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Multi‑staged gene expression 
profiling reveals potential genes 
and the critical pathways in kidney 
cancer
Hamed Ishaq Khouja1*, Ibraheem Mohammed Ashankyty1, Leena Hussein Bajrai2,3, 
P. K. Praveen Kumar4, Mohammad Amjad Kamal5,6,7, Ahmad Firoz8 & 
Mohammad Mobashir9*

Cancer is among the highly complex disease and renal cell carcinoma is the sixth‑leading cause of 
cancer death. In order to understand complex diseases such as cancer, diabetes and kidney diseases, 
high‑throughput data are generated at large scale and it has helped in the research and diagnostic 
advancement. However, to unravel the meaningful information from such large datasets for 
comprehensive and minute understanding of cell phenotypes and disease pathophysiology remains 
a trivial challenge and also the molecular events leading to disease onset and progression are not 
well understood. With this goal, we have collected gene expression datasets from publicly available 
dataset which are for two different stages (I and II) for renal cell carcinoma and furthermore, the TCGA 
and cBioPortal database have been utilized for clinical relevance understanding. In this work, we have 
applied computational approach to unravel the differentially expressed genes, their networks for 
the enriched pathways. Based on our results, we conclude that among the most dominantly altered 
pathways for renal cell carcinoma, are PI3K‑Akt, Foxo, endocytosis, MAPK, Tight junction, cytokine‑
cytokine receptor interaction pathways and the major source of alteration for these pathways are 
MAP3K13, CHAF1A, FDX1, ARHGAP26, ITGBL1, C10orf118, MTO1, LAMP2, STAMBP, DLC1, NSMAF, 
YY1, TPGS2, SCARB2, PRSS23, SYNJ1, CNPPD1, PPP2R5E. In terms of clinical significance, there are 
large number of differentially expressed genes which appears to be playing critical roles in survival.

Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults, responsible for approximately 
90–95% of cases and it is one of the leading causes of cancer death. Its occurrence shows mainly male predomi-
nance over women with a ratio of 1.5:1. RCC, a kidney cancer originates in the lining of the proximal convoluted 
tubule which is the part of the very small tubes in the kidney and transport primary  urine1,2. High-throughput 
data is created at a large scale in order to understand complex diseases like cancer, and it has aided in research 
and diagnostic  advancement3–6. However, extracting useful knowledge from such vast datasets for a complete and 
detailed understanding of cell phenotypes and disease pathophysiology remains a difficult task, and the molecular 
events that contribute to disease initiation and progression are still poorly  understood7–9. The advancement of 
the post-genomics period has resulted in a huge amount of "big data" in biological sciences, which has led to a 
multitude of interdisciplinary applications in recent  decades5,10. There are a number of biological databases that 
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house various types of datasets. TCGA, oncomine, nephroseq, and GEO (gene expression omnibus) are the most 
widely used databases in biological  sciences11. These databases mainly GEO store vast amount of datasets related 
with cancer, diabetes, and other biological  problems8,12–16.

The identification of pathogenetically distinct tumour types poses a significant challenge in the treatment of 
complex diseases (especially cancer)17–19. The improvement in tumor classification always helps in the improve-
ment during therapeutic  approaches20,21. In target specific therapy, effectiveness can be maximised while toxic-
ity is reduced by using enhanced classification. To access biological datasets from these databases previously, 
a variety of tools/approaches were used. For molecular classification of cancer Golub TR et al.,22 have divided 
cancer classification into two challenges as class discovery and class prediction.

A number of oncogenes and tumour suppressor genes that are changed in RCC, resulting in pathway dysregu-
lation, need to be identified and investigated  further23–25. Copy number, gene sequencing, expression pattern, 
and methylation in primary RCC are all possible avenues for achieving this goal. With continued breakthroughs 
in omics technology, the application of molecular markers for early diagnosis and prognosis deserves further 
 attention1,2,26–30.

