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A spiking neural network 
model of the Superior Colliculus 
that is robust to changes 
in the spatial–temporal input
Arezoo Alizadeh & A. John Van Opstal*

Previous studies have indicated that the location of a large neural population in the Superior Colliculus 
(SC) motor map specifies the amplitude and direction of the saccadic eye-movement vector, while 
the saccade trajectory and velocity profile are encoded by the population firing rates. We recently 
proposed a simple spiking neural network model of the SC motor map, based on linear summation of 
individual spike effects of each recruited neuron, which accounts for many of the observed properties 
of SC cells in relation to the ensuing eye movement. However, in the model, the cortical input was 
kept invariant across different saccades. Electrical microstimulation and reversible lesion studies have 
demonstrated that the saccade properties are quite robust against large changes in supra-threshold 
SC activation, but that saccade amplitude and peak eye-velocity systematically decrease at low input 
strengths. These features were not accounted for by the linear spike-vector summation model. Here 
we show that the model’s input projection strengths and intra-collicular lateral connections can be 
tuned to generate saccades and neural spiking patterns that closely follow the experimental results.

Background. Saccades are fast eye movements that redirect the fovea to a peripheral target. They obey a 
stereotyped ‘main-sequence’ kinematic relationship between saccade amplitude and movement duration (an 
affine relation) and between amplitude and peak eye-velocity (a saturating  function1). As the duration of the 
acceleration phase is roughly constant across a wide range of amplitudes, saccade-velocity profiles are positively 
skewed, whereby skewness increases with saccade  duration2. Moreover, because trajectories are nearly straight, 
the horizontal and vertical saccade-velocity profiles are scaled versions of each other, thereby approximately 
matched in duration and  shape3–6.

Together, these kinematic features betray nonlinear processing in the generation of saccades. In earlier models 
of saccade control, the saturation of peak eye velocity was believed to reside in the (passive) saturation of fir-
ing rates of brainstem pre-motor burst  neurons7,8. Later studies, however, have suggested that these properties 
may instead betray a deliberate optimal control strategy that aims to optimize speed-accuracy trade-off in the 
presence of multiplicative and additive neural  noise9–13. Single-unit recordings and quantitative modelling of 
instantaneous spiking behavior of saccade-related cells in the midbrain Superior Colliculus (SC) have suggested 
that such a mechanism might be implemented at this oculomotor midbrain  level13–15.

The SC is a primary source of gaze-motor commands to the brainstem saccade  generators8,14,16–21, and is 
recruited for all voluntary and involuntary saccades. Its deeper layers contain an eye-centered topographic map 
of visuomotor  space16,19,22 , in which the location and total spike count of the neural population encode the sac-
cade amplitude and  direction17–19. Several studies have suggested that the temporal firing profiles of the neural 
population may also specify the instantaneous saccade trajectory and its velocity  profile13,14,23–26.

Although also the frontal eye fields (FEF) and posterior parietal cortex (PPC) are strongly involved in sac-
cades, their major role appears to be in the preparation of higher-level, reward-contingent, and task-relevant 
eye-movements, like anti-saccades27, target selection and  identification28, saccade  suppression29 (also when its 
planning is already in  progress30), or towards remembered  targets31,32. Their main outputs are transferred to the 
SC, which thus constitutes a final common pathway for saccade initiation and control.

Schiller and colleagues examined the effects of FEF and SC ablations on eye  movements33. The deficits caused 
by a lesion of either structure appeared to be rather subtle when monkeys were tested a few days later and 
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recovered over time. However, when both structures were removed, monkeys were no longer able to redirect their 
gaze to peripheral targets. In contrast, Hepp et al.34 reported a strong reduction (near-abolition) in frequency 
and velocity of visual-evoked spontaneous saccades and quick phases of vestibular nystagmus immediately fol-
lowing bilateral muscimol-induced SC inactivation, indicating a crucial role for the SC output to voluntary and 
involuntary saccades. Also, acute FEF inactivation strongly affects the properties of visual-evoked  saccades31,32. 
Thus, the immediate effects of SC and FEF inactivation seem to be much stronger than seen with the earlier 
longer-term ablation  studies28,33. Presumably, the FEF can take over SC function during the recovery period, 
when the latter is no longer available.

Recently, Peel and colleagues examined the acute influence of inactivating FEF by local cooling on saccade 
metrics and kinematics and on the associated neural firing patterns of saccade-related SC cells for different sac-
cade  tasks35. Their results indicated that FEF inactivation did not significantly affect direct visual-evoked saccades 
but led to a significant decrease of about 10% in SC spiking activity for memory-guided saccades. The authors 
suggested that these cortically mediated saccades may utilize, besides the direct FEF-SC-brainstem pathway, an 
additional, flexible processing circuit that bypasses the SC.

