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Development and validation 
of an interpretable clinical score 
for early identification of acute 
kidney injury at the emergency 
department
Yukai Ang1,10, Siqi Li1,10, Marcus Eng Hock Ong1,2, Feng Xie1, Su Hooi Teo3, Lina Choong3, 
Riece Koniman3, Bibhas Chakraborty1,4,5, Andrew Fu Wah Ho1,2 & Nan Liu1,6,7,8,9*

Acute kidney injury (AKI) in hospitalised patients is a common syndrome associated with poorer 
patient outcomes. Clinical risk scores can be used for the early identification of patients at risk of AKI. 
We conducted a retrospective study using electronic health records of Singapore General Hospital 
emergency department patients who were admitted from 2008 to 2016. The primary outcome was 
inpatient AKI of any stage within 7 days of admission based on the Kidney Disease Improving Global 
Outcome (KDIGO) 2012 guidelines. A machine learning-based framework AutoScore was used to 
generate clinical scores from the study sample which was randomly divided into training, validation 
and testing cohorts. Model performance was evaluated using area under the curve (AUC). Among 
the 119,468 admissions, 10,693 (9.0%) developed AKI. 8491 were stage 1 (79.4%), 906 stage 2 (8.5%) 
and 1296 stage 3 (12.1%). The AKI Risk Score (AKI-RiSc) was a summation of the integer scores of 
6 variables: serum creatinine, serum bicarbonate, pulse, systolic blood pressure, diastolic blood 
pressure, and age. AUC of AKI-RiSc was 0.730 (95% CI 0.714–0.747), outperforming an existing AKI 
Prediction Score model which achieved AUC of 0.665 (95% CI 0.646–0.679) on the testing cohort. 
At a cut-off of 4 points, AKI-RiSc had a sensitivity of 82.6% and specificity of 46.7%. AKI-RiSc is a 
simple clinical score that can be easily implemented on the ground for early identification of AKI and 
potentially be applied in international settings.

Acute kidney injury (AKI) is a common clinical syndrome affecting 10% to 20% of hospitalized patients 
 worldwide1. It is independently associated with increased risk of inpatient  mortality2, significant morbidity upon 
 discharge3, and increased healthcare costs as well as length of hospital  stay4. AKI is also often clinically silent 
and may not be promptly recognised by the attending  physician5. Established kidney injury is often difficult to 
 treat6, hence there is a need for early detection to initiate treatment promptly.

AKI is typically diagnosed by the magnitude of serum creatinine (SCr) rise and is usually based on well 
accepted criterion such as the Kidney Disease Improving Global Outcome AKI (2012) guidelines. Early warn-
ing systems have been developed to flag patients with pathological rises in SCr, which can then be paired with 
intervention care bundles that can prevent the progression of  AKI7. However, increase in SCr levels can lag kidney 
injury by up to 48  h8. Physicians, therefore, are only reacting to damage that has already been done.
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AKI prediction models are potential solutions to this problem. In recent years, there has been increasing 
interest in the development of machine learning (ML) models, which can accurately predict AKI development in 
patients before any rise in  SCr9–11. Physicians will then be able to intervene earlier and halt the progression of the 
renal  insult12. However, these ML models have yet to be widely utilized in clinical practice due to their complexity 
which may be difficult to implement in existing hospital information technology (IT)  systems11. Furthermore, 
many ML models derive their predictions via black box approaches, which are not always explainable to humans 
in a rational way. Hence, clinicians may not be as inclined to apply them in clinical  practice13. Point-based predic-
tion scores offer a simple and interpretable solution to these ML models. However, most existing point-based AKI 
risk scores were designed for specific patient populations in the Intensive Care  Unit14,15, post-operative  period16, 
and undergoing procedures involving  contrast16–18, when the majority of AKI occurs in the general ward  setting19.

The primary aim of this study was to create a simple point-based clinical AKI Risk Score (AKI-RiSc) for the 
general patient population using a systematic, machine learning-based scoring framework—AutoScore20. The 
AKI-RiSc was designed to assess a patient’s 7 day inpatient risk of AKI development in the setting of the emer-
gency department (ED). It is envisioned that AKI-RiSc can function as a convenient and informative adjunct 
in allowing clinicians to assess a patient’s risk of inpatient AKI and institute any necessary management steps 
more accurately.