We have selected RCC dataset with samples from two stages (stages I and II) for the purpose of understand-
ing how gene expression patterns vary and how altered gene expression patterns lead to possible changes in 
the respective inferred functions as tumour stage I to II changes and from affymetrix platforms (U133A to 
U133B). Different cancer stages help in describing where a cancer could be located, how far it has spread, and 
whether it is affecting other parts of the  body31–33. Healthy tissue usually contains many different types of cells 
grouped together. If the cancer looks similar to healthy tissue and contains different cell groupings, it is called 
differentiated or low-grade tumor and when the cancerous tissue looks very different from the healthy tissue, 
it is termed as poorly differentiated or high-grade tumor. The cancer’s grade may help the clinician to predict 
how quickly the cancer will spread. In general, the lower the tumor’s grade, the better the prognosis. Different 
types of cancer have different methods to assign a cancer  grade7,34–37. In general, it is very hard to detect most 
of the cancers at early stage so the main focus was on exploring the gene expression pattern alterations and its 
functional consequences and further to avoid biasedness, we have incorporated TCGA dataset also which have 
the samples from all the grades.

Here, we have selected a dataset from gene expression omnibus (GEO) where the samples are from human 
with two tumor stages (I and II). We have organized the samples in the order such as stage I normal versus 
tumor and stage II normal versus tumor for the affymetrix platforms U133A and U133B and analyzed the tumor 
samples with respect to their respective controls (normal sample of the same stage) for the gene expression 
alterations and evolved functions with the increase in tumor percentage. Based on our work, we conclude that 
irrespective of the tumor stage PI3K-Akt, Foxo, endocytosis, MAPK, Tight junction, cytokine-cytokine recep-
tor interaction pathways and the major source of alteration for these pathways are MAP3K13, CHAF1A, FDX1, 
ARHGAP26, ITGBL1, C10orf118, MTO1, LAMP2, STAMBP, DLC1, NSMAF, YY1, TPGS2, SCARB2, PRSS23, 
SYNJ1, CNPPD1, PPP2R5E. In addition, we have also studied the clinical significance and observe that there 
are large number of differentially expressed genes which appears to be playing critical roles in for survival such 
as ARHGAP6, TGM4, CD248, SLC13A3, EPO, PARD6A, CLCA2, UBE2S, ERAL1, FGFR1, MRVI1, DYNC1I2, 
CDCA7.

Results
In the first step, we have selected the data of our interest (raw expression dataset)  GSE634430,38, organized the 
samples in the order such as stage I normal versus tumor and stage II normal versus tumor for the affymetrix 
platforms U133A and U133B and processed it until normalization and log2 values for all the mapped genes as 
mentioned in the workflow Fig. 1a. This dataset contains 40 samples (5 normal and 5 tumor for two stages I and 
II from U133A and U133B platforms). For differential gene expression analysis, we have compared the tumor 
samples with normal samples of the respective stages and the respective platforms that it gives us four DEGs lists.

Gene expression profiling and the associated functions for varying tumor percentages. In 
this study, the initial focus of our goal was to understand the gene expression pattern between the different stages 
for normal versus tumor samples. For this purpose, the total number of the DEGs, up, and down regulated genes 
have been calculated (Fig. 1b) and the number of down-regulated genes are higher than the up-regulated genes 
and further, we observe that the number of down regulated genes are comparatively high in all the four DEGs 
list (Fig. 1c). For U133A dataset, we observe very high number of DEGs for same stage and shares 1147 genes 
between stage I and II with respect to U133B which is 606 genes and stage I and II specific genes are also high in 
both the platforms U133A and U133B. Similar to the DEGs distribution, the enriched pathways are also distrib-
uted in the similar trend as shown in Fig. 1d (p-values < 0.05) and even after applying strict cut-off of p-value as 
shown in Fig. 1e (p-values < 0.001). Most of the shared genes between different stages and platforms have been 
shown with their fold changes and these genes are known to be associated with the critical pathways which are 
very important for multiple type of cancers (Fig. 1f). In addition, we have also mapped the known association 
between all these genes (from Fig. 1f) for which one list of all these DEGs have been combined to single DEGs 
list and finally, these genes have been mapped by using the network database in the form of network as s in 
Fig. 1g. Figure 1g presents the network of DEGs and their connectivity with each other where there are four 
smaller clusters and these clusters are connected by a core cluster of SYNJ1, MAPT, YY1, NSMAF, and FNBP4 
genes and among the highly connected genes SYNJ1, LAMP2, SCARB2, FDX1, HDLBP, CHAF1A, MAPT, and 
FNBP4.
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Top‑ranked enriched pathways for the respective DEGs list. After analyzing the number of DEGs 
and the enriched pathways, we have analyzed the enriched pathways and the genes which are altered in different 
RCC tumor stages (Table 1). We observe that MAPK, cytokine, Akt, Wnt, hippo, Hif1, metabolic signaling path-
ways are among the top-ranked pathways which are frequently altered and their potential source of alterations 
are MAP3K13, CHAF1A, FDX1, ARHGAP26, ITGBL1, C10orf118, MTO1, LAMP2, STAMBP, DLC1, NSMAF, 
YY1, TPGS2, SCARB2, PRSS23, SYNJ1, CNPPD1, PPP2R5E. These genes and the pathways are known to play 
the potential roles directly or indirectly in case of cancer.

