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Hybrid selection based multi/
many‑objective evolutionary 
algorithm
Saykat Dutta1, Rammohan Mallipeddi2* & Kedar Nath Das1

In the last decade, numerous multi/many‑objective evolutionary algorithms (MOEAs) have been 
proposed to handle multi/many‑objective problems (MOPs) with challenges such as discontinuous 
Pareto Front (PF), degenerate PF, etc. MOEAs in the literature can be broadly divided into three 
categories based on the selection strategy employed such as dominance, decomposition, and 
indicator‑based MOEAs. Each category of MOEAs have their advantages and disadvantages when 
solving MOPs with diverse characteristics. In this work, we propose a Hybrid Selection based MOEA, 
referred to as HS‑MOEA, which is a simple yet effective hybridization of dominance, decomposition 
and indicator‑based concepts. In other words, we propose a new environmental selection strategy 
where the Pareto‑dominance, reference vectors and an indicator are combined to effectively balance 
the diversity and convergence properties of MOEA during the evolution. The superior performance 
of HS‑MOEA compared to the state‑of‑the‑art MOEAs is demonstrated through experimental 
simulations on DTLZ and WFG test suites with up to 10 objectives.

Multi-objective optimization problems (MOPs) contain two or more conflicting objectives that need to be opti-
mized simultaneously. MOPs with more than three objectives are referred to as many-objective optimization 
problems (MaOPs). Due to the conflicting nature of the objectives, the optimization of MOPs results in a set 
of trade-off solutions instead of a single optimal solution. However, for better decision-making, the trade-off 
solutions are expected to be optimal and well-spread to cover the entire decision range. Multi/Many-objective 
Optimization Evolutionary Algorithms (MOEAs), due to their population-based nature, can provide the entire 
set of trade-off solutions in a single run and are extensively used to solve MOPs. MOEAs try to achieve this with 
the help of three leading operators, namely mating selection, recombination, and environmental selection. Mating 
selection is responsible for selecting high-quality parents that form a mating pool and are employed to generate 
offspring solutions. Recombination process generates quality offspring solutions by combining various solutions 
(crossover) and/or through perturbation of a single solution (mutation) from the mating pool. Finally, the goal 
of environmental selection is to select prospective solutions from the combination of parent and offspring solu-
tions for further evolution. As the performance of MOEAs significantly depends on environmental selection, 
various environmental selection operators have been proposed depending on which MOEAs are classified as 
Pareto-based1,  Decomposition2,3 or Reference Vector-based, and Indicator-based  MOEAs4. Each class of MOEAs 
possesses its advantages and disadvantages in achieving a proper balance between convergence and diversity as 
the number of objectives increases (i.e., MaOPs) and characteristics of the problem.

Since the output of MOEA is a set of Pareto optimal solutions, the Pareto dominance relation natu-
rally becomes a criterion to distinguish solutions during the evolutionary process. In Pareto-based MOEAs 
(PMOEAs)5–8, when the solutions are not distinguishable due to Pareto dominance, then a diversity criterion 
is employed where diverse solutions are preferred overcrowded ones. In MaOPs, as the number of objectives 
increases, the proportion of non-dominated solutions in a population tends to increase  exponentially9, resulting 
in the failure of Pareto dominance relation-based criterion in distinguishing solutions. This places more emphasis 
on density-based secondary selection criterion referred to as ‘active diversity promotion’10. The ineffectiveness of 
Pareto dominance in providing the required selection pressure as the number of objectives increases limits the 
scalability of PMOEAs. In addition, as the number of objectives increases, the diversity preserving mechanisms 
such as crowding distance and clustering become computationally expensive. Therefore, reference vectors are 
employed to reduce the computational complexity and hence the  diversity11.
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Unlike PMOEAs that compare individuals using two criteria (i.e., dominance relation and density), Indicator-
based MOEAs (IMOEAs)12 adopt a single value referred to as an indicator to measure both convergence and 
diversity  (IBEA12,  ISDE

+13). However, developing an indicator that balances both diversity and convergence is 
challenging. The ability of the indicator to balance the convergence and diversity gets challenging as the num-
ber of objectives increases. Some  indicators12 are biased towards convergence, while some favour  diversity14. 
Therefore, in 14, a stochastic combination of both convergence- and diversity-biased indicators are considered. 
IMOEA based on  hypervolume15 is effective but computationally expensive.  ISDE

+ is computationally efficient 
but fails to preserve the essential corner solutions.

In Reference Vector-based MOEAs (RV-MOEAs)16,17, the population members are guided towards the optimal 
Pareto Front (PF) in the direction specified by the weight or reference vectors. In general, the reference vectors 
are selected by sampling a uniform set of points on a hyperplane 

∑

i fi = 1 in the normalized M-objective space 
referred to as Normal Boundary Intersection (NBI)  method18. In other words, it is implicitly assumed that the 
optimal PF is bounded by a unit simplex of reference vectors that is non-degenerate, continuous, and smooth 
without significant nonlinearities. However, there exist several MOPs characterized by degenerate and discon-
tinuous PFs. As a result, several of the uniform weight vectors fail to get associated with any of the solutions and 
are referred to as ineffective weight vectors. In addition, it has been observed that the number of non-dominated 
solutions obtained by MOEA/D19, a primitive RV-MOEA, is often much smaller than the number of weight 
vectors as—(1) multiple weight vectors can share a single good solution, and (2) all solutions are not always 
non-dominated. Therefore, the Pareto dominance criterion has been integrated into RV-MOEAs (NSGA-III11,20, 
 RVEA21, MOEA/DD22,  TDEA8,  PMEA23). On the other hand, a set of uniform weight vectors may not be able to 
approximate the different sizes and shapes of PFs. In other words, the initialization of the weight vectors should 
depend on the shape and size of the PF, which may not be known in advance. Therefore, RV-MOEAs24–27 with 
weight vector adaptation during the evolution were proposed to effectively handle MOPs with regular as well as 
irregular PFs. Instead of adapting the weight vectors, a combination of uniform weight vectors and a secondary 
criterion (e.g., polar-metric23) in to select the solutions corresponding to the ineffective weight vectors have also 
been investigated. Motivated by the work  in23, we propose a hybridized framework, referred to as HS-MOEA, 
that employs  ISDE

+ as the secondary criterion to select solutions corresponding to the ineffective weight vectors, 
in addition to the Pareto dominance. In other words, the aim of this study is to develop a new environmental 
selection strategy that benefits from the advantages of Pareto-, decomposition- and indicator-based approaches. 
First, Pareto dominance alleviates the selection of dominated solutions. Second, weight vectors assist in the 
selection of well-diversified and convergent solutions in each generation. Third, if the weight vector fail to dif-
ferentiate the high-quality parent solutions then the indicator assists the selection process by considering both 
convergence and diversity. The ability of  ISDE

+ to select a set of converged and diverse solutions from unselected 
ones with respect to a set of already selected solutions is expected to aid the uniform weight vectors in achieving 
better convergence and diversity.

The rest of this paper is organized as follows. The second section presents the preliminaries. The third section 
introduces related work and motivation for the current study. The fourth section contains details of HS-MOEA. 
The fifth section presents experimental setup and comparison results of HS-MOEA with a number of state-of-
the-art MOEAs. The last section presents the conclusions and future directions.

Preliminaries
Generally, MOP is formulated as:

where x represents an D dimensional decision vector in � , and M is the number of objectives.
In multi-objective optimization, the following concepts have been well defined and widely applied.

1. Pareto Dominance:
  For any two solutions x and y , x is said to dominate y, denoted as x ≺ y iff  fi(x) ≤ fi(y) ∀ i ∈ {1, 2, . . . ,M} 

and fj(x) < fj(y)  for at least one j ∈ {1, 2, . . . ,M}.
2. Pareto Optimality:
  A solution x∗ is said to be Pareto-optimal if there is no other solution x ∈ �  such that x ≺ x∗.
3. Pareto-optimal Set (PS):
  It is the set of all Pareto-optimal solutions and is defined as PS = {x ∈ �|xisParetooptimal}.
4. Pareto-optimal Front (PF):
  It is the set of all Pareto-optimal solutions and is defined as PF =

{

f (x) ∈ RM
∣

∣x ∈ PS}.
5. Ideal point:
  Ideal point is a vector z∗ = (z∗1 , z

∗
2 , . . . , z

∗
M) , which is the infimum of fi for each i ∈ {1, 2, . . . ,M} in the PF.

