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Immunoprognostic model of lung 
adenocarcinoma and screening 
of sensitive drugs
Pengchen Liang1,8, Jin Li2,8, Jianguo Chen3,8, Junyan Lu4, Zezhou Hao5, Junfeng Shi6, 
Qing Chang7* & Zeng Zeng1,3*

Screening of mRNAs and lncRNAs associated with prognosis and immunity of lung adenocarcinoma 
(LUAD) and used to construct a prognostic risk scoring model (PRS-model) for LUAD. To analyze the 
differences in tumor immune microenvironment between distinct risk groups of LUAD based on the 
model classification. The CMap database was also used to screen potential therapeutic compounds for 
LUAD based on the differential genes between distinct risk groups. he data from the Cancer Genome 
Atlas (TCGA) database. We divided the transcriptome data into a mRNA subset and a lncRNA subset, 
and use multiple methods to extract mRNAs and lncRNAs associated with immunity and prognosis. 
We further integrated the mRNA and lncRNA subsets and the corresponding clinical information, 
randomly divided them into training and test set according to the ratio of 5:5. Then, we performed 
the Cox risk proportional analysis and cross-validation on the training set to construct a LUAD 
risk scoring model. Based on the risk scoring model, patients were divided into distinct risk group. 
Moreover, we evaluate the prognostic performance of the model from the aspects of Area Under Curve 
(AUC) analysis, survival difference analysis, and independent prognostic analysis. We analyzed the 
differences in the expression of immune cells between the distinct risk groups, and also discuss the 
connection between immune cells and patient survival. Finally, we screened the potential therapeutic 
compounds of LUAD in the Connectivity Map (CMap) database based on differential gene expression 
profiles, and verified the compound activity by cytostatic assays. We extracted 26 mRNAs and 74 
lncRNAs related to prognosis and immunity by using different screening methods. Two mRNAs (i.e., 
KLRC3 and RAET1E) and two lncRNAs (i.e., AL590226.1 and LINC00941) and their risk coefficients 
were finally used to construct the PRS-model. The risk score positions of the training and test set were 
1.01056590 and 1.00925190, respectively. The expression of mRNAs involved in model construction 
differed significantly between the distinct risk population. The one-year ROC areas on the training 
and test sets were 0.735 and 0.681. There was a significant difference in the survival rate of the two 
groups of patients. The PRS-model had independent predictive capabilities in both training and test 
sets. Among them, in the group with low expression of M1 macrophages and resting NK cells, LUAD 
patients survived longer. In contrast, the monocyte expression up-regulated group survived longer. 
In the CMap drug screening, three LUAD therapeutic compounds, such as resveratrol, methotrexate, 
and phenoxybenzamine, scored the highest. In addition, these compounds had significant inhibitory 
effects on the LUAD A549 cell lines. The LUAD risk score model constructed using the expression 
of KLRC3, RAET1E, AL590226.1, LINC00941 and their risk coefficients had a good independent 
prognostic power. The optimal LUAD therapeutic compounds screened in the CMap database: 
resveratrol, methotrexate and phenoxybenzamine, all showed significant inhibitory effects on LUAD 
A549 cell lines.
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In China, lung cancer has the highest incidence and mortality among male malignancies ,and the second highest 
incidence among female malignancies, second only to breast cancer1.

There are two subtypes of lung cancer, the first is small cell lung cancer and the second is non-small cell lung 
cancer (NSCLC), of which NSCLC includes two main types of lung adenocarcinoma (LUAD) and squamous 
carcinoma2. LUAD in lung cancer accounts for 40% of all histological types3. The incidence of LUAD is increas-
ing year by year, with a trend toward younger age, rapid onset, few initial symptoms, high mortality, and poor 
prognosis4.