Network‑level understanding of the DEGs. Based on the venn diagram of the enriched pathways, we 
have prepared the list of the pathways in five groups (commonly enriched) and matched the genes with these 
pathways lists from all the four DEGs list (normal versus tumor in stage I and II for the U133A and U133B 
datasets). In Fig. 2, the networks have been shown for stage I of U133A, Stage I and II of U133B datasets. The 
networks shown are for those DEGs which are matching to different pathways lists obtained during venn dia-
gram drawing. The major pathways have been highlighted on the top of the figure and in the left side the tumor 
stage have been mentioned. Since most of the networks for stage II of U133A dataset were densely connected so 
for such networks we have presented top 30 genes in terms of connectivity within the network (Fig. 3). Here, we 
have also shown the connectivity of the genes for those networks where the connections are not clearly visible. 
For more details of the list of the genes and the pathways used for the network-level analysis were supplied in 
the Supplementary Table S1.
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Figure 1.  Gene expression profiling. (a) Workflow: from raw dataset to analysis. (b) Number of DEGs, up- and 
down-regulated genes. (c) Venn diagram to display the DEGs. (d) Venn diagram for enriched pathways for the 
DEGs (p-value ≤ 0.05). (e) Venn diagram for enriched pathways for the DEGs (p-value ≤ 0.001). (f) Common 
genes between different stages and the array chips (U133A and U133B) with their fold changes. (g) Mapped 
network for all the genes in (f). For venn diagram plotting, freely available webserver (http:// bioin forma tics. psb. 
ugent. be/ webto ols/ Venn/) was used and the heatmaps and bar plot were generated by using MATLAB 2017b by 
using imagesc and plot commands, respectively.

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Clinical significance of the differentially expressed genes. Additionally, we have selected the top-
ranked genes (based on the fold change 15 up and 15 down) and analyzed the patients survival (Kaplan–Meier 
plot) for the patient samples from TCGA database and the dataset was TCGA kidney renal clear cell carcinoma 
(source data from GDAC Firehose) which contains 538  samples5,36,39. We observe that most of the top-raked 
genes (from selected 30 DEGs) mainly up-regulated genes show very high significance on the patients survival 
(Fig. 4). In this figure, we have also shown the mutations in these top-ranked DEGs for clear renal cell carcinoma 
in the TCGA databse. There are few genes(ERBB4, SLC13A3, TGM4, and FGFR1) which are mutated at very 
high rate as shown in Fig. 4a,b. Further, we have also selected different dataset  (GSE6841740) which contains the 
samples for adjacent normal, low grade, and high grade and compared the differentially expressed genes and 
the enriched pathways with each other (Fig. 5a). This shows that the DEGs of adjacent normal versus low grade 
tumor samples share majority of the DEGs of adjacent normal versus high grade tumor samples and both these 
list share few DEGs with low grade versus high grade DEGs list and as expected there was no shared enriched 
pathways at all because there appears only few genes which have gene expression with fold change ≥  + 1.5 (up 
regulated) or ≤ − 1.5 (down regulated) in case of low grade versus high grade. Kaplan–Meier plots show the 
clinical significance and that is a large number of differentially expressed genes appear to be potentially sig-
nificant in terms of survival and some of the selected genes are ARHGAP6, TGM4, CD248, SLC13A3, EPO, 
PARD6A, CLCA2, UBE2S, ERAL1, FGFR1, MRVI1, DYNC1I2, CDCA7 (additional data shown in supplemen-
tary Figs. S1–S6). Moreover, Fig. 5b has been presented with the list of genes and the respective p-values for 
survival analysis and here only those genes have been shown which are clinically significant and the overall 
pathways associated with these genes and further specific assocations were shown in Fig. 5c. Additionally, the 
expressions (RNA and protein) have been shown in supplementary data S7. We have checked the expression of 
these clinically relevant genes by using protein atlas where most of these genes are expressed in case of RCC and 
act as biomarkers and only TGM4 and GGN were not expressed.