Methods
Study design and setting. We conducted a retrospective, single-centre study in Singapore General Hos-
pital (SGH) to derive AKI-RiSc using electronic health record (EHR) of the patients in the ED and inpatient 
wards. SGH is a tertiary hospital that receives over 120,000 ED visits and 36,000 admissions annually. A waiver of 
consent for EHR data collection was granted, and the study protocol was approved by Singapore Health Services’ 
Centralised Institutional Review Board. All research has been performed in accordance with the Declaration of 
Helsinki.

Study sample. All adult patients (> 18 years old) visiting the ED between 1 January 2008 and 31 December 
2016 and who were subsequently admitted to medical and surgical wards were  studied21. Patients were excluded 
if they met any of the following criteria: (1) patients with no records of SCr, (2) patients with AKI on presen-
tation at the ED, defined based on KDIGO change of SCr from median annualised SCr baseline, (3) patients 
with pre-existing advanced chronic kidney disease (CKD) based on KDIGO guidelines (SCr ≥ 353.6 µmol/L on 
admission) and (4) patients with no information of comorbidities. Patients were then followed up to 7 days post-
admission to determine if they developed AKI or not.

AKI definition and outcomes. The primary outcome of this study was the development of inpatient AKI 
of any stage within 7 days of admission from the ED. We used the National Health Service (NHS) automated 
AKI algorithm based on KDIGO guidelines to define  AKI22. The algorithm had been applied in clinical practice 
and was chosen because of its ability to account for patients with and without prior baseline SCr  information23. 
A patient was determined to have AKI if any of the three criteria were met: (1) Increase in SCr to ≥ 1.5 times of 
the median of all SCr readings 8 to 365 days ago, (2) increase in SCr to ≥ 1.5 times of the lowest SCr reading in 
the past 7 days, (3) increase in SCr by ≥ 26.5 µmol/L within 48 h from the lowest SCr reading. Other outcomes 
that were examined in this study were patients who developed at least Stage 2 AKI and patients who developed 
Stage 3 AKI.

Data collection and candidate variables. We extracted the data from the hospital’s EHR—SingHealth 
Electronic Health Intelligence System. The data was de-identified, and the death records were obtained from the 
national death registry and matched to specific patients in the EHR. As the AKI-RiSc was designed to be applied 
in the ED setting, we only selected variables that were exclusively available and reliably obtained at the ED. The 
final 33 candidate variables were selected based on literature review and expert opinion from clinicians, which 
consisted of patient demographics, vital signs, biochemical results, comorbidities, medical interventions, and 
visits to hospital—as seen in Table 1. Comorbidities were obtained from the hospital diagnosis and discharge 
records in the past five years before each patient’s current ED visits. They were recorded as the International 
Classification of Diseases (ICD) 9/10  codes24.

Statistical analyses and predictive modelling. Variables were included for the analysis only if more 
than 80% of them were available in the study cohort. These missing values were replaced by the mean if the vari-
able was continuous or by the most frequent category if the variable was categorical. Chi-square for categorical 
variables and t-tests for continuous variables were used where appropriate to compare between the patients 
who developed AKI and those who did not. Univariable analysis was also used to determine the odds ratios of 
risk factors between the two groups. Figure 1a depicts the flow of patient selection. Patients admitted between 
2008 and 2015 were randomly divided into training and validation cohorts, at a 70% and 30% ratio, respectively 
(Fig. 1b). Patients admitted in 2016 were used as the testing cohort to evaluate the final score.

AKI-RiSc was developed using  AutoScore20, a machine learning-based algorithm for interpretable clinical 
score generation. AutoScore facilitates the easy and transparent development of interpretable clinical score 
models for a pre-defined clinical outcome. It uses a combination of machine learning, logistic regression, and 
user-defined parameter fine-tuning. By implementing machine learning-based variable ranking and model selec-
tion, AutoScore can effectively handle the issue of variable multicollinearity. Figure S2 illustrates the process of 
score derivation and validation in the AutoScore framework.
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The training cohort was first used to generate the preliminary AKI-RiSc models using the AutoScore R pack-
age. The validation cohort was then used to evaluate the performance of various candidate AKI-RiSc models 
and allow for parameter fine-tuning. After selecting the final AKI-RiSc model, we evaluated its performance 
using the testing cohort, and bootstrapped samples were applied to calculate 95% confidence intervals (CIs). 
The primary outcome measure of inpatient AKI development was used for model derivation and model testing. 
The predictive power of AKI-RiSc was assessed using the area under the curve (AUC) in the receiver operating 
characteristic (ROC) analysis. Sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) based on various AKI-RiSc cut-offs were also calculated. Additionally, we compared AKI-RiSc with 
an existing AKI clinical score, the AKI Prediction Score (APS)25, by evaluating its performance using the same 
testing cohort with the same primary outcome measure.