Problem statement. In the present paper we focused on the encoding of saccades, generated by the direct 
cortical-SC-brainstem pathway. Single-unit recordings of saccade-related cells in the SC have indicated that the 
peak firing rate, burst duration, and shape of the burst profile of the central neuron in the population depend 
systematically on its location in the map according to a monotonic rostral-caudal  gradient14. Moreover, each SC 
neuron elicits about a fixed number of spikes for its preferred saccade, irrespective of its motor map location.

In our earlier  work14,15,41, these features were incorporated in a simple neuro-computational feedforward 
spiking neural network model, in which each spike of each recruited neuron encodes a fixed (tiny) movement 
contribution to the saccade that is solely determined by its location (the cell’s ‘spike vector’). The saccade tra-
jectory then results from dynamic linear summation of all spike vectors from the spike trains from all cells in 
the population. Because linear spike-vector summation, in combination with a linear brainstem model could 
reproduce the full repertoire of (nonlinear) saccade kinematics and their trajectories, we argued that the firing 
patterns within the SC motor map were responsible for the nonlinear main-sequence properties, velocity pro-
files, and component cross-coupling of  saccades14,15. The SC motor map would thus embed an optimal control 
for saccade  generation13.

Electrical microstimulation in the SC has revealed that the evoked E-saccade amplitude varies systematically 
with the applied current strength: at low currents, amplitudes are small, increasing to a site-specific maximum 
at higher current strengths, determined by the electrode’s position in the motor  map36–38. In addition, small 
saccades evoked at low intensities are also slower than visual-evoked main-sequence saccades (V-saccades) of 
the same amplitude (Fig. 1a). Further, variation of the stimulation pulse rate affects the eye velocity: high pulse 
rates lead to higher saccade velocities than low pulse rates (37, in monkey;39, in barn owl). The main-sequence 
properties of fast and slow human V-saccades appear to follow similar kinematic  characteristics2 (Fig. 1b). So 
far, these input-dependent properties had not been accounted for by our earlier linear ensemble-coding  model40.

This study. Here, we extended the spiking neural-network model  of40,41 with the aim to yield similar behav-
iors as illustrated in Fig. 1: an increased robustness of the SC output to large variations in spiking input pat-
terns above a certain input strength, and a systematic decrease of saccade amplitude and kinematics at lower 
 inputs36–38. To simplify the analysis, we constructed a one-dimensional model with a cortical input layer and a 
collicular output layer and re-tuned the intra-collicular excitatory-inhibitory synapses and top-down connec-
tions. We independently varied the input spiking patterns in the spatial (i.e., population extent) and temporal 
(burst durations and peak firing rate) domain, reminiscent to the presumed effects of electrical stimulation, 
partial inactivation, or visual stimulation at different intensities, and input stimulus durations.

Methods
Network architecture. We constructed a two-layer spiking neural network model with a cortical input 
layer, and a layer of SC output neurons, respectively (Fig. 2). Each layer consists of 200 neurons, uniformly dis-
tributed on 0–5 mm of the horizontal meridian of the SC motor map. In the linear dynamic ensemble-coding 
 model13,14, the saccade kinematics are fully determined by dynamic cumulative summation of all spike vectors 
in the neural population during the saccade (see Supporting Information). The input layer receives an external 
input signal from other (here unspecified) inputs, which it transforms into spiking activity through its neural 
dynamics. All neurons in the model are governed by the adaptive exponential integrate-and-fire (AdEx) neural 
model equations (see Supporting Information, for further details; also see Ref.41). For simplicity, the input-layer 
neurons do not interact with each other. The input-layer spikes are subsequently transmitted by topography-
preserving one-to-one synaptic connections to the neurons in the SC layer. The biophysical parameters of the 
SC neurons, such as their adaptation time constant, their synaptic connection strengths with the input layer, and 
their lateral excitatory-inhibitory connections, are assumed to depend on their location in the motor map and, 
as a result, identical firing rates in the input layer at different locations will lead to dissimilar responses of the SC 
cells (Fig. 2, bottom). As described below, the network is tuned such that these responses, and the ensuing sac-
cade (equation (S1), in Supporting Information) follow similar characteristics as observed in the electrophysi-
ological recordings and microstimulation  experiments13,36–38.

The one-dimensional model was simulated with the Brian2 spiking neural network  simulator42. We modeled 
the neurons in the network by the AdEx neuron  model43, as the parameters of this model can be readily related to 
physiological quantities. Details of this neural model, including the chosen parameter values, are provided in the 
Supporting Information, S1 Table, and Ref.41. Here, we only highlight the major differences with the earlier model.
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Figure 1.  (a) Main-sequence relation of peak eye-velocity vs. saccade amplitude of monkey saccades for 
visually evoked (V-)saccades (dots) and for saccades elicited by electrical microstimulation at a single site in 
the superior colliculus at various current strengths (E-saccades; squares). The stimulation site in the motor map 
corresponded to a saccade amplitude of about 15 deg. For high stimulation currents, E-saccades and V-saccades 
had the same kinematics (large red dot). For the low stimulation currents at the site, two effects were observed: 
(i) evoked saccade amplitudes decreased, and (ii) evoked peak velocities decreased too, but fell systematically 
below the V-saccade main-sequence relation. Data adapted  from36. (b) Human main-sequence relation for 
fast V-saccades (data points near the red curve) and for slow V-saccades, due to an intraveneous injection of 
diazepam, and fatigue. Data adapted  from2.