Advances in molecularly targeted therapies have led to a major shift in the LUAD treatment paradigm, 
with LUAD treatments demonstrating higher positive response rates compared to conventional cytotoxic 
chemotherapy5. Through the genetic testing of LUAD patients, the most common lung cancer driver genes 
are identified as EGFR, ALK, ROS1, and BRAF6. Recent studies show that increased expression of PITX2 and 
CENPH genes is positively correlated with the development of LUAD7. In addition, some specific long-chain 
non-coding RNAs (lncRNA) show high specificity in prostate cancer, breast cancer, and lung cancer8. These stud-
ies found that lncRNA CASC9.5 regulates the expression of cyclin D1, E-cadherin, N-cadherin, and β-catenin 
protein. CASC9.5 induces cells to stay in the G1 phase and promotes the proliferation and metabolism of LUAD 
cells9. Although targeted therapies have been successful in the treatment of LUAD, resistance to EGFR targeted 
therapies (such as gefitinib) is still a problem10,11. Moreover, a large proportion of LUAD still lacks targeted 
therapy12. Therefore, exploring new biomarkers and prognostic factors has become a research trend in the era 
of precision medicine.

In recent years, through the analysis of the public database, more prognostic biomarkers of LUAD have been 
identified13–15. In16, Liu et al. analyzed the expression profiles of LUAD patients in the database and recognized 
glycolytic genes (i.e., AGRN, AKR1A1, DDIT4, and HMMR) that are closely associated to the prognosis of LUAD 
patients. In17, Jiang et al. conducted multiple differential gene analyses related to LUAD and then developed a 
risk model composed of 10 genes. The above studies have proved the great potential of using the open database 
to develop PRS-model. Therefore, it is inevitable to continue to investigate the polygenic characteristics related 
to the prognosis of LUAD.

In this work, we collected the transcriptome and clinical data with LUAD from the TCGA database18. The 
TCGA database contains information about various human tumors, including molecular changes at the DNA, 
RNA, protein, and epigenetic levels19. We used mRNAs and lncRNAs related to prognostic immunity to construct 
a LUAD risk scoring model, and used it to predict and evaluate the survival rate of patients with LUAD. CMap20 
is a drug gene expression database, which provides an possibility to comprehend the mechanism of action of 
unknown compounds and find new indications for existing drugs21. In addition, We submitted the differential 
gene expression profiles in distinct risk patients with LUAD to the CMap database and matched the drugs with 
opposite or similar gene expression profiles. Drugs with opposite gene expression profiles are considered as 
potential treatments for the disease22.

The purpose of this study was to establish a prognostic model of LUAD , to screen possible drugs for the 
treatment of LUAD in the CMap database , which using the differential gene expression profiles of distinct risk 
groups distinguished by the model.

Results
Prognosis‑related Immune MRNAs and LncRNAs screening.  The LUAD transcriptome data was 
converted by gene name and divided into mRNAs and lncRNAs data. Using the IMMPORT database23, we 
further extracted 1354 immune-related mRNA data from the LUAD mRNA data. Using the Weighted Cor-
relation Network Analysis (WGCNA) method to analyze the expression profile data containing 1354 immune-
related mRNAs and the corresponding clinical information of the samples. In this way, a total of 387 mRNAs 
associated to the patient’s survival status and survival time were extracted. We further performed univariate 
COX regression(UCR) analysis on the expression profile data containing 387 mRNAs and their corresponding 
patient survival status and survival time. Then, we screened a total of 26 immune mRNAs associated to progno-
sis, namely: HLA-DOB, KLRC2, KLRC3, RFX5, RFXAP, RAET1E PTGDS, GDF15, F2RL1, CD40LG, ARRB1, 
CD19, CD22, PTPN6, PRKCB, XCR1, IL16, IL24, HTR3A, IL11RA, IL1R2, SORT1, ITGAL, MAP3K8, JAG1, 
and OXTR.