Results
The initial cohort comprised 317,603 unique visits to the ED that were subsequently admitted. After exclud-
ing admissions with no available SCr (n = 174,098), and those with SCr > 353.6 µmol/L or AKI on admission 
(n = 24,037), we arrived at a final cohort of 119,468 unique entries. Among this cohort, 10,693 (9.0%) developed 
AKI of any stage within 7 days of admission, of which 8491 were stage 1 (79.4%), 906 stage 2 (8.5%), and 1296 
stage 3 (12.1%) (Fig. 1a). The overall in-hospital mortality rate of patients admitted with AKI was 21.8%, as 
opposed to 3.6% in non-AKI counterparts. While most AKI patients were stage 1, the number of patients in stage 
3 was higher than stage 2, which was also observed in another recent hospital-wide AKI  study26.

Table 1.  Comparison of patient characteristics between those who developed AKI 7 days after admission and 
those who did not at the emergency department. AKI acute kidney injury, SpO2 oxygen saturation, HD high 
dependency unit.

Variable No AKI in 7 days (n = 108,775) AKI in 7 days (n = 10,693) P-value

Age, year, mean (SD) 65.77 (17.23) 70.17 (14.21)  < 0.001

Female, n (%) 53,692 (49.4) 5277 (49.4) 0.991

Intubation (mean (SD)) 40 (0.0) 16 (0.1)  < 0.001

Resuscitation (mean (SD)) 2986 (2.7) 601 (5.6)  < 0.001

Pulse, mean (SD) 84.31 (17.62) 88.28 (19.67)  < 0.001

Respiration, mean (SD) 17.89 (1.76) 18.29 (2.45)  < 0.001

SpO2, mean (SD) 97.97 (2.94) 97.74 (3.49)  < 0.001

Diastolic blood pressure, mean (SD) 69.83 (13.13) 70.04 (14.93) 0.113

Systolic blood pressure, mean (SD) 132.03 (23.97) 135.23 (27.27)  < 0.001

Bicarbonate, mmol/L, mean (SD) 22.47 (3.94) 21.29 (4.51)  < 0.001

Creatinine, μmol/L, mean (SD) 104.67 (59.14) 159.92 (87.53)  < 0.001

Potassium, mmol/L, mean (SD) 4.15 (0.80) 4.27 (0.86)  < 0.001

Sodium, mmol/L, mean (SD) 133.45 (6.13) 133.63 (6.58) 0.006

Myocardial infarction, n (%) 6496 (6.0) 1879 (17.6)  < 0.001

Congestive heart failure, n (%) 15,178 (14.0) 3355 (31.4)  < 0.001

Peripheral vascular disease, n (%) 5568 (5.1) 1267 (11.8)  < 0.001

Stroke, n (%) 14,665 (13.5) 2000 (18.7)  < 0.001

Dementia, n (%) 3742 (3.4) 427 (4.0) 0.003

Pulmonary disease, n (%) 11,607 (10.7) 1525 (14.3)  < 0.001

Rheumatic disease, n (%) 1464 (1.3) 205 (1.9)  < 0.001

Peptic ulcer disease, n (%) 4637 (4.3) 732 (6.8)  < 0.001

Mild liver disease, n (%) 5706 (5.2) 746 (7.0)  < 0.001

Diabetes mellitus, n (%) 18,233 (16.8) 2045 (19.1)  < 0.001

Diabetes complications, n (%) 26,623 (24.5) 3956 (37.0)  < 0.001

Severe liver disease, n (%) 2192 (2.0) 359 (3.4)  < 0.001

Paralysis, n (%) 6380 (5.9) 862 (8.1)  < 0.001

Renal disease, n (%) 18,386 (16.9) 4844 (45.3)  < 0.001

Cancer, n (%) 11,408 (10.5) 1279 (12.0)  < 0.001

Metastatic disease, n (%) 9566 (8.8) 1053 (9.8)  < 0.001

No. of visits in last year, mean (SD) 0.85 (1.94) 1.20 (2.11)  < 0.001

No. of ICU admits last year, mean (SD) 0.02 (0.23) 0.05 (0.37)  < 0.001

No. of surgery last year, mean (SD) 0.15 (0.59) 0.28 (0.88)  < 0.001

No. of HD admits last year, mean (SD) 0.08 (0.44) 0.14 (0.61)  < 0.001

Inpatient mortality, n (%) 3887 (3.6) 2327 (21.8)  < 0.001
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Patients who developed AKI were older, had higher baseline SCr, higher admission SCr, and had more 
comorbidities associated with them (Table 1). Univariable analysis (Table S1) identified tachycardia, tachypnoea, 
hypotension, and hypertension as the most significant risk factors among the vital signs. Higher SCr levels on 
admission at the ED also increased the risk of inpatient AKI. Among the other lab values, low serum bicarbonate 