6. Nadir point:
  Nadir point is a vector znad = (znad1 , znad2 , . . . , znadM ) , which is the supremum of fi for each i ∈ {1, 2, . . . ,M} 

in the PF.
7. Weight vector:
  A weight vector w is a M  dimensional vector w = (w1,w2, . . . ,wM) such that 

∑M
i=1wi = 1 and 

wi ≥ 0∀i ∈ {1, 2, . . . ,M} . The Normal Boundary Intersection (NBI) method is a systematic approach that 
places points on a normalized hyper-plane, i.e., on a (M − 1)-dimensional unit simplex. It generates 

(

H+M−1
M−1

)

  
number of finite weights where  M is the number of objective of problem and H is the number of divisions 

(1)
min f (x) =

(

f1(x), f2(x), . . . , fM(x)
)

s.t. x = (x1, x2, . . . , xD) ∈ � ⊂ R
D
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considered along each objective coordinate. Moreover, all the generated points are equally and uniformly 
distributed in that latex structure.

8. Penalty-based Boundary Intersection (PBI) Operator:
  Let w = (w1, w2, . . . , wM) be a direction vector, where 

∑

i wi = 1 . The PBI operator is defined as:

where � · � denotes L2 norm and θ is a penalty parameter.

Related work and motivation
In RV-MOEAs, the objective vector corresponding to each solution is converted into a scalar value based on a 
series of uniformly distributed weight vectors. To maintain population diversity during the evolution, RV-MOEAs 
assign the same search space preference to each direction vector. However, the performance of RV-MOEAs 
strongly depends on the shape of the  PF28, which is not known in advance. In addition, the size and shape of PF 
vary over generators. Therefore, it is essential to adapt the weight vectors during the evolution process or employ 
a secondary selection criterion to aid the uniform weight vectors.

In the literature, attempts have been made to improve the performance of RV-MOEAs on MaOPs with both 
the regular and irregular PFs. In NSGA-III11, significant changes to the selection operator were performed 
compared to its predecessor NSGA-II, where the diversity promotion among population members is achieved 
by a set of well-spread reference points. The employment of reference vectors improves the scalability of the 
algorithm by reducing the computational complexity that arises due to the increase in the number of objectives. 
NSGA-III is further modified (referred to as A-NSGA-III20) where ineffective reference points are re-allocated 
based on the distribution and association of the solution. Ineffective reference vectors are the ones that do not 
have any population members associated with them.  RVEA21 employs a scalarization approach, termed as Angle 
Penalized Distance, that assesses convergence by calculating the distance between the candidate solution and 
the weight vector.  In27, a weight vector adaptation strategy was employed to enhance the performance of RVEA. 
 TDEA8 enhances the convergence of NSGA-III in high dimensional objective spaces by—(1) incorporating a new 
dominance scheme and (2) employing the aggregation function-based fitness evaluation scheme of MOEA/D. 
In Polar Metric based Evolutionary Algorithm (PMEA)23, a metric inspired from the PBI operator referred to as 
polar-metric (p-metric) is proposed to measure the convergence and diversity. During environmental selection, 
a weight vector adjustment strategy is employed to select the well-diversified solutions. The environmental selec-
tion of PMEA is demonstrated in Fig. 1 where xi and wi represent the solutions and weight vectors, respectively. 
The values on the perpendicular lines represent the p-metric values of the solutions to the corresponding weight 
vectors. As in Fig. 1a, PMEA assigns x1, x4, x5 to w2,w3,w1 , respectively and selects for future evolution. Solutions 
x2 and x3 are not selected. In addition, w4 does not have any associated solutions and is considered as ineffective. 
The ineffective weight vector ( w4 ) is re-initialized ( w5 ) to pass through the nearest non-selected solution (x3) 
as shown in Fig. 1b. After the re-initialization, solution x3 associated with weight vector w5 is selected. In other 
words, starting with uniform weight vectors, at first, PMEA selects solutions based on p-metric. Later, a weight 
vector adaptation is made to select the rest of the solutions necessary to create the population for the next gen-
eration. However, during the next generation, the weight vectors are uniformly initialized before evaluating the 
p-metric. From Fig. 1b, it can be noticed that the weight vectors are not well diversified can affect the population 

(2)

gpbi
(

x,w, z∗
)

= d1 + θd2

where, d1 =
(

F(x)− z∗
)T

w/�w�

d2 = �F(x)− z∗ − (d1/�w�)w�

Figure 1.  Selection of PMEA.
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diversity during the evolution process. In other words, adapting weights to select the solution in each generation 
based on the distribution of population is not appropriate.

Motivated by these observations, we propose to combine the advantages of Pareto, decomposition, and 
indicator methods in a single framework. In the proposed framework, the uniform weight vectors are assisted 
by  ISDE

+ indicator, which serves as a secondary criterion.

Hybrid selection based multi/many‑objective evolutionary algorithm (HS‑MOEA)
In this section, Hybrid Selection based Multi/Many-Objective Evolutionary Algorithm (HS-MOEA) is intro-
duced. The different steps of HS-MOEA are detailed below.

Initialization. A set of uniform weight vectors ( w ) are generated using the NBI method, then subsequently, 
a population of size N ( |w| ) is initialized within the permissible boundaries as shown in Line 01 of Algorithm 1.

Mating selection and offspring generation. ISDE
+ indicator values corresponding to each solution in 

the population  (Pt), corresponding to the tth iteration is evaluated using Eq. (3) (Line 04, Algorithm 1). The solu-
tions with the highest  ISDE

+ values are considered to be better. Using  ISDE
+ values, binary tournament selection is 

performed to generate the mating pool (Line 05, Algorithm 1). Then, the offspring population is generated using 
the variation operators such as polynomial  mutation6 and simulated binary  crossover6 (Line 06, Algorithm 1).

In HS-MOEA, the mating selection is performed using  ISDE
+ indicator. The indicator values corresponding 

to each solution in the population is evaluated using Eq. (3) (Line 04, Algorithm 1).

where PSB(x) ∈ Pt and y ∈ PSB(x) , such that SB
(

y
)

< SB(x). SB represent the sum of normalized objectives. 
NSB(x) represents the size of PSB(x).

The solutions with the highest  ISDE
+ values are considered to be better. Then, the binary tournament selec-

tion is performed based on  ISDE
+ values to generate the matting pool (Line 05, Algorithm 1). After the mating 

selection, the offspring population is generated using the variation operators such as mutation and crossover, as 
shown in Line 06, Algorithm 1. In the current, the mutation and crossover operators employed are Polynomial 
Mutation (PM)2 and Simulated Binary Crossover (SBX)2.

Normalization. Normalization (Line 07, Algorithm 1) is an essential tool to map the unscaled search space 
to scaled one so as to characterize the badly scaled objectives. In HS-MOEA, the normalization (of the jth popula-
tion member is given in Eq. (5).

where, z∗i  and znadi  are considered as the lowest and highest values of ith objective function.

(3)I+SDE(x) =
min

y ∈ PSB(x), x �= y

{

dist
(

F(x), F
(

y
′

1

))

, dist
(

F(x), F
(

y
′

2

))

, . . . , dist
(

F(x), F
(

y
′

NSB(x)

))}

(4)F
(

y
′

i

(

j
)

)

=

{

F
(

x
(

j
))

ifF
(

yi
(

j
))

< F
(

x
(

j
))

F
(

yi
(

j
))

otherwise
for j = 1, 2, . . . ,M

(5)F
j
i =

f
j
i − z∗i

znadi − z∗i
, ∀i = 1, 2, . . . ,M
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Environmental Selection. The environmental selection selects a set of N converged but diversified solu-
tions from a combined population (R) of size 2N (Line 08, Algorithm 1). The working mechanism is detailed 
in Algorithm 2. Non-dominated  sorting6 (Lines 01 ~ 02, Algorithm 2) is performed to classify the population 
R into several fronts (Fr) and identify the population PND =

⋃

l=1:L Frl (where L satisfies 
∣

∣

⋃

l=1:L Frl
∣

∣ ≥ N and 
∣

∣

⋃

l=1:L−1 Frl
∣

∣ < N).