We also used the UCR analysis method to compare the lncRNAs expression profile data of LUAD with the 
prognostic-related immune mRNAs expression data screened. After that, we performed the correlation coef-
ficient test to screen out 207 lncRNAs related to the above-mentioned mRNAs. Through the UCR analysis on 
the expression data of the 207 lncRNAs, the survival time, and survival status of the corresponding patients, we 
could screen a total of 74 lncRNAs that were significantly related to the prognosis. Therefore, by using different 
statistical methods, we finally screened a total of 26 mRNAs and 74 lncRNAs related to prognosis and immunity.

Prognostic modeling of LUAD based on immune‑related mRNAs and LncRNAs.  We used the 
training set to construct the lasso model, in which the Cox risk proportional model was selected to fit the data, 
and the minimum point of the model error was 4 through cross-validation. Two mRNAs (i.e., KLRC3 and 
RAET1E) and two lncRNAs (i.e., AL590226.1 and LINC00941) were further screened to construct PRS-model. 
After the above calculation, we could formulate the PRS-model as:

According to the PRS-model formula, the median risk value of the training set was 1.01056590, and the median 
value of the test set was 1.00925190. Base on this, the patients in the training and test sets were divided into 

(1)
Riskscore = [AL590226.1] × (−0.26449606)+ [LINC00941] × (0.244434874)

+ [KLRC3] × 0.11099252+ [RAET1E] × (0.19868693)
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distinct risk groups, respectively. The classification results of the distinct risk groups are shown in Fig. 1a, b. The 
expression of the KLRC3 and RAET1E mRNAs and the AL590226.1 and LINC00941 lncRNAs as the Fig. 1c, d 
shows. These mRNAs and lncRNAs were involved in the building of the model, and there were marked differ-
ences among the distinct risk groups.

Evaluation of model reliability based on clinical information.  We plotted the one-year ROC for 
the training and the test sets, and calculated the area under the curve. As shown in Fig. 2a, b, the ROC area was 
0.735 for training , and 0.681 for the test. Therefore, the model had good performance in predicting the one-year 
survival rate of patients.

Survival analysis results are in the Fig. 2c, d. The PRS-model distinguished between different risk groups of 
patients in the training, and the survival rate was significantly different (p = 0.020). In addition, patients in the 
low-risk group had a better survival rate. The results were consistent in the training set. The experimental results 
indicated that PRS-model had better performance in predicting the survival rate.

As shown in Fig. 3, in the COX regression analysis, the P-values of the risk score in both of the training set 
and the test set were less than 0.001. The above results revealed that the risk score could be used as an separate 
prognostic factor, and the risk scoring model had a good prognostic ability.

Differences in immune microenvironment between distinct risk groups.  The heat map of 22 
immune cell infiltration is shown in Fig. 4a, and the analysis results of variance are shown in Fig. 4(b). The rest-
ing NK cell group, activated NK cell group, monocyte group, M0 macrophage group, M1 macrophage group, etc., 
showed statistically significant differences in expression between high and low risk groups. After co-expression 
with survival time and filtering according to P < 0.05, 3 out of 22 immune cells were found to be associated with 
prognosis, such as M1 macrophages, resting NK cells, and monocytes. In addition, the survival analysis results 
showed that patients’ years of survival were all related to three types of immune cells. Specifically, the P-value of 
resting NK cells was 0.01 (as shown in Fig. 4c), the P-value of monocytes was 0.042 (as shown in Fig. 4d), and 
the P-value of M1 macrophages was 0.029 (Fig. 4e).
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Figure 1.   Model-based differentiation of distinct risk populations. (a) Distinct risk group division in the 
training set. (b) Distinct risk group division in the test set. (c) The expression of modeled mRNAs and lncRNAS 
in the two groups in the train set. (d) The expression of modeled mRNAs and lncRNAS in the two groups in the 
test set.
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Among them, in the group with lower expression of M1 macrophages and resting NK cells, patients with 
LUAD had longer survival times, while longer survival times were observed in patients with up-regulated mono-
cyte expression.