was the most significant risk factor for developing AKI. Extremes of serum sodium and potassium values also 
conferred an increased risk of AKI. All comorbidities were significantly associated with the development of AKI, 
but patients with renal disease had the greatest risk (odds ratio [OR] 4.07, 95% CI 3.91–4.24). Previous surgeries, 
admissions to the hospital, high dependency unit, and intensive care unit (ICU) were also significant risk factors.

AKI-RiSc was developed in a stepwise manner with the AutoScore framework. After ranking the essential 
AKI prediction variables, a parsimony plot (Fig. 2) was created to visualise model selection. The variables shown 
in Fig. 2 were ranked in order of importance of AKI prediction based on the initial random forest selection, 
with SCr being the most important and intubation being the least. Figure 2 also plots the model performance 
(AUC) against model complexity (number of variables). The most significant increase in model performance 
was observed from the first to the sixth variable, with marginal gains in performance fort every other variable 
added thereafter.

We selected the six most important variables in the parsimony plot (SCr, serum bicarbonate, pulse, systolic 
blood pressure, diastolic blood pressure, and age) to build the AKI-RiSc. Each variable was allocated an integer 
score based on its importance. The final score was a summation of all the variable’s assigned scores, ranging from 
0 to 15 (Table 2). Risk of inpatient AKI development was positively correlated with the higher AKI-RiSc scores. 

Initial Cohort
n = 317,603

SCr > 353.6 µmol/L on 
admission or 

AKI on admission
n = 24,037

AKI (9.0%) 
n = 10,693

Stage 1 (79.4%)
n = 8,491

Stage 2 (8.5%)
n = 906

Stage 3 (12.1%)
n = 1,296

Study Cohort 
n = 119,468

No AKI (91.0%)
n = 108,775

No SCr information
n = 174,098

Study Cohort
n = 119,468

Years 
(2008 – 2015)
n = 105,448

Year 
(2016)

n = 14,020

Missing value imputation
n = 1,041

Training
n = 73,814

Validation
n = 31,634

Testing
n = 14,020

(a)

(b)

Figure 1.  Flowcharts of (a) patient selection, and (b) splitting of study cohort into training, validation and 
testing cohorts.
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Higher SCr levels contributed most significantly with greater final scores, with SCr values ≥ 250 μmol/L being 
allocated the highest score of 7. Tachycardia (≥ 120 beats per minute) was also given a higher score of 3. Other 
variables associated with higher scores were lower bicarbonate levels of < 20 mmol/L, systolic blood pressure 
of ≥ 150 mmHg, diastolic blood pressure of ≥ 90 mmHg, and older age ≥ 50.

In terms of performance, AKI-RiSc performed reasonably well at an AUC of 0.730 (95% CI 0.714–0.747) when 
evaluated on the test cohort. At a cut-off of 4 points, it has a sensitivity of 82.6%, specificity of 46.7%, positive 
predictive value of 10.9%, and negative predictive value of 97.1%. When the  APS25, a similar point-based AKI 
risk score, was evaluated on the same test cohort as a basis of comparison, it scored an AUC of 0.665 (95% CI 
0.646–0.679). The APS consisted of age, respiratory rate, mental status (AVPU), chronic kidney disease (CKD), 
congestive cardiac failure (CCF), diabetes mellitus (DM), and liver disease. Table 3 presents the score cut-offs 
of AKI-RiSc and their respective sensitivity, specificity, positive predictive value, and negative predictive value. 
Figure S1 shows the correlation between the calculated AKI-RiSc value and the proportion of patients who 
developed AKI within 7 days. Almost 30% of patients with an AKI-RiSc of 9 developed AKI.