Association. In HS-MOEA, the association procedure (Line 04, Algorithm  2) is performed in the normal-
ized objective space, where the ideal point z∗ is shifted to origin. At each generation, the individuals of the PNDt  
population is associated with the reference vectors ( w) . For the association operator, the norm of each solution 
x in PNDt  is evaluated as:

Then, the angle between F(x) and wi is defined as:

where,  F(x) ◦ wi =
∑M

i=1 Fi(x) · w
j
i  is  the dot product of  F(x) = (F1(x), F2(x), . . . , FM(x)), and 

wi = (wi
1,w

i
2, . . . ,w

i
M).

During association, each solution is assigned to its closest reference vector. Ki is the number of solutions 
associated with the weight vector wi during the association process, which can range from 0 to N  . Figure 2 
represents the association operator, where the filled circles are the associated solutions with the corresponding 
nearest weight vector.

(6)norm(F(x)) =

√

√

√

√

M
∑

i=1

Fi(x)
2

(7)angle
(

F(x),wi
)

= arccos

∣

∣

∣

∣

∣

F(x) ◦ wi

norm(F(x)) · norm
(

wi
)

∣

∣

∣

∣

∣
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Two step selection. For each x and y ∈ Ki , x is preferred to y iff PBI
(

x,wi
)

< PBI(y,wi) where 
PBI(x,w) = d1 + θd2 , d2 = perpendicular distance of x over w , d1 = distance between the origin and the pro-
jected point of x over w , θ = penalty parameter. PBI refers to the penalty-based boundary  intersection16.

First, select one solution from each non-empty Ki ∀i = 1, 2, . . . ,N  based on PBI value and save them in S 
(referred to as a set of selected solutions). The remaining solutions are stored in U  (referred to as a set of unse-
lected solutions). If the size of S is N then the whole set S is declared as a parent population of the next generation 
(Line 06, Algorithm 2); otherwise, go for the second round of selection. In the second round, (N − |S|) solu-
tions are to be selected from U  using  ISDE

+ indicator. For each x ∈ U  the values of  ISDE
+ referred to as  IU

SDE
+ is 

calculated (Line 08, Algorithm 2). To evaluate the indicator, the solutions in U are sorted in the ascending order 
of the normalized sum of objectives (SB) (Line 09, Algorithm 2). The solution with the least SB is assigned the 
highest possible indicator value of one. To evaluate the  IU

SDE
+ of a given solution x ∈ U  , the solutions in U that 

are better in convergence with the least SB compared to x and solutions in set S are shifted as in Eq. (8). Then 
(N − |S|) solutions from U with the largest  IU

SDE
+ are selected (P1) (Line 10, Algorithm 2) and added to S (Line 

11, Algorithm 2), which becomes the population (P) for the next generation.

where A is ( USB(x)+ S) . USB(x) ∈ U  and y ∈ A. For all y ∈ USB(x) such that SB
(

y
)

< SB(x) , S and U represent 
a set of selected and unselected solutions respectively by weight vector association.

In other words, the use of  ISDE
+ indicator enables the selection of converged, yet diverse solutions with respect 

to the already selected solutions (S). First, Pareto dominance alleviates the selection of dominated solutions. Sec-
ond, weight vectors assist in the selection of well-diversified and convergent solutions in each generation. Third, 
if the weight vector fails to differentiate the high-quality parent solutions, then the indicator assists the selection 
process by considering both convergence and diversity. The advantage of employing  ISDE

+ is that it enables the 
selection of the solutions considering the solutions that are already selected through weight vector association 
in the second step. In other words, HS-MOEA gets benefitted from both the reference vectors and indicators.

Computational complexity. The non-dominated sorting (Line 01, Algorithm 2) of a population of size 2 N 
having M-dimensional objective vectors requires O(NlogM−2N)  computations11. All operations in Algorithm 2 
in associating a maximum of 2N population members to (H ≈ N) reference points would require O(MNH) . 
Thereafter, for calculating the  ISDE

+ of maximum N population members would require O(N2) . Therefore, the 
computational complexity of one generation of HS-MOEA is O(N2logM−2N) or O(MN2) , whichever is larger.

Experimental setup, results and discussion
Experiments were conducted on 16 scalable test problems from  DTLZ29 and  WFG30, test suites comprising of 7 
and 9 problems, respectively. For each test problem, 2-, 4-, 6-, 8- and 10-objectives are considered. The parameter 
values employed are present in Table 1. On each instance, 30 independent runs were performed for each algo-
rithm on a PC with a 3.30 GHz Intel (R) Core (TM) i7- 8700 CPU and Windows 10 Pro 64-bit operating system 
with 16 GB RAM. As a stopping criterion, the maximum number of generations for DTLZ1 and WFG2 is set to 
700 and for DTLZ3 and WFG1 it is set as 1000. For the other problems (DTL2, DTLZ4–7, and WFG3–9) it is 
set to 250. All algorithms considered employ population size (N) of 100, 165, 182, 240 and 275 for 2-, 4-, 6-, 8-, 
10-objectives,  respectively13. Simulated binary crossover and polynomial mutation with distribution indices and 
probabilities set to nm = 20 , nc = 20 , pc = 1.0 and pm = 1/D , respectively, are employed.

In order to compare the efficiency of HS-MOEA with the state-of-the-art algorithms such as PMEA, TDEA, 
RVEA, NSGAIII, MOEA/D,  ISDE

+, IBEA,  ONEBYONE31, a quantitative indicator, namely HyperVolume (HV) is 

(8)IU+
SDE =

min
y ∈ L, x �= y

{

dist
(

F(x), F
(

y
′

1

))

, dist
(

F(x), F
(

y
′

2

))

, . . . , dist
(

F(x), F
(

y
′

|A|

))}

Figure 2.  Illustration of the association operator using an acute angle.
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being employed. The larger value of HV implies the superiority of the algorithm. The experimental results (mean 
and standard deviation values of normalized HV) on benchmark suites are presented in Table 2. In addition, the 
statistical tests (t-test) at a 5% significance level were conducted to compare the significance of the difference 
between the mean metric values yielded by HS-MOEA and state-of-the-art algorithms. The signs “ + ”, “−” and 
“≈” against the HV values indicate that the HS-MOEA is statistically “better”, “worse” and “comparable” with the 
corresponding algorithm, respectively. The last row of Table 2 represents the overall performance of HS-MOEA 
in terms of the number of instances it is better (Win-W), comparable (Tie-T) and worst (Loss-L) with respect 
to the corresponding algorithm.

As shown in Table 2 and Fig. 3, HS-MOEA significantly outperforms or comparable to PMEA, TDEA, 
RVEA, NSGAIII, MOEA/D, MOEA/DD,  ISDE

+ and ONEBYONE in 72/80 ≈ 90%, 62/80 ≈ 77.5%, 67/80 ≈ 83.75%, 
60/80 ≈ 75%, 65/80 ≈ 81.25%, 65/80 ≈ 81.25%, 47/80 ≈ 58.75% and 64/80 ≈ 80% of cases, respectively. It can be 
observed that HS-MOEA consistently performs better or is similar to PMEA. Similarly, HS-MOEA outperforms 
ONEBYONE on most of the problems. However, in case of WFG1 and WFG2, ONEBYONE performs better 
over HS-MOEA. On the other hand; TDEA, RVEA and NSGA-III performs better than HS-MOEA on DTLZ1, 
WFG1 and WFG2 test problems. However, the improvements seems to be minimal compared to the advantages 
HS-MOEA achieves on other problems such as DTLZ5, DTLZ7, WFG3 ~ 9. MOEA/D and MOEA/DD seem to 
perform similarly compared to HS-MOEA, performing slightly better on DTLZ1. On WFG3, MOEA/D performs 
better than all the state-of-the-art algorithms, including HS-MOEA. However, the degraded performance of 
MOEA/D on the remaining 15 problems seems to outweigh the superior performance on WFG3.

