classical Computers? A Co-design Framework of Machine Learning
and Quantum Circuits (2020). https:// www. resea rchsq uare. com/ artic le/ rs- 38495/ v1, https:// doi. org/ 10. 21203/ rs.3. rs- 38495/ v1.

 47. Le, Q. & Mikolov, T. Distributed representations of sentences and documents. In Proc. 31st International Conference on Machine
Learning, 1188–1196 (PMLR, 2014).

Author contributions
X.Z., J.P., Z.S. designed the research plan. X.Z., Z.S., W.L. performed the experiments. X.Z., F.L., J.G., G.S., and
B.X. analyzed the data. X.Z. and F.Y. wrote the manuscript. All authors reviewed the final manuscript.

Funding
The funding was provided by Natural Science Foundation of China (61802433, 61802435).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.Z. or J.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://arXiv.org/2110.04236
http://arXiv.org/2102.12846
https://doi.org/10.1145/3313276.3316310
http://arXiv.org/1603.08675
https://doi.org/10.1109/ISCAS.2018.8351656
https://doi.org/10.1109/ICSE.2017.49
https://doi.org/10.1109/ICSE.2017.49
https://doi.org/10.1109/ICCAD51958.2021.9643575
https://www.researchsquare.com/article/rs-38495/v1
https://doi.org/10.21203/rs.3.rs-38495/v1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A new method of software vulnerability detection based on a quantum neural network
	Results
	The advantage of a quantum neural network.
	Model overview.
	Quantum deep neural network.
	Analysis of variable length data processing.
	Experimental environment.
	Experimental analysis of model depth.
	Comparison experiments with another quantum neural network.

	Discussion
	References