Differentially expressed genes and functional annotation of distinct risk groups.  We per-
formed the differential gene analysis on the distinct risk groups, and detect a total of 290 differentially up-
regulated genes and 191 differentially down-regulated genes in the high risk group, (Fig. 5a). We also performed 
the functional annotation analysis of differential expressed genes(DEGs). The KEGG analysis results showed 
that the main enrichment pathways were systemic lupus erythematosus, cell cycle, complement, and coagula-
tion cascade, as shown in Fig. 5b. We also performed the GO enrichment analysis by considering the cellular 
composition (CC), molecular function (MF), and biological process (BP), (Fig. 5c). The GO enrichment analysis 
results showed that the mRNA differences of CC were mainly concentrated in collagen (including extracel-
lular matrix), DNA packaging complex, and protein-DNA complex. MF mainly manifests as enzyme inhibitor 
activity. BP mainly includes nuclear division, mitotic nuclear division, chromosome segregation, and negative 
regulation of proteolysis.

CMap drug screening and cytological activity validation.  Based on the significant difference in 
mRNA data between the distinct risk group, a total of 1309 drugs were screened in the CMap database20. Among 
them, 48 drugs with P-value < 0.05 and enrichment score < 0 were considered as potential drugs to inhibit the 
expression of high-risk genes. Table 1 lists the results of the top 20 drugs.

Finally, we screened the top three drugs with the largest differences to verify their inhibitory effects on LUAD 
cell proliferation. The three drugs were resveratrol, methotrexate, and phenoxybenzamine, and their structures 
are shown in Fig. 6a.

When A549 cells were treated with distinct concentrations of DMSO for 48 hours and 72 hours, and the 
DMSO concentration was less than 1/256, cell proliferation was not affected (Fig. 6b). We set the concentration 
of the original drug solution to 125 mg/mL, that was, when the compound concentration was less than 488 μg/
mL, the inhibitory effect of the compound was not affected by DMSO, which could objectively reflect the inhibi-
tory effect of the drugs on A549 cells. The maximum concentration of resveratrol 1280 μmol/L (292 μg/mL), 
methotrexate 128 μmol/L (58 μg/mL), and phenoxybenzidine 128 μmol/L (43 μg/mL) were all less than 488 μg/
mL, so the interference of DMSO was excluded, and the result was the effect of the drug itself.
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Figure 2.   Evaluation of prognostic ability of the model based on clinical information. (a) One-year ROC curve 
in the training set. (b) One-year ROC curves in the test set. (c) Analysis of survival differences between the 
distinct risk populations in the training set. (d) Survival difference analysis between the distinct risk groups in 
the test set.
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As shwon in Fig. 6c, resveratrol had no effect when the concentration was lower than 320 μmol/L, and the 
cell proliferation rate was 67% at 640 μmol/L . In addition, in Fig. 6d, methotrexate had the best inhibitory effect 
on the proliferation of A549 cells. After 8 μmol/L treatment, the proliferation rate of A549 cells was 61% at 48 
hours and only 15% at 72 hours. As shown in Fig. 6e, for phenoxybenzidine, the proliferation rate of A549 cells 
was 88% at 64 μmol/L and 82% at 128 μmol/L. The results were similar at 48 hours and 72 hours.

Discussion
In this research, we screened the mRNAs and lncRNAs related to prognosis and immunity through the TCGA 
and IMMPORT databases18,23. Using the COX risk regression model to constructed the PRS-model for LUAD. 
Through the AUC analysis and independent prognostic analysis, we found that the PRS-model has good prog-
nostic ability.

Survival of cancer patients is an important indicator to respond to cancer progression, and how to predict 
survival is currently a key concern in the field of bioinformatics. In this study, the established PRS-model dis-
tinguished the present high- and low-risk groups with significant survival differences, which suggests that our 
PRS-model has a good predictive ability for patient survival.