Among the state-of-the-art algorithms,  ISDE
+ exhibits competitive performance compared to HS-MOEA. The 

superiority of  ISDE
+ compared to HS-MOEA can be seen on DTLZ1, WFG1, WFG6 and WFG9. The performance 

improvement is significant; however, HS-MOEA is also close. HS-MOEA has a slight advantage over  ISDE
+ on 

problems such as DTLZ7 and WFG2 that have disconnected PF.
To demonstrate the effectiveness of HS-MOEA, a more detailed analyse corresponding to DTLZ1 and DTLZ7 

is presented. GD and Delta indicators that indicate the convergence and diversity performance of MOEAs are 
summarized in Tables 3 and 4, respectively. Lower values of both GD and Delta values indicate the superiority of 
the algorithm. The convergence (GD) of HS-MOEA is consistently better than PMEA. However, the convergence 
of HS -MOEA lags behind  ISDE

+ on DTLZ1, which was designed to test the convergence performance of MOEAs. 
However, the diversity (Delta) of HS -MOEA is consistently better than  ISDE

+. On the other hand, HS -MOEA 
fails to maintain the diversity with respect to PMEA on DLTZ7, which has discontinuous PF. In other words, the 
convergence of HS-MOEA is better or comparable to PMEA, while the diversity is better or comparable to  ISDE

+.
The improved performance of HS-MOEA is because it gets benefitted from both the best qualities of each 

component—(1) Pareto dominance’s ability to eliminate low-quality solutions, (2) Uniform weight vectors main-
tain the diversity, and (3)  ISDE

+ indicator enable both convergence and diversity in problems with MOPs with 
irregular or discontinuous PFs. Therefore, the performance of HS-MOEA is competitive or better in most cases. 
The significance is more visible in problems with discontinuous PFs such as DTLZ7.

Figures 4 and 5 present the parallel coordinates that describe the distribution of the solutions corresponding 
to PMEA,  ISDE

+ and HS-MOEA on 8-objective instances of DTLZ1 and DTLZ7. From the figures, it is evident 
that HS-MOEA is able to provide a well converged and diverse set of solutions compared to PMEA on both the 
DTLZ1 and DTLZ7 instances. However, the parallel coordinates of  ISDE

+ and proposed HS-MOEA seem nearly 
identical on both DTLZ1 and DTLZ7. From the results in Table 4, it is evident that  ISDE

+ slightly outperforms 
HS-MOEA on DTLZ1, which has continuous linear PF, while HS-MOEA performs better on DTLZ7 that has 
discontinuities in the PF.

Conclusion
This paper proposes a Hybrid Selection based Multi/Many-objective optimization, named HS-MOEA. In HS-
MOEA, a new environmental selection that benefits from the advantages of Pareto dominance, reference vec-
tors and an indicator is proposed. HS-MOEA is compared with seven state-of-the-art MOEAs on a number of 
widely used test instances. Experimental results demonstrate the superiority of HS-MOEA among all compared 
algorithms, mainly on problems with discontinuous PFs such as DTLZ7. In the future, we would like to inves-
tigate the possibility of weight vector adaptation using the  ISDE

+ indicator. In other words, new positions of the 
ineffective weight vectors and the consequent adjustment of the effective weight vectors can be estimated by 
employing the indicator values.

Table 1.  Parameter settings for DTLZ and WFG test suites. K DTLZ problem specific parameter, M number of 
objectives, K position vector, L distance vector, D number of variables.

Parameter DTLZ1 DTLZ2-DTLZ6 DTLZ7 WFG1–WFG9

k 5 10 20 –

M 2, 4, 6, 8, 10 2, 4, 6, 8, 10

K – 4, 6, 10, 7, 9

L – 10

D M − 1 + K K + L
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# M HS-MOEA PMEA TDEA RVEA NSGAIII MOEA/D MOEA/DD ISDE
+ 1BY1EA

DTLZ1

2 4.94E−1 
(6.06E−4)

4.94E−1 
(6.44E−4)−

4.95E−1 
(4.84E−4)− 4.95E−1 (7.42E−4)− 4.95E−1 

(6.16E−4)−
4.95E−1 
(6.88E−4)−

4.95E−1 
(5.36E−4)−

4.94E−1 
(6.42E−4)≈

4.82E−1 
(6.94E−3) + 

4 9.13E−1 
(1.51E−3)

5.73E−1 
(1.62E−1) + 

9.19E−1 
(3.53E−4)− 9.19E−1 (3.97E−4)− 9.19E−1 

(4.03E−4)−
9.19E−1 
(5.52E−4)−

9.19E−1 
(4.41E−4)−

9.10E−1 
(1.68E−3) + 

8.66E−1 
(1.02E−2) + 

6 9.68E−1 
(4.29E−3)

3.22E−1 
(8.93E−2) + 

9.82E−1 
(2.97E−3)− 9.83E−1 (1.98E−4)− 9.83E−1 

(2.79E−4)−
9.82E−1 
(4.18E−4)−

9.82E−1 
(2.28E−4)−

9.75E−1 
(2.40E−3)−

9.39E−1 
(7.84E−3) + 

8 9.88E−1 
(2.16E−3)

3.52E−1 
(7.72E−2) + 

9.64E−1 
(1.48E−1)≈ 9.95E−1 (1.98E−4)− 9.94E−1 

(2.45E−3)−
9.83E−1 
(4.02E−3) + 

9.86E−1 
(2.30E−3) + 

9.92E−1 
(9.42E−4)−

9.72E−1 
(3.02E−3) + 

10 9.92E−1 
(2.09E−3)

6.10E−1 
(8.00E−2) + 

9.68E−1 
(1.48E−1)≈ 9.99E−1 (4.01E−5)− 9.88E−1 

(4.14E−2)≈
9.97E−1 
(6.56E−4)−

9.94E−1 
(2.47E−3)−

9.96E−1 
(7.55E−4)−

9.86E−1 
(2.35E−3) + 

DTLZ2

2 2.09E−1 
(4.80E−4)

2.10E−1 
(4.06E−4)−

2.10E−1 
(4.36E−4)− 2.09E−1 (8.60E−4) + 2.10E−1 

(4.20E−4)−
2.10E−1 
(3.70E−4)−

2.10E−1 
(4.54E−4)−

2.10E−1 
(3.78E−4)−

2.10E−1 
(3.20E−4)−

4 5.84E−1 
(5.39E−4)

5.84E−1 
(5.72E−4)≈

5.83E−1 
(4.78E−4) + 5.82E−1 (5.69E−4) + 5.82E−1 

(5.57E−4) + 
5.83E−1 
(5.71E−4) + 

5.83E−1 
(4.55E−4) + 

5.79E−1 
(2.69E−3) + 

5.71E−1 
(2.85E−3) + 

6 7.60E−1 
(5.61E−4)

7.60E−1 
(5.58E−4)≈

7.57E−1 
(7.95E−4) + 7.57E−1 (6.38E−4) + 7.53E−1 

(1.26E−3) + 
7.56E−1 
(6.98E−4) + 

7.60E−1 
(4.75E−4)≈

7.68E−1 
(3.43E−3)−

7.39E−1 
(6.51E−3) + 

8 8.66E−1 
(4.72E−4)

8.63E−1 
(7.90E−4) + 

8.58E−1 
(1.03E−3) + 8.59E−1 (8.82E−4) + 8.42E−1 

(3.17E−2) + 
8.49E−1 
(2.92E−3) + 

8.51E−1 
(3.23E−3) + 

8.84E−1 
(3.17E−3)−

8.56E−1 
(4.12E−3) + 

10 9.48E−1 
(2.41E−4)