Discussion
Renal cell carcinoma is one of the most common cancers, and it is one of the leading causes of cancer  death14,15,41. 
In terms of therapy and diagnosis, therapeutic and clinical outcomes differ between the individuals with even 
close similarity in clinical and pathological characteristics (tumor type, grades, and stages) and despite tremen-
dous efforts to identify molecular biomarkers (prognostic and predictive) and with improved precision compared 
to clinical and pathological predictors only few molecular tests have been introduced into oncological  practice29. 
So it is important to understand and unravel different levels (such as gene expression pattern, epigenetics, pro-
tein expression) of diversities in  cancer42,43. We gathered the previously published dataset for this purpose and 
conducted a detailed and precise study ranging from gene expression profiling to functional changes, including 
networks mapped from the human protein network database.

Our work leads to the conclusion that irrespective of the tumor stage PI3K-Akt, Foxo, endocytosis, MAPK, 
Tight junction, cytokine-cytokine receptor interaction pathways and the major source of alteration for these 
pathways are MAP3K13, CHAF1A, FDX1, ARHGAP26, ITGBL1, C10orf118, MTO1, LAMP2, STAMBP, DLC1, 
NSMAF, YY1, TPGS2, SCARB2, PRSS23, SYNJ1, CNPPD1, PPP2R5E. Networks of DEGs for the enriched 

Table 1.  Enriched pathways grouped either common or specific to the conditions. These pathways have been 
generated after plotting the venn diagram.

U133A: stage I and II
U133B: stage I and II

Pl3K-Akt signaling, endocytosis, FoxO signaling, MAPK signaling, tight junction, cytokine–cytokine receptor 
interaction

U133A: stage I and II
U133B: stage I

Neurotrophin signaling,  insulin signaling, phospholipase-d signaling pathway, adipocytokine signaling, AMPK 
signaling, thyroid hormone synthesis, Rap1 signaling, oxytocin signaling, phagosome, apelin signaling, thyroid 
hormone signaling, gap junction, cGMP-PKG signaling, prolactin signaling, longevity regulating pathway, signaling 
pathways regulating pluripotency of stem cells, progesterone-mediated oocyte maturation, Protein processing in 
endoplasmic reticulum, purine metabolism, Platelet  activation, axon guidance, ubiquuitin mediated proteolysis

U133A: stage I
U133B: stage I and II Ras signaling pathway

U133A: stage I
U133B: stage I

Circadian entrainment, sphingolipid signaling, cell adhesion molecules (CAMs), cell cycle, TGF-beta signaling, 
cAMP signaling, osteoclast differentiation, TNF signaling, adrenergic signaling in card iomyocytes, peroxisome, T 
cell receptor signaling, hematopoietic cell lineage, natural killer cell mediated  cytotoxicity, Fc gamma R-mediated 
phagocytosis, HIF-1 signaling, oocyte meiosis, NF-kappa B signaling, leukocyte  transendothelial migration, Fc 
epsilon Rl signaling, valine leucine and isoleucine degradation, ECM-receptor interaction, phosphatidylinositol 
signaling system, estrogen signaling, ErbB signaling, pyrimidine metabolism, long-term potentiation, Regulation 
of actin cytoskeleton, retrograde endocannabinoid signaling, vascular smooth  muscle contraction, inflammatory 
mediator regulation of TRP channels, RNA transport, apoptosis, Focal adhesion, notch signaling, renin secre-
tion, Jak-STAT signaling, melanogenesis, calcium signaling, VEGF signaling, B cell receptor signaling, oxidative 
phosphorylation, Spliceosome, long-term depression, drug metabolism—cytochrome P450, glycerophospholipid 
metabolism, neuroactive ligand-receptor interaction, tryptophan metabolism, p53 signaling pathway, Antigen 
processing and presentation, Wnt signaling, Hippo signaling, toll-like receptor signaling, GnRH signaling pathway, 
adherens junction

U133A: Stage I Olfactory transduction, PPAR signaling, inositol phosphate metabolism, RIG-I-like receptor signaling, lysine degra-
dation, taste transduction, ovarian steroidogenesis