Discussion
In this study, we used a large retrospective dataset and the AutoScore framework to construct a point-based clini-
cal score, AKI-RiSc, to assess the 7 day risk of AKI development in a general patient population after admission 
from the ED. AKI-RiSc performed significantly better than the APS score when evaluated on the same test cohort.

The development of AKI-RiSc using AutoScore and our dataset brings several advantages. First, our sample 
size of 119,468 is considerably large which improves the reliability of the results obtained from our study. Sec-
ond, the AutoScore scoring framework is built upon machine learning, which achieves a better parsimonious 
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Figure 2.  Parsimony plot of variables and predictive performance of model on the validation set. SpO2 oxygen 
saturation.

Table 2.  Six-variable AKI Risk Score (AKI-RiSc) breakdown. SBP systolic blood pressure, DBP diastolic blood 
pressure.

Predictor

Allocated Score

0 1 2 3 5 7

Creatinine (μmol/L)  < 100 100–149 150–249  ≥ 250

Bicarbonate (mmol/L)  ≥ 20  < 20

Pulse (beats/min)  < 100 100–119  ≥ 120

SBP (mmHg)  < 150  ≥ 150

DBP (mmHg)  < 90  ≥ 90

Age (years)  < 50  ≥ 50



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7111  | https://doi.org/10.1038/s41598-022-11129-4

www.nature.com/scientificreports/

solution for clinical prediction tasks with large data  sets27. Third, the selection of variables for AKI-RiSc was 
also performed in a transparent manner by identifying the most parsimonious solution from the parsimony plot 
(Fig. 2), allowing clinicians to better understand the processes involved in generating the score.

AKI-RiSc was designed for the general patient population in the form of a simple point based score that can 
be easily applied and interpreted by clinicians. Only the 6 most important variables were chosen for the final 
model, as additional variables only contributed marginal increase in model performance with the downside of 
increasing model complexity (Fig. 2). These variables, (SCr, bicarbonate, pulse, systolic blood pressure, diastolic 
blood pressure, and age) consisted of common biochemical results as well as patient parameters that could be 
obtained directly at the bedside within 2 h of admission at the ED. The score’s simplicity makes it practical in 
the clinical setting in the form of an automated score integrated in a hospital’s EHR system, or just via manual 
calculation by the  clinician28.

When compared to the APS developed by Forni et al. in 2013, which was also a similar point-based AKI risk 
score for general patients in the  ED25, AKI-RiSc outperformed APS by a significant margin in terms of AUC 
performance (0.730 vs 0.665), approximately 10% increase. One key difference between the two scores was the 
use of biochemical variables in AKI-RiSc—SCr and serum bicarbonate. SCr is a well-accepted marker of kidney 
function and has also been the most crucial variable in other AKI prediction  models10,29. Low bicarbonate, which 
typically indicates metabolic acidosis, was also found independently associated with increased AKI risk in other 
 studies30. Including these biochemical results could have potentially improved the performance of AKI-RiSc. It 
is worth noting that the APS achieved an AUC of 0.71 when evaluated on its own UK  cohort31. One explanation 
of the poor performance of the APS in Singapore cohort could be the inherent differences between the popula-
tion demographics it was derived and tested  on32. For example, the average population age of the UK cohort was 
overall older than that of the Singapore cohort.

Comparing to other ML models, however, the performance of AKI-RiSc lags. Tomašev et al. developed a 
recurrent neural network AKI prediction model that calculated and updated the risk of AKI every 48 h, perform-
ing well with an AUROC of 0.92129. Despite these remarkable results, the translation of ML models to practical 
clinical medicine has been limited. ML models often require significant amount of information to function 
optimally, which may be difficult to obtain  consistently33. Furthermore, the complexity of the models’ algorithms 
make it challenging for implementation in many hospital’s IT  infrastructure34. Many of these ML models are 
also developed using black box approaches as opposed to more traditional logistic regression models which 
clinicians are familiar  with34. This can potentially limit data interpretation and the willingness of clinicians to 
adopt the model’s predicted  risk13. Therefore, while AKI-RiSc may not perform as well as pure ML models in 
AKI prediction, it has the benefit of being much more easily implemented in the clinical setting with a reason-
able predictive performance.