9.48E−1 
(3.20E−4) + 

9.45E−1 
(4.40E−4) + 9.46E−1 (3.14E−4) + 9.08E−1 

(4.69E−2) + 
9.48E−1 
(5.51E−4) + 

9.45E−1 
(5.93E−4) + 

9.48E−1 
(1.56E−3) + 

9.21E−1 
(3.32E−3) + 

DTLZ3

2 2.09E−1 
(9.35E−4)

2.09E−1 
(1.02E−3)≈

2.09E−1 
(1.06E−3)≈ 2.09E−1 (1.50E−3)≈ 2.09E−1 

(1.05E−3) + 
2.08E−1 
(2.07E−3) + 

1.76E−1 
(5.64E−2) + 

2.09E−1 
(1.14E−3) + 

1.24E−1 
(7.82E−2) + 

4 5.96E−1 
(2.81E−3)

3.71E−1 
(1.03E−1) + 

5.91E−1 
(3.90E−3) + 5.93E−1 (2.89E−3) + 5.92E−1 

(2.80E−3) + 
5.76E−1 
(1.52E−2) + 

5.87E−1 
(5.72E−3) + 

5.90E−1 
(3.23E−3) + 

5.83E−1 
(4.07E−3) + 

6 8.19E−1 
(2.18E−3)

1.51E−1 
(1.70E−1) + 

8.04E−1 
(6.94E−3) + 8.10E−1 (2.75E−3) + 7.98E−1 

(3.42E−2) + 
7.87E−1 
(6.10E−2) + 

1.09E−1 
(1.81E−1) + 

8.12E−1 
(5.78E−3) + 

6.37E−1 
(3.01E−1) + 

8 9.75E−1 
(5.79E−4)

1.93E−1 
(1.33E−1) + 

9.42E−1 
(6.24E−2) + 9.69E−1 (1.30E−3) + 9.21E−1 

(1.38E−1) + 
9.34E−1 
(9.72E−2) + 

6.30E−1 
(3.22E−1) + 

9.74E−1 
(1.10E−3) + 

9.71E−1 
(9.46E−4) + 

10 1.00E + 0 
(0.00E + 0)

4.83E−1 
(1.98E−1) + 

1.00E + 0 
(0.00E + 0)≈

1.00E + 0 
(0.00E + 0)≈

1.00E + 0 
(3.65E−7)≈

9.99E−1 
(1.96E−3) + 

1.00E + 0 
(2.49E−6) + 

1.00E + 0 
(0.00E + 0)≈

1.00E + 0 
(0.00E + 0)≈

DTLZ4

2 1.54E−1 
(9.42E−2)

1.81E−1 
(7.23E−2)≈

1.89E−1 
(6.41E−2)− 2.09E−1 (1.02E−3)− 1.82E−1 

(7.27E−2)≈
1.74E−1 
(7.93E−2)≈

2.10E−1 
(4.42E−4)−

2.10E−1 
(4.43E−4)−

1.96E−1 
(5.33E−2)−

4 5.91E−1 
(5.43E−4)

5.91E−1 
(6.26E−4) + 

5.90E−1 
(6.59E−4) + 5.90E−1 (4.94E−4) + 5.77E−1 

(4.63E−2)≈
3.89E−1 
(1.41E−1) + 

5.90E−1 
(6.01E−4) + 

5.85E−1 
(2.27E−3) + 

5.83E−1 
(8.38E−3) + 

6 7.92E−1 
(4.84E−4)

7.92E−1 
(5.05E−4) + 

7.90E−1 
(7.30E−4) + 7.88E−1 (1.27E−2) + 7.78E−1 

(2.37E−2) + 
6.26E−1 
(1.12E−1) + 

7.86E−1 
(1.63E−2) + 

7.93E−1 
(3.44E−3)−

7.86E−1 
(1.61E−2) + 

8 9.03E−1 
(3.12E−4)

9.01E−1 
(6.72E−4) + 

8.98E−1 
(7.75E−4) + 8.99E−1 (6.00E−4) + 8.86E−1 

(2.50E−2) + 
7.94E−1 
(8.24E−2) + 

8.97E−1 
(1.08E−3) + 

9.11E−1 
(2.27E−3)−

9.09E−1 
(1.55E−3)−

10 9.64E−1 
(1.87E−4)

9.65E−1 
(2.57E−4)−

9.64E−1 
(2.87E−4)≈ 9.64E−1 (3.28E−4)≈ 9.58E−1 

(1.54E−2) + 
8.44E−1 
(8.11E−2) + 

9.64E−1 
(2.68E−4) + 

9.60E−1 
(2.07E−3) + 

9.58E−1 
(1.13E−3) + 

DTLZ5

2 2.10E−1 
(5.00E−4)

2.10E−1 
(2.93E−4)−

2.10E−1 
(3.26E−4)− 2.09E−1 (1.00E−3) + 2.10E−1 

(3.12E−4)−
2.10E−1 
(4.03E−4)−

2.10E−1 
(4.16E−4)−

2.10E−1 
(5.23E−4)−

2.10E−1 
(3.48E−4)−

4 7.25E−1 
(1.56E−3)

7.21E−1 
(1.73E−3) + 

7.14E−1 
(4.07E−3) + 6.86E−1(3.52E−3) + 7.12E−1 

(6.56E−3) + 
7.24E−1 
(5.06E−4) + 

7.15E−1 
(1.49E−3) + 

7.25E−1 
(1.16E−3)≈

7.19E−1 
(1.56E−3) + 

6 8.37E−1 
(3.07E−3)

8.24E−1 
(1.02E−2) + 

8.16E−1 
(7.34E−3) + 7.75E−1 (6.82E−3) + 8.06E−1 

(2.50E−2) + 
7.83E−1 
(8.08E−3) + 

7.90E−1 
(1.02E−2) + 

8.33E−1 
(3.82E−3) + 

7.75E−1 
(4.01E−3) + 

8 8.47E−1 
(2.31E−3)

8.20E−1 
(1.06E−2) + 

8.21E−1 
(8.57E−3) + 7.10E−1 (1.92E−2) + 8.08E−1 

(1.63E−2) + 
7.72E−1 
(2.58E−3) + 

7.93E−1 
(7.60E−3) + 

8.44E−1 
(3.04E−3) + 

7.80E−1 
(4.41E−3) + 

10 8.61E−1 
(2.16E−3)

7.85E−1 
(1.61E−2) + 

8.48E−1 
(4.49E−3) + 7.98E−1 (1.10E−2) + 8.21E−1 

(2.26E−2) + 
7.94E−1 
(1.28E−3) + 

8.21E−1 
(4.04E−3) + 

8.57E−1 
(3.96E−3) + 

8.03E−1 
(4.54E−3) + 

DTLZ6

2 2.10E−1 
(4.48E−4)

2.10E−1 
(3.19E−4) + 

2.10E−1 
(4.44E−4)≈ 2.10E−1 (3.38E−4)≈ 2.10E−1 

(4.44E−4)≈
2.10E−1 
(3.87E−4)≈

2.10E−1 
(4.33E−4)≈

2.10E−1 
(5.44E−4)≈

2.10E−1 
(3.51E−4)−

4 9.13E−1 
(4.90E−4)

9.07E−1 
(1.13E−2) + 

9.08E−1 
(1.52E−3) + 9.01E−1 (2.99E−3) + 9.06E−1 

(3.18E−3) + 
9.11E−1 
(1.39E−3) + 

9.09E−1 
(2.22E−3) + 

9.13E−1 
(6.10E−4) + 

9.14E−1 
(3.43E−4)−

6 9.80E−1 
(9.67E−4)

9.60E−1 
(2.62E−2) + 

9.77E−1 
(1.83E−3) + 9.54E−1 (1.89E−2) + 9.71E−1 

(8.01E−3) + 
9.42E−1 
(1.82E−2) + 

9.63E−1 
(3.45E−3) + 

9.79E−1 
(1.16E−3) + 

9.72E−1 
(1.88E−3) + 

8 9.84E−1 
(2.66E−3)