The characteristic factors involved in model construction are KLRC3, RAET1E, AL590226.1, and LINC00941. 
In24, Li et al. performed comprehensive analysis on multi-omics data, and identified KLRC3 as a key node in 
the regulatory network of immune phenotype-related genes in LUAD. In25, Cho et al. found that the expression 
of RAET1E in cervical cancer is higher than that of RAET1E in low-grade CINs, and the lower survival rate of 
patients is associated with high RAET1E expression. In26, Geng et al. constructed an lncRNA prognostic model 
related to genetic instability in LUAD. Among the 7 lncRNAs involved in the model, they found that AL590226.1 
was a protective factor for patient prognosis. In addition, in27, Wang et al. analyzed the lncRNA expression and 
copy number change data (CNA) of patients with LUAD in the TCGA database. The authors found that the CNA 
of LINC00941 was negatively correlated with the patient’s longer overall survival. The above findings further 
proved the better prognostic ability of our model.

We conducted an immune microenvironment analysis on the different risk groups distinguished by the 
PRS-model. Cells that express significant differences between the different risk group are related to the patient’s 
prognosis, including the M1 macrophages, resting NK cells, and monocytes. Analysis of paraffin-embedded 
NSCLC samples and their clinicopathological data revealed that the density of M1 macrophages in tumor vesicles 
was an independent predictor of survival time for patients with NSCLC28. NK cells had the ability to lyse tumor 
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Figure 3.   Evaluation of the independent prognostic ability of the risk scoring model. (a) Results of univariate 
COX regression of risk scores with clinical information in the training set. (b) Results of multi-factor COX 
regression of risk scores and clinical information in the training set. (c) Results of univariate COX regression in 
the test set. (d) Results of multifactor COX regression in the test set.
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Figure 4.   Differences in the immune microenvironment of the high and low-risk patients. (a) Heat map of 
immune cell expression between the high and low-risk populations. (b) Statistics of differences in immune 
cell expression between two groups. (c, d, e) NK cells, monocytes, and Macrophages m1 were analyzed for 
differences between groups, respectively.

B
P

C
C

M
F

0.02 0.03 0.04 0.05 0.06 0.07

antibacterial humoral response
mitotic sister chromatid segregation

protein processing
sister chromatid segregation

antimicrobial humoral response
nuclear chromosome segregation
negative regulation of proteolysis

chromosome segregation
mitotic nuclear division

nuclear division

multivesicular body
clathrin coated endocytic vesicle

lamellar body
condensed chromosome, centromeric region

platelet alpha granule
anchored component of membrane

nucleosome
protein DNA complex

DNA packaging complex

collagen containing
extracellular matrix

serine hydrolase activity
serine type peptidase activity

serine type endopeptidase activity
serine type endopeptidase inhibitor activity

endopeptidase regulator activity
peptidase inhibitor activity

endopeptidase inhibitor activity
peptidase regulator activity

endopeptidase activity
enzyme inhibitor activity

GeneRatio

Count
10

15

20

25

0.002

0.001

qvalue

p53 signaling pathway

Complement and coagulation cascades

Cell cycle

Neutrophil extracellular trap formation

Systemic lupus erythematosus

0.04 0.05 0.06
GeneRatio

0.03

0.02

0.01

qvalue

Count
7

8

9

10

11

12

5 0 5

0
5

10
15

20
25

30

Volcano

logFC

lo
g1

0(
fd

r)

a

b

c
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cells without the need to sensitize the host beforehand, and the recognition of target cells by NK cells was strictly 
regulated by a number of processes that activated and inhibited receptor signal integration29.

Based on the differential gene expression profiles of the distinct risk group, the compounds of resveratrol, 
methotrexate, and phenoxybenzidine score the highest in the CMap drug screening. Moreover, the three com-
pounds showed a significant inhibitory effect on the LUAD A549 cell line.

Table 1.   CMap database drug screening.