U133B: Stage I
Butanoate metabol ism, synaptic vesicle cycle, tyrosine metabolism, drug metabolism-other enzymes, mRNA 
surveillance pathway, steroid hormone biosynthesis, proteasome, metabolism of xenobiotics by cytochrome P450, 
retinol metabolism

U133A: Stage II Ribosome
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pathways show that there are large number of genes from few specific pathways are altered such as Ras signaling 
pathways(Fig. 2c,h,m), immune sysytems, Wnt, hippo, (Fig. 2d,i,n) Akt pathways (Fig. 2a,f,k). Here, we observe 
that critical pathways altered in RCC are wnt, hippo, regulation of actin cytoskeleton, ECM, infection and inflam-
mation, metabolic, and more cancer related pathways. From the mapped network, we observe that the highly 
connected genes infer the potential pathways or in other works the top ranked genes based on connectivity refer 
to those pathways which are directly or indirectly associated either with RCC or other types of cancer.

In terms of clinical significance, we looked at the rate of mutations for the top ranked genes (based on fold 
change) and patients’ survival for changes in gene expression, with Kaplan–Meier plots indicating clinical sig-
nificance. We conclude that a large number of differentially expressed genes tend to be potentially important in 
terms of survival, with ARHGAP6, TGM4, CD248, SLC13A3, EPO, PARD6A, CLCA2, UBE2S, ERAL1, FGFR1, 
MRVI1, DYNC1I2, CDCA7 among the genes chosen. Using the publicly available datasets, we have investigated 
the gene expression profiling for renal cell carcinoma. In the previous work, it has been focused on selected genes 
and pathways. Here, we have investigated the list of critical pathways and the genes which appear to be clinically 
highly significant in case of renal cell carcinoma. These clinically significant genes lead to potential alteration 
in PI3K-Akt, foxo, endocytosis, MAPK, tight junction, cytokine-cytokine receptor interaction pathways. Our 
work will help in diagnosing the renal cell carcinoma patients because here, we have presented the differentially 
expressed genes, their inferred pathways, and the clinical impact of the selective genes. Since, our finding is from 
overall perspective including clinical relevance so this study will help in future for diagnostic also.

This work also appears to be more unique in comparison to the previous study that we potentially explored 
grade I and II of RCC and further explored the clinical relevance. Healthy tissue usually contains many differ-
ent types of cells grouped together and if the cancer looks similar to healthy tissue and contains different cell 
groupings, it is called differentiated or low-grade tumor and when the cancerous tissue looks very different from 
the healthy tissue, it is termed as poorly differentiated or high-grade tumor. The cancer’s grade may help the 
clinician to predict how quickly the cancer will spread. In general, the lower the tumor’s grade, the better the 
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Figure 2.  Networks for the genes matched with those pathways which are enriched (p-values ≤ 0.001) and 
common shown in venn diagram for all the four DEGs list (Stage I and II for U133A and U1333B). In this 
figure, we have selected those pathways which are commonly enriched pathways and mapped the genes 
belonging to these pathways from the DEGs list and finally mapped out the networks. (a–e) It represents the 
networks for Stage I of U133A platform data for the list of pathways. (f–j) It represents the networks for Stage I 
of U133B platform data for the list of pathways. (k–o) It represents the networks for Stage II of U133B platform 
data for the list of pathways. All these networks, were drawn by using cytoscape software.
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prognosis. Different types of cancer have different methods to assign a cancer  grade7,34–37 and the different tumor 
stages could help in describing the severeness, tumor propagation speed, and its impact on the other  organs31–33.. 
In general, it is very hard to detect most of the cancers at early stage so the main focus was on exploring the 
gene expression pattern alterations and its functional consequences and further to avoid biasedness, we have 
incorporated TCGA dataset also which have the samples from all the grades. Further, we have also investigated 
the expression of these clinically relevant genes by using protein atlas (https:// www. prote inatl as. org/)44–48. We 
observe that most of these genes are expressed in case of RCC and act as biomarkers and only TGM4 and GGN 
were not expressed. This study will be an important step for the understanding of early stage tumor propagation 
and also will be helpful for clinical aspect.