9.60E−1 
(2.34E−2) + 

9.83E−1 
(9.08E−4) + 9.65E−1 (2.22E−2) + 9.62E−1 

(1.97E−2) + 
9.56E−1 
(1.46E−3) + 

9.75E−1 
(7.20E−3) + 

9.84E−1 
(6.39E−4)≈

9.64E−1 
(2.05E−2) + 

10 9.80E−1 
(6.50E−3)

9.32E−1 
(2.64E−2) + 

9.82E−1 
(7.92E−4)≈ 9.66E−1 (1.19E−2) + 9.58E−1 

(2.40E−2) + 
9.54E−1 
(8.94E−4) + 

9.75E−1 
(3.96E−3) + 

9.82E−1 
(1.24E−3)−

9.46E−1 
(2.21E−2) + 

Continued
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# M HS-MOEA PMEA TDEA RVEA NSGAIII MOEA/D MOEA/DD ISDE
+ 1BY1EA

DTLZ7

2 1.41E−1 
(4.94E−4)

1.41E−1 
(3.54E−4)≈

1.41E−1 
(4.02E−4)≈ 1.26E−1 (3.28E−3) + 1.41E−1 

(3.26E−4)≈
1.19E−1 
(2.26E−2) + 

1.37E−1 
(5.18E−4) + 

1.41E−1 
(6.65E−4) + 

6.56E−2 
(5.31E−3) + 

4 1.98E−1 
(4.52E−3)

1.94E−1 
(3.55E−3) + 

1.81E−1 
(6.63E−3) + 1.59E−1 (6.20E−3) + 1.67E−1 

(4.25E−3) + 
9.08E−2 
(1.15E−2) + 

4.51E−2 
(2.50E−2) + 

1.89E−1 
(6.40E−3) + 

1.65E−1 
(7.86E−3) + 

6 1.86E−1 
(3.45E−3)

1.82E−1 
(1.79E−3) + 

1.12E−1 
(2.22E−2) + 1.23E−1 (9.59E−3) + 1.36E−1 

(5.54E−3) + 
1.94E−3 
(1.11E−3) + 

5.20E−2 
(1.22E−2) + 

1.76E−1 
(5.50E−3) + 

6.72E−2 
(1.22E−2) + 

8 1.60E−1 
(3.48E−3)

1.30E−1 
(4.84E−3) + 

1.08E−1 
(2.10E−2) + 9.12E−2 (1.14E−2) + 1.10E−1 

(9.86E−3) + 
1.51E−4 
(7.10E−5) + 

2.08E−2 
(1.93E−2) + 

1.54E−1 
(7.92E−3) + 

2.67E−2 
(9.98E−3) + 

10 1.29E−1 
(3.24E−3)

1.07E−1 
(3.26E−3) + 

1.17E−1 
(6.22E−3) + 6.04E−2 (1.16E−2) + 1.04E−1 

(6.11E−3) + 
7.74E−4 
(1.25E−3) + 

2.73E−4 
(1.60E−4) + 

1.20E−1 
(1.67E−2) + 

2.01E−2 
(8.16E−3) + 

WFG1

2 6.08E−1 
(1.65E−2)

6.20E−1 
(6.26E−3)−

6.28E−1 
(1.90E−3)− 6.26E−1 (7.82E−3)− 6.26E−1 

(2.95E−3)−
5.59E−1 
(1.42E−3) + 

5.86E−1 
(1.20E−2) + 

6.07E−1 
(1.45E−2)≈

6.19E−1 
(7.42E−3)−

4 9.47E−1 
(1.01E−2)

9.40E−1 
(6.28E−3) + 

9.85E−1 
(6.59E−4)− 9.85E−1 (5.46E−3)− 9.87E−1 

(3.37E−4)−
8.42E−1 
(1.24E−2) + 

9.24E−1 
(3.37E−2) + 

9.60E−1 
(6.22E−3)−

9.64E−1 
(4.50E−3)−

6 9.72E−1 
(7.92E−3)

9.65E−1 
(8.28E−3) + 

9.90E−1 
(1.54E−3)− 9.93E−1 (5.18E−3)− 9.99E−1 

(2.71E−4)−
8.50E−1 
(1.74E−2) + 

9.12E−1 
(4.35E−2) + 

9.77E−1 
(6.80E−3)−

9.89E−1 
(6.14E−3)−

8 9.86E−1 
(4.47E−3)

9.42E−1 
(4.98E−2) + 

9.87E−1 
(1.55E−2)≈ 9.86E−1 (2.78E−2)≈ 9.94E−1 

(5.48E−3)−
7.92E−1 
(2.54E−2) + 

9.24E−1 
(3.76E−2) + 

9.91E−1 
(2.45E−3)−

9.89E−1 
(3.70E−3)−

10 9.90E−1 
(2.30E−3)

9.74E−1 
(3.11E−2) + 

9.93E−1 
(1.61E−3)− 9.91E−1 (6.40E−3)≈ 9.98E−1 

(1.75E−3)−
6.36E−1 
(1.79E−1) + 

8.62E−1 
(6.35E−2) + 

9.91E−1 
(1.84E−3)≈

9.88E−1 
(4.74E−3) + 

WFG2

2 5.41E−1 
(1.70E−3)

5.41E−1 
(1.52E−3)≈

5.51E−1 
(1.28E−3)− 5.28E−1 (9.37E−3) + 5.44E−1 

(4.53E−3)−
3.50E−1 
(6.58E−2) + 

5.23E−1 
(2.31E−2) + 

5.40E−1 
(2.72E−3) + 

5.40E−1 
(1.32E−2)≈

4 9.43E−1 
(4.16E−3)

9.42E−1 
(5.20E−3)≈

9.82E−1 
(1.04E−3)− 9.63E−1 (3.82E−3)− 9.78E−1 

(2.78E−3)−
8.31E−1 
(2.22E−2) + 

8.99E−1 
(1.44E−2) + 

9.37E−1 
(1.10E−2) + 

9.44E−1 
(7.76E−3)≈

6 9.41E−1 
(9.38E−3)

9.42E−1 
(1.07E−2)≈

9.77E−1 
(1.46E−2)− 9.60E−1 (1.21E−2)− 9.92E−1 

(2.83E−3)−
8.13E−1 
(5.59E−2) + 

9.05E−1 
(3.17E−2) + 

9.36E−1 
(1.59E−2)≈

9.75E−1 
(5.37E−3)−

8 9.54E−1 
(7.21E−3)

9.57E−1 
(7.93E−3)≈

9.85E−1 
(1.75E−2)− 9.33E−1 (2.01E−2) + 9.94E−1 

(3.18E−3)−
7.42E−1 
(3.76E−2) + 

8.13E−1 
(4.73E−2) + 

9.46E−1 
(1.32E−2) + 

9.81E−1 
(8.60E−3)−

10 9.51E−1 
(2.05E−2)

9.49E−1 
(1.08E−2)≈

9.79E−1 
(9.43E−3)− 9.52E−1 (1.22E−2)≈ 9.96E−1 

(3.11E−3)−
7.24E−1 
(6.52E−2) + 

9.07E−1 
(2.08E−2) + 

9.47E−1 
(1.47E−2)≈

9.81E−1 
(7.41E−3)−

WFG3

2 4.95E−1 
(5.86E−4)

4.94E−1 
(9.35E−4)≈

4.95E−1 
(8.27E−4)− 4.92E−1 (1.62E−3) + 4.95E−1 

(5.87E−4)−
4.94E−1 
(1.01E−3)≈

4.96E−1 
(1.77E−3)−

4.94E−1 
(5.29E−4) + 

4.83E−1 
(5.88E−3) + 

4 4.91E−1 
(1.63E−2)

5.60E−1 
(3.45E−2)−

4.55E−1 
(1.08E−2) + 4.80E−1 (2.72E−2) + 4.82E−1 

(2.89E−2)≈
6.04E−1 
(4.57E−2)−

5.31E−1 
(3.87E−2)−

4.64E−1 
(1.05E−2) + 

4.24E−1 
(4.48E−2) + 

6 4.99E−1 
(1.53E−2)