Name Rank Enrichment P value Specificity

Resveratrol 1 − 0.838 0.000 0.000

Methotrexate 2 − 0.748 0.000 0.000

Phenoxybenzamine 3 − 0.904 0.000 0.009

Thiostrepton 4 − 0.894 0.000 0.009

15-delta prostaglandin J2 5 − 0.491 0.001 0.113

Xylometazoline 6 − 0.848 0.001 0.000

6-bromoindirubin-3’-oxime 7 − 0.667 0.001 0.051

MG-262 8 − 0.892 0.002 0.087

Chlorphenesin 9 − 0.810 0.003 0.010

Bepridil 10 − 0.789 0.004 0.023

Monobenzone 11 − 0.786 0.004 0.014

Irinotecan 12 − 0.861 0.005 0.087

Bupropion 13 − 0.765 0.006 0.006

Megestrol 14 − 0.743 0.009 0.000

Menadione 15 − 0.936 0.009 0.023

Tribenoside 16 − 0.725 0.012 0.000

Chlorcyclizine 17 − 0.603 0.014 0.009

Scriptaid 18 − 0.808 0.014 0.135

Tretinoin 19 − 0.321 0.015 0.184

Luteolin 20 − 0.706 0.016 0.074

Figure 6.   CMap database drug screening and cytological activity validation. (a) Optimal compounds and 
their structures screened from the CMap database. (b) DMSO solvent toxicity assay. (c) Inhibition rate of the 
resveratrol compound on A549 cells. (d) Inhibition rate of the methotrexate compound on A549 cells. (e) 
Inhibition rate of the phenoxybenzamine compound on A549 cells.
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Resveratrol is a polyphenol stilbene found in rhubarb, grapes,and other substances. It has been found to have 
an excellent immunomodulatory effect30. Resveratrol could up-regulate the expression of caspase-3 and Bax, and 
down-regulate the expression of Bcl-2. In addition, by increasing the level of p53, the levels of phosphorylated 
Mdm2 and protein kinase B (Akt) were reduced, leading to apoptosis and autophagy in cancer cells31.

Methotrexate inhibited the production of malignant pleural effusion and regulated the tumor microenviron-
ment of patients with advanced lung cancer,CD4+ T cells stimulated by methotrexate release more IL-2, while 
CD8+ T cells released less IFN-γ32.

Phenoxybenzamine is a non-selective, non-competitive, and irreversible alpha-adrenergic receptor blocker, 
which can covalently bind to alpha-adrenergic receptors to attenuate catecholamine-mediated vasoconstriction33 
. It could also inhibit histone deacetylase activity, thus inhibiting the growth of adrenal medullary tumors and 
pheochromocytoma34. However, the efficacy and mechanism of action of these drugs in LUAD were not yet 
completely clear, and further research was needed.

Conclusion
In short, we constructed a PRS-model of LUAD based on prognostic mRNAs and lncRNAs, which can indepen-
dently predict the prognosis. The PRS-model determines the DEGs of the distinct risk groups. In addition, the 
model was also used to screen potential therapeutic drugs for LUAD. Among them, resveratrol, methotrexate, 
benbenzamine, and other drugs had inhibitory effects on the proliferation of A549 cell lines.

Methods
LUAD clinical and transcriptome data collation.  RNA-seq expression profile and Clinical informa-
tion of LUAD came from the TCGA database. The keywords used in the RNA-seq expression profile data search 
were “bronchi”, “lung”, “TCGA-LUAD”, “adenoma”, “adenocarcinoma”, “transcriptome analysis”, “gene expres-
sion quantification”, and ‘HTSeq-FPKM”. The key words used in the clinical data search were “bronchial”, “lung”, 
“TCGA-LUAD”, “adenoma”, and “adenocarcinoma, clinical”.

We collected a total of 551 transcriptome data, of which 56 were non-cancer or para-cancer data, and 495 were 
tumor data. We further collected a total of 522 cases of clinical information corresponding to the transcriptome 
data, where some clinical information relate to multiple transcriptome data.