Several actions can be taken after a high-risk patient has been identified using AKI-RiSc in the ED. First, 
interventional bundle care plans can be instituted for patients identified with a high AKI-RiSc in the form of a 
checklist to guide clinicians in the treatment of  AKI7 and potentially improve patient  outcomes35. Second, a high 
AKI-RiSc score can prompt the emergency physician to make earlier nephrology consults, which can improve 
the outcomes of patients with renal  impairment36. Third, the utility of the AKI-RiSc can be further enhanced 
when paired with novel AKI biomarkers, in which high risk patients who may benefit from AKI biomarker test 
can be initially identified using AKI-RiSc.

There are limitations in this study. As with most other AKI studies, AKI was defined only using serum SCr 
as urine output information was unavailable. Furthermore, more than half of the admissions were first-time 
admissions, meaning that they did not have a median annual baseline SCr. A significant number of admissions 
relied on the ED SCr reading as the baseline. In reality, admission SCr could already have been pathologically 
raised due to prior kidney insults preceding the admission. Hence, using the ED SCr as a baseline reference meant 
that the actual incidence of AKI could be  underestimated37. While we could accurately identify the diagnosis 
of AKI in patients by trending changes in SCr, we did not have any information on the aetiology of the AKI. 
However, AKI-RiSc was designed to be an alert system designed to recommend treatment, not as a diagnostic 
 tool25. Finally, owing to a lack of data, we were unable to construct scores specifically for community-acquired 
AKI and hospital-acquired AKI. This study therefore sought to develop and validate a single score that could be 
easily calculated for quick risk stratification in the ED. A future study might focus on developing more accurate 
scoring tools tailored to different causes of AKI where additional important variables can be incorporated.

Table 3.  Score cut-offs of the predicted risk of AKI based on AKI-RiSc, including percentage of patient within 
score threshold, sensitivity, specificity, positive predictive value, and negative predictive value. AKI acute 
kidney injury.

Predicted risk of AKI (%) Score cut-off Percent of patients (%) Sensitivity (95% CI) Specificity (95% CI)
Positive predictive value 
(95% CI)

Negative predictive value 
(95% CI)

 ≥ 2.5  ≥ 2 93 98.5% (97.8–99.2%) 7.0% (6.6–7.4%) 7.7% (7.7–7.8%) 98.4% (97.5–99.1%)

 ≥ 5  ≥ 4 55 82.6% (80.1–84.9%) 46.7% (45.8–47.6%) 10.9% (10.6–11.3%) 97.1% (96.7–97.5%)

 ≥ 7.5  ≥ 6 26 57.6% (54.7–60.6%) 77.0% (76.3–77.6%) 16.5% (15.7–17.4%) 95.8% (95.5–96.1%)

 ≥ 10  ≥ 7 20 52.0% (48.9–55.0%) 82.2% (81.5–82.8%) 18.8% (17.7–19.8%) 95.6% (95.3–95.8%)

 ≥ 15  ≥ 8 14 41.1% (38.3–44.2%) 88.2% (87.6–88.7%) 21.6% (20.1–23.1%) 95.0% (94.7–95.2%)

 ≥ 30  ≥ 11 2 8.8% (7.2–10.7%) 98.1% (97.9–98.4%) 27.4% (22.9–32.1%) 93.1% (93.0–93.3%)
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The next step would be to prospectively validate the AKI-RiSc in various hospitals in Singapore. AKI-RiSc 
can then be sequentially applied to hospitals in regional Southeast Asian countries, and eventually to the inter-
national setting. We believe that the simplicity of AKI-RiSc and use of common clinical variables makes it a good 
candidate for validation in hospitals across different settings. Apart from assessing its predictive performance 
in a prospective validation cohort, it would also be essential to gain feedback from physicians on the score’s per-
ceived utility and ease of use in helping them better care for their patients. AKI bundles can also be developed 
to complement the AKI-RiSc to assess its effectiveness in improving patient outcomes.

Conclusions
In conclusion, we developed a simple and interpretable point-based AKI risk score which can be easily imple-
mented on the ground for early identification of high-risk patients in the ED. It also has the potential be applied 
in healthcare settings internationally.
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