6.35E−1 
(2.88E−2)−

4.39E−1 
(2.18E−2) + 5.22E−1 (7.26E−2)− 4.87E−1 

(1.70E−2) + 
6.52E−1 
(3.04E−2)−

5.36E−1 
(1.49E−2)−

4.57E−1 
(2.63E−2) + 

4.53E−1 
(6.65E−2) + 

8 5.52E−1 
(3.74E−2)

5.42E−1 
(6.34E−2)≈

2.49E−1 
(5.88E−2) + 5.15E−1 (1.14E−1)≈ 4.71E−1 

(4.39E−2) + 
6.77E−1 
(5.24E−2)−

4.29E−1 
(2.29E−2) + 

4.35E−1 
(5.10E−2) + 

4.94E−1 
(9.65E−2) + 

10 6.24E−1 
(4.22E−2)

6.16E−1 
(6.79E−2)≈

2.95E−1 
(6.51E−2) + 8.17E−1 (1.22E−1)− 5.62E−1 

(3.54E−2) + 
7.72E−1 
(1.78E−1)−

4.37E−1 
(2.23E−2) + 

4.25E−1 
(5.90E−2) + 

5.80E−1 
(1.81E−1)≈

WFG4

2 2.13E−1 
(2.70E−3)

2.14E−1 
(1.92E−3)≈

2.14E−1 
(1.93E−3)≈ 1.94E−1 (4.51E−3) + 2.14E−1 

(1.89E−3)≈
2.16E−1 
(4.98E−3)−

2.17E−1 
(3.30E−3)−

2.15E−1 
(3.81E−3)−

2.14E−1 
(2.79E−3)−

4 5.75E−1 
(1.99E−3)

5.71E−1 
(2.23E−3) + 

5.66E−1 
(2.44E−3) + 5.64E−1 (2.79E−3) + 5.63E−1 

(3.53E−3) + 
5.36E−1 
(5.34E−3) + 

5.41E−1 
(3.33E−3) + 

5.74E−1 
(2.92E−3)≈

4.30E−1 
(1.83E−2) + 

6 7.31E−1 
(3.46E−3)

7.21E−1 
(3.19E−3) + 

7.17E−1 
(4.93E−3) + 6.95E−1 (1.35E−2) + 6.93E−1 

(4.47E−2) + 
3.37E−1 
(1.70E−2) + 

6.37E−1 
(1.36E−2) + 

7.47E−1 
(3.75E−3)−

4.54E−1 
(2.36E−2) + 

8 8.26E−1 
(2.24E−3)

8.02E−1 
(6.64E−3) + 

8.04E−1 
(4.70E−3) + 7.79E−1 (2.02E−2) + 7.99E−1 

(1.17E−2) + 
1.96E−1 
(2.59E−2) + 

7.03E−1 
(1.88E−2) + 

8.35E−1 
(4.87E−3)−

5.40E−1 
(2.92E−2) + 

10 9.01E−1 
(3.04E−3)

8.89E−1 
(5.97E−3) + 

8.87E−1 
(4.37E−3) + 8.45E−1 (1.72E−2) + 8.81E−1 

(1.23E−2) + 
1.98E−1 
(3.65E−2) + 

6.38E−1 
(2.82E−2) + 

8.75E−1 
(6.31E−3) + 

5.37E−1 
(1.70E−2) + 

WFG5

2 2.26E−1 
(8.95E−4)

2.26E−1 
(1.41E−3)−

2.27E−1 
(1.39E−3)− 2.17E−1 (3.42E−3) + 2.28E−1 

(1.31E−3)−
2.27E−1 
(2.07E−3)−

2.31E−1 
(2.48E−3)−

2.26E−1 
(1.08E−3)≈

2.24E−1 
(1.93E−3) + 

4 5.73E−1 
(3.76E−3)

5.69E−1 
(3.29E−3) + 

5.62E−1 
(4.94E−3) + 5.66E−1 (3.17E−3) + 5.65E−1 

(2.92E−3) + 
5.34E−1 
(1.69E−2) + 

5.44E−1 
(3.98E−3) + 

5.70E−1 
(4.98E−3) + 

4.56E−1 
(1.74E−2) + 

6 7.23E−1 
(1.95E−3)

7.14E−1 
(2.36E−3) + 

7.13E−1 
(3.24E−3) + 7.06E−1 (8.57E−3) + 7.11E−1 

(3.62E−3) + 
3.52E−1 
(2.27E−2) + 

6.56E−1 
(1.12E−2) + 

7.39E−1 
(3.04E−3)−

4.84E−1 
(2.42E−2) + 

8 8.34E−1 
(2.06E−3)

8.07E−1 
(3.36E−3) + 

8.04E−1 
(3.79E−3) + 7.92E−1 (7.28E−3) + 8.03E−1 

(4.19E−3) + 
2.91E−1 
(2.43E−2) + 

6.81E−1 
(2.47E−2) + 

8.49E−1 
(4.18E−3)−

5.43E−1 
(3.10E−2) + 

10 9.08E−1 
(1.69E−3)

8.95E−1 
(2.38E−3) + 

8.92E−1 
(2.53E−3) + 8.67E−1 (1.16E−2) + 8.90E−1 

(2.28E−3) + 
2.58E−1 
(2.22E−2) + 

5.90E−1 
(3.07E−2) + 

8.94E−1 
(5.53E−3) + 

5.43E−1 
(2.85E−2) + 

Continued
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# M HS-MOEA PMEA TDEA RVEA NSGAIII MOEA/D MOEA/DD ISDE
+ 1BY1EA

WFG6

2 2.15E−1 
(8.57E−3)

2.13E−1 
(6.18E−3)≈

2.13E−1 
(3.00E−3)≈ 1.91E−1 (6.71E−3) + 2.18E−1 

(1.01E−2)≈
2.53E−1 
(1.98E−2)−

2.24E−1 
(1.05E−2)−

2.17E−1 
(6.65E−3)≈

2.11E−1 
(7.89E−3) + 

4 5.76E−1 
(3.00E−3)

5.71E−1 
(3.61E−3) + 

5.68E−1 
(3.93E−3) + 5.64E−1 (4.38E−3) + 5.65E−1 

(7.01E−3) + 
4.87E−1 
(4.27E−2) + 

5.42E−1 
(5.73E−3) + 

5.78E−1 
(2.52E−3)−

4.40E−1 
(1.78E−2) + 

6 7.39E−1 
(8.88E−3)

7.29E−1 
(7.39E−3) + 

7.25E−1 
(1.37E−2) + 7.22E−1 (1.40E−2) + 7.19E−1 

(1.13E−2) + 
3.20E−1 
(5.15E−2) + 

6.45E−1 
(1.75E−2) + 

7.58E−1 
(4.80E−3)−

4.57E−1 
(2.36E−2) + 

8 8.36E−1 
(1.70E−3)

8.16E−1 
(4.87E−3) + 

8.13E−1 
(4.73E−3) + 7.40E−1 (2.89E−2) + 8.13E−1 

(4.66E−3) + 
1.98E−1 
(3.02E−2) + 

6.53E−1 
(4.73E−2) + 

8.66E−1 
(3.99E−3)−

4.02E−1 
(2.25E−2) + 

10 9.16E−1 
(1.77E−3)

9.07E−1 
(3.42E−3) + 

9.04E−1 
(3.28E−3) + 7.86E−1 (4.85E−2) + 8.99E−1 

(5.46E−3) + 
2.26E−1 
(6.94E−2) + 

6.22E−1 
(3.96E−2) + 

9.19E−1 
(3.53E−3)−

3.86E−1 
(2.20E−2) + 

WFG7

2 2.09E−1 
(5.22E−4)

2.11E−1 
(5.47E−3)≈

2.11E−1 
(1.30E−3)− 1.94E−1 (3.66E−3) + 2.11E−1 

(1.69E−3)−
2.19E−1 
(1.14E−2)−

2.24E−1 
(2.68E−2)−

2.10E−1 
(8.99E−4)−

2.65E−1 
(2.49E−2)−

4 5.81E−1 
(6.84E−4)