Identification of MRNAs and LncRNAs related to immune and prognostic.  We extracted the data 
of mRNAs and lncRNAs from the LUAD transcriptome data. The screening process is shown in Fig. 7.

We collected the immune-related gene list from the IMMPORT database23, and used the list information to 
extract the immune-related mRNAs expression profile data from the LUAD mRNAs expression profile data. We 
performed the WGCNA method and the clustering analysis on immune-related mRNA expression profile data 
and the corresponding clinical data to extract the survival-related modular genes.

Take k as the ergodic, we traversed all genes except i and j in the gene list, and calculate the correlation coef-
ficient of k and i and j in:

If the connection conditions of genes i and j in the network are similar, the larger TOMi,j is, and it is more likely 
that genes i and j are in the same expression module. In the WGCNA analysis, we constructed the optimal 
scale-free network according to the optimal power value of 3. We set the minimum number of genes for each 
module to 40, and set the value of Deepsplit to 2, and then drew a dendrogram. we further assemble highly 
dependent modules, and merge similar modules with a cut height of 0.3 at the boundary. Then, we visualized 
the correlation with the “Marking Heat Map” function to get the heat map results. We performed UCR analysis 
on the survival-related gene modules and the survival information to obtain the immune genes related to the 
prognosis. The parameters of the UCR model were set to P < 0.01. We used the UCR analysis method to screen 
the prognostic-related immune gene expression profile data. By comparing LUAD’s lncRNAs expression profile 
data with the prognostic-related immune gene expression profile data, We performed correlation test screen the 
lncRNAs related to the prognostic-related immune genes.

The lncRNAs identified above were subjected to UCR analysis (P < 0.05) with We subjected the survival 
information (iie., survival time and survival status) of their corresponding clinical samples to further screen the 
lncRNAs associated with prognosis. The above screened mRNAs and lncRNAs related to immunity and prognosis 
were used for subsequent lasso model construction.

Immune‑related prognostic risk model construction.  We integrated the mRNAs dataset and the 
lncRNAS dataset related to immunity and prognosis as well as the corresponding clinical information. We then 
randomly divided the integrated data set into the training set and the test set at a rate of 5:5. We used the training 
set to construct the lasso model, in which the Cox risk ratio model was selected to calculate the risk factor. The 
Cox risk proportional model was defined as:

where t was the survival time, x1 , x2 to xp refers to a number of variables with predictive effect. c1 , c2 to cp were the 
corresponding effect quantity of each variable. h(t) was a function to calculate the risk value at different times, 
and h0(t) was a function of to generate the benchmark risk. we also obtained the model error point through 

(2)TOMi,j =

∑

k �=i,j

(

ai,k ∗ ak,j
)

− ai,j

min
{

∑

k �=i ai,k ,
∑

k �=j ak,j

}

+ 1− ai,j
.

(3)h(t) = h0(t)× exp
(

c1x1 + c2x2 + . . .+ cpxp
)

,
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Figure 7.   Workflow of immune and prognosis-related mRNAs and lncRNAs screening and prognostic risk 
scoring model construction. The lung adenocarcinoma data in TCGA database were divided into mRNA sub-
dataset and lncRNA sub-dataset, and the mRNAs and lncRNAs associated with immunity and prognosis of 
lung adenocarcinoma were extracted by various methods such as WGCNA and COX regression, and the lung 
adenocarcinoma prognostic risk model was further constructed based on these associated factors.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7162  | https://doi.org/10.1038/s41598-022-11052-8

www.nature.com/scientificreports/

cross-validation. The correlation coefficients of the involved mRNAs and lncRNAs were further calculated. The 
formula of the lasso model was to multiply the mRNA and lncRNA involved in the construction of the model 
by their correlation coefficients.

According to the lasso model, we calculated the risk score of each sample. The median value of the risk score 
was obtained by sorting the samples. Base on the median value of scores, patients were divided into a high-risk 
group (risk score ≥ median value) and a low-risk group ( risk score < median value). We calculated the differential 
expression of mRNAs and lncRNAS in the distinct risk group involved in the construction of the lasso model.