Conclusions
Based on our findings, we conclude that PI3K-Akt, Foxo, endocytosis, MAPK, Tight junction, and cytokine-
cytokine receptor interaction pathways are among the most commonly altered pathways in renal cell carcinoma, 
and that MAP3K13, CHAF1A, FDX1, ARHGAP26, ITGBL1, C10orf118, MTO1, LAMP2, STAMBP, DLC1, 
NSMAF, YY1, TPGS2, SCARB2, PRSS23, SYNJ1, CNPPD1, and PPP2R5E are the major sources of alteration for 
these pathways. Wnt, hippo, actin cytoskeleton control, ECM, infection and inflammation, metabolic, and other 
cancer-related pathways are among the most important pathways altered in RCC. ARHGAP6, TGM4, CD248, 
SLC13A3, EPO, PARD6A, CLCA2, UBE2S, ERAL1, FGFR1, MRVI1, DYNC1I2, CDCA7 are some of the genes 
that were chosen after survival study.
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Figure 3.  Connectivity in the selected networks (where the gene connectivity is not visible), for the top 30 
genes matched with those pathways which are enriched for the DEGs list. (a–f) Connectivity of the genes in 
the network for Stage I and II of U133A. These sub-figures were plotted by using MATLAB 2017b by using plot 
command and afterward dot option was selected and the line was removed.

https://www.proteinatlas.org/
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Methods
Here, GSE6344 dataset was used for the study which contains the samples of stage I and II of gene expression for 
tumor kidney  cancer30,38. In the first step, we selected the raw expression dataset GSE6344 and processed it until 
normalisation and log2 values of all mapped genes were achieved, as shown in Fig. 1a of the workflow. These 40 
samples in this dataset were 5 normal and 5 tumor for two stages I and II from U133A and U133B platforms. We 
have compared the tumor samples with standard samples of the respective stages and platforms for differential 
gene expression analysis, yielding four DEGs lists.

In short the basic steps involved for the entire study are raw file processing, intensity calculation and nor-
malization. For  normalization49–51,  GCRMA52–56, RMA, and EB are the most commonly used approaches. Here, 
we have used EB for raw intensity normalization. After normalization, we proceed for our goal which is to 
understand the gene expression  patterns14,57 and its inferred  functions57,58.

To prepare the list of DEGs and analysis, we have our own in-built codes. The samples were placed into two 
groups such as COVID-19 positive and negative and then normal and the tumor samples. The selection crite-
ria were placed by the fold change and p-values which have been calculated and for the selection of genes as 
differentially expressed the threshold of fold changes and p-values applied were ± 2 and 0.05, respectively and 
then KEGG  database59–61 have been used for pathway analysis and for which there is our own code  designed62. 
In summary, for differential gene expression prediction and statistical analysis, MATLAB2017 functions (e.g., 
mattest) were applied and further for pathway analysis, we used  KEGG61  database62–65.

For generating DEGs network, FunCoup2.066 hasbeen used for all the networks throughout the work and 
 cytoscape67 has been used for network visualization. For most of our coding and calculations MATLAB has 
been  used62–65. Furthermore, FunCoup2.066 database and cytoscape and its  applications68 were used for net-
work visualization to understand the network and the connectivity of the genes within thenetwork of  DEGs69,70. 
The basic concept of FunCoup network database is that it predicts four different classes of functional coupling 
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Figure 4.  Clinical significance of the top ranked genes. (a,b) Top 30 (15 up and down) DEGs (based on fold 
change) with the rate of mutation in kidney renal clear cell carcinoma (TCGA) with their mutations. (c–f) 
Survival plots for the selected top ranked genes. (g) Network of the clinically significant genes and the associated 
pathways. Here, (a) and (b) were drawn by using cBioPortal, (c–f) by using PROGgeneV2 (http:// www. progt 
ools. net/ gene/ index. php), and (g) by cytoscape.

http://www.progtools.net/gene/index.php
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or associations such as protein complexes, protein–protein physical interactions, metabolic, and signaling 
 pathways66. MATLAB 2017b codes and the command line codes have been used for figure plotting and during 
analysis. For the network level-analysis such as the number of connectivity per gene and the genes belonging to 
different number of pathways, the codes have been written in MATLAB and finally it has been plotted also by 
the codes written in  MATLAB64,65. For venn diagram plotting, freely available webserver (http:// bioin forma tics. 
psb. ugent. be/ webto ols/ Venn/) was  used72–74.

Data availability
We have utilized the publicly available datasets (main data source) which are freely available and have mentioned 
it in method section with proper references. The analyzed details have been supported by the supplementary data.
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