5.77E−1 
(1.05E−3) + 

5.71E−1 
(1.61E−3) + 5.68E−1 (1.62E−3) + 5.67E−1 

(2.00E−3) + 
5.27E−1 
(1.12E−2) + 

5.38E−1 
(5.29E−3) + 

5.77E−1 
(1.77E−3) + 

4.31E−1 
(1.88E−2) + 

6 7.47E−1 
(1.55E−3)

7.31E−1 
(6.44E−3) + 

7.27E−1 
(5.84E−3) + 7.12E−1 (7.43E−3) + 6.36E−1 

(7.47E−2) + 
3.80E−1 
(3.50E−2) + 

6.58E−1 
(1.09E−2) + 

7.57E−1 
(3.25E−3)−

4.82E−1 
(2.39E−2) + 

8 8.34E−1 
(1.40E−3)

8.06E−1 
(4.28E−3) + 

8.01E−1 
(3.91E−3) + 7.48E−1 (1.96E−2) + 7.88E−1 

(6.86E−3) + 
1.75E−1 
(2.55E−2) + 

6.91E−1 
(2.48E−2) + 

8.52E−1 
(3.80E−3)−

4.41E−1 
(2.10E−2) + 

10 9.14E−1 
(1.54E−3)

8.99E−1 
(2.55E−3) + 

8.90E−1 
(3.76E−3) + 8.31E−1 (9.93E−3) + 8.84E−1 

(1.02E−2) + 
1.81E−1 
(5.05E−2) + 

7.22E−1 
(2.87E−2) + 

9.00E−1 
(3.79E−3) + 

4.54E−1 
(3.06E−2) + 

WFG8

2 3.60E−1 
(2.82E−2)

3.72E−1 
(3.29E−2)≈

3.68E−1 
(3.52E−2)≈ 3.01E−1 (4.29E−2) + 3.72E−1 

(3.20E−2)≈
3.51E−1 
(4.78E−2)≈

3.06E−1 
(3.88E−2) + 

3.75E−1 
(3.41E−2)−

3.28E−1 
(6.52E−2) + 

4 5.28E−1 
(2.41E−2)

5.08E−1 
(2.47E−2) + 

5.01E−1 
(2.24E−2) + 5.09E−1 (2.39E−2) + 4.96E−1 

(2.98E−2) + 
4.84E−1 
(1.86E−2) + 

4.99E−1 
(2.31E−2) + 

5.35E−1 
(2.99E−2)≈

3.74E−1 
(3.81E−2) + 

6 7.09E−1 
(1.24E−2)

6.82E−1 
(2.93E−2) + 

6.67E−1 
(3.77E−2) + 6.15E−1 (3.22E−2) + 5.87E−1 

(6.80E−2) + 
2.89E−1 
(4.70E−2) + 

5.98E−1 
(2.31E−2) + 

7.37E−1 
(6.72E−3)−

3.54E−1 
(1.65E−2) + 

8 7.41E−1 
(1.90E−2)

6.61E−1 
(7.99E−3) + 

6.65E−1 
(1.65E−2) + 7.03E−1 (4.37E−2) + 6.64E−1 

(1.49E−2) + 
1.99E−1 
(3.69E−2) + 

5.98E−1 
(3.91E−2) + 

7.57E−1 
(2.80E−2)−

3.61E−1 
(3.96E−2) + 

10 8.49E−1 
(3.26E−2)

8.20E−1 
(2.46E−2) + 

7.89E−1 
(2.07E−2) + 7.20E−1 (7.11E−2) + 7.66E−1 

(2.43E−2) + 
1.77E−1 
(3.98E−2) + 

6.36E−1 
(4.83E−2) + 

8.57E−1 
(4.25E−2)≈

3.52E−1 
(3.24E−2) + 

WFG9

2 2.31E−1 
(4.57E−3)

2.30E−1 
(3.93E−3)≈

2.32E−1 
(5.25E−3)≈ 2.19E−1 (3.02E−3) + 2.40E−1 

(1.82E−2)−
2.70E−1 
(2.71E−2)−

2.40E−1 
(1.34E−2)−

2.38E−1 
(1.59E−2)−

2.38E−1 
(1.77E−2)−

4 5.62E−1 
(3.80E−3)

5.55E−1 
(5.05E−3) + 

5.58E−1 
(2.97E−3) + 5.58E−1 (4.67E−3) + 5.51E−1 

(6.71E−3) + 
5.31E−1 
(1.51E−2) + 

5.36E−1 
(8.54E−3) + 

5.65E−1 
(3.58E−3)−

4.82E−1 
(1.61E−2) + 

6 6.86E−1 
(7.73E−3)

6.55E−1 
(1.33E−2) + 

6.69E−1 
(1.02E−2) + 6.63E−1 (1.27E−2) + 6.58E−1 

(1.66E−2) + 
3.80E−1 
(3.66E−2) + 

5.88E−1 
(1.85E−2) + 

7.01E−1 
(7.46E−3)−

5.21E−1 
(3.37E−2) + 

8 7.94E−1 
(4.39E−3)

7.56E−1 
(1.09E−2) + 

7.64E−1 
(8.73E−3) + 7.45E−1 (1.47E−2) + 7.55E−1 

(1.78E−2) + 
2.48E−1 
(3.43E−2) + 

6.33E−1 
(2.83E−2) + 

8.20E−1 
(4.79E−3)−

5.53E−1 
(2.59E−2) + 

10 8.68E−1 
(4.44E−3)

8.48E−1 
(7.61E−3) + 

8.43E−1 
(9.78E−3) + 7.84E−1 (1.73E−2) + 8.23E−1 

(2.26E−2) + 
2.14E−1 
(3.06E−2) + 

5.94E−1 
(5.73E−2) + 

8.48E−1 
(7.46E−3) + 

5.89E−1 
(3.02E−2) + 

W–T–L 54–18–8 49–13–18 59–8–13 50–10–20 61–4–15 63–2–15 33–14–33 60–4–16

Table 2.  Comparison of HV and statistical results on DTLZ and WFG test problems (“+”—win, “≈”—TIE, 
“−”—loss).

Figure 3.  Performance comparison of HS-MOEA with the state-of-the-art algorithms.
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Table 3.  Comparison of GD.

# M HS-MOEA PMEA ISDE + 

DTLZ1

2 2.04E−4 (8.93E−6) 3.32E−2 (1.81E−1)≈ 2.09E−2 (1.06E−1)≈

4 2.70E−3 (2.86E−4) 1.46E−1 (2.21E−1) + 3.21E−3 (2.35E−3)≈

6 4.44E−2 (9.67E−2) 6.21E−1 (5.09E−1) + 5.06E−3 (7.97E−5)−

8 3.94E−2 (7.82E−2) 6.54E−1 (2.63E−1) + 5.34E−3 (7.63E−4)−

10 1.93E−2 (4.21E−2) 8.00E−1 (2.67E−1) + 5.73E−3 (6.55E−5)-

Table 4.  Comparison of delta.

# M HS-MOEA PMEA ISDE + 

DTLZ7

2 4.47E−1 (3.16E−2) 2.00E−1 (2.75E−2)− 5.04E−1 (4.54E−2) + 

4 3.39E−1 (2.61E−2) 2.77E−1 (1.89E−2)− 3.33E−1 (2.63E−2)≈

6 3.56E−1 (2.17E−2) 2.71E−1 (1.31E−2)− 3.94E−1 (4.47E−2) + 

8 2.90E−1 (3.42E−2) 2.20E−1 (1.23E−2)− 3.60E−1 (3.74E−2) + 

10 2.16E−1 (1.52E−2) 2.06E−1 (1.17E−2)− 3.15E−1 (3.78E−2) + 

Figure 4.  Parallel coordinates of the best solution set of PMEA,  ISDE
+ and HS-MOEA on 8-objective instance of 

DTLZ1.
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