We used the receiver operating characteristic curve (ROC) function to predict the survival rate based on 
multiple clinical features. We then drew a ROC figure over a one-year period, and calculated the area under the 
curve (AUC). The differences in survival status and survival time of patients in the distinct risk groups were 
analyzed. Finally, we analyzed the patients’ features (i.e., age, gender, and cancer stage) and the corresponding 
clinical information (i.e., survival time and survival status) with high-risk scores or low risk scores. By analyzing 
through the coxph function, we obtained the univariate and multivariate independent prognosis.

Model‑based prognosis‑related immune cell analysis.  We used the transcriptome data from the 
immune infiltration file to obtain the infiltration volume of 22 immune cells in LUAD. The difference in immune 
cell content between the distinct risk group was also analyzed. In addition, the immune cells with significant dif-
ferences in expression between the two groups were determined (P < 0.05). We also calculated the median value 
of the expression of each immune cell in different samples. The samples were divided into a low expression group 
,and a high expression group. We calculated the survival difference between the two groups to analyze the impact 
of immune cell expression on the patient, and discuss Survival rate and whether there was a difference (P < 0.05).

Model‑based differential expression analysis of genes in distinct risk groups.  We divided the 
raw transcriptome data into distinct risk group. We calculated the differential expression of genes between these 
groups was according to the screening criteria of log(foldchange) > 1 and P < 0.05 . We further carried out gene 
ontology enrichment analysis and KEGG signal pathway enrichment analysis on the selected DEGs.

Drug screening based on differential gene expression profiles between distinct risk 
groups.  We transformed the probe file for the differentially up and down-regulated genes of the distinct risk 
groups obtained by the above-mentioned difference analysis. Then, we uploaded the differential gene informa-
tion to the CMap database20 for screening potential therapeutic compounds. According to the screening results, 
compounds with the values of P < 0.05 and enrichment score < 0 were considered as potential therapeutic com-
pounds that reversed the LUAD gene expression profile. The compound with the highest combination score was 
selected for subsequent cell experiment verification. The chemical structure information of the compound was 
obtained in the Pubchem database35.

Experimental validation of compound cytostatic properties.  A549 cells were cultured in DMEM 
(4.5 g/L D-glucose, Gibco, USA) containing 10% fetal bovine serum, and 5,000 cells per well were seeded in 
a 96-well plate. After 24 hours, all the cells were stuck to the wall. We further prepared a solution of resvera-
trol (Lot#:C12594500, Macklin, China), methotrexate (Lot#: C12150088, Macklin, China), phenoxybenzamine 
(Lot#: C11947938, Macklin, China), and thiostrepton. The preparation concentration was set as 1125 mg/mg 
mL in dimethyl sulfoxide (DMSO, Lot#: RNBH9957, Sigma, America), and then passed through a 0.22 μm filter 
membrane (Merck, America). The four drugs were added at concentrations of 0, 8, 32, 64, and 128 μmol/L for 
48 hours and 72 hours, respectively. After treatmented, we discarded the supernatant, added 10% CCK-8 (Lot.
SX749, Dojindo, Japan) and incubated for 2 hours, and then read the results with Multiskan GO 1510-03667C 
at a wavelength of 450 nm.

Statistical analysis.  R Studio/R 4.1.0 is used for statistical analysis,Pearson correlation coefficient (PCC) is 
used to calculate the correlation, and the significant condition is set as PCC > 0.4 and P < 0.001 . The univariate 
Cox parameter range of prognostic mRNA is P < 0.01 . The univariate Cox of the prognostic lncRNA is P < 0.05. 
Univariate and multivariate Cox are used to analyze the relationship between clinical information and prognosis, 
and the test level is α = 0.05.

Data availability
The datasets of this article were generated from the TCGA database.
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