Figure 2.  Schematic overview of the two-layer feedforward neural network. The spiking neural network model 
generates different saccade-related bursts (bottom) that are evoked by a spatially translation-invariant input 
population (top), here positioned at T = 5, 15 and 40 deg eccentricity. Thickness of the lines for the downward 
projections symbolizes the synaptic connection strengths, wFS

n  , between the input and SC layers (high for the 
rostral zone, low for the caudal zone; Eq. (3)).
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External input current. We provided an external input current to the network around the image point, uT, 
of the desired target, T, in the input layer, leading to an input population spiking activity centered around the 
image point, uT (equation (S3); Fig. 2, top). The central neuron in the input population receives the maximum 
input activation current, I0(t), while the other neurons in the input layer are stimulated by current strengths that 
decay as a Gaussian with distance from uT. The spatial–temporal external input current was thus described by a 
separable spatial–temporal function on the input neurons by:

where un is the anatomical position of a neuron in the input map, σpop determines the size of the recruited input 
population, t is time (in s), un is the location of neuron n (mm), and I0 is the maximum input amplitude (pA). 
The time-dependent term is a gamma function, characterized by γ (skewness, dimensionless) and β (measure 
for inverse duration, in  s−1).

To investigate the relationship between the resulting saccade metrics, trajectories, and kinematics as function 
of the input current profiles, we varied the input current in both the spatial and the temporal domain. The default 
input stimulation profile (serving as the model’s control condition) was defined by the following parameters: 
 I0 = 3.0 pA, σpop = 0.5 mm, β = 0.03  s−1, and γ = 1.8.

Spatial input variation. In the spatial simulations, we varied the stimulated input population size between 
σpop = 0.05–1.0 mm. Input amplitudes varied between  I0 = 2.0–3.0 pA for input population sizes below 0.5 mm 
and it was kept constant at 3.0 pA for input population sizes exceeding 0.5 mm. The temporal stimulation param-
eters were kept fixed at their default values: β = 0.03  s−1 and γ = 1.8. This parameter variation led to the activation 
of 10–200 input-layer neurons (e.g., Fig. 3a,b).

Temporal input variation. To investigate the influence of input spike rates (firing frequency) to the SC motor 
output and SC population activity, we also varied the input current in the temporal domain. In these simulations, 
the externally applied input current always activated a fixed population size of σpop = 0.5 mm.

It should be noted that once the network is tuned to a particular default input duration (here, 150 ms), exceed-
ing this duration with the current amplitude fixed at  I0 = 3 pA will generate saccade amplitudes that will exceed 
the target site-specific value (even though the SC population size remains invariant, as it is normalized by the 
lateral interactions). The reason for this is that our model does not incorporate an additional offset mechanism 
that would trigger the brainstem omnipause neuronal gating system, which should prevent accessibility of SC 
output to the saccadic burst generator, once a fixed number of SC spikes (here, about 500 spikes, see Fig. 3h) 
is reached (see, e.g.14 for an implementation of this idea, and the Discussion section). In our simplified model 
(Eq. S1), every SC spike counts and therefore contributes a (small) spike-vector to the motor output (Eq. S2). 
Thus, when the input map keeps sending spikes to the SC, the saccade continues to grow without bound. To 
prevent this scenario in the current (linear) model, we tuned down  I0 together with an increase in input duration 
(by lowering β). We thus considered two different temporal scenarios:

 i. A variable stimulation duration (β) between 0.019 and 0.030  s−1 (corresponding to input burst durations 
between about 300 and 150 ms, respectively), and a current intensity  (I0) between 0.2 and 3.0 pA, but 
selected such that the resulting total number of spikes in the SC output layer remained invariant (e.g., 
Fig. 3c,d,g,h (purple curves)).

 ii. A similar variation in the input, but now such that the number of spikes sent from the input layer to the SC 
remained constant: β varied between 0.019 and 0.03  s−1, and  I0 between 1.2 and 3.0 pA (e.g., Fig. 3e,f,g,h 
(green curves)).

Figure 3 illustrates these different external stimulation input scenarios. The first three rows of the left-hand 
column (Fig. 3a,c,e) show the spatial distributions of the peak firing rates of the neurons in the input popula-
tion, when the target stimulation point corresponded with T = 15° (i.e., at uT = 2.5 mm); the right-hand column 
(Fig. 3b,d,f) shows the temporal profiles of the spiking patterns for the central neuron in the input population 
at uT = 2.5 mm. Figure 3a,b shows the spiking responses of the input layer neurons when the external input 
width was systematically varied between 0.05 and 1.0 mm, and the amplitude between 2.0 and 3.0 pA. The red 
curve corresponds to the default control stimulation (σpop = 0.5 mm). To avoid non-physiologically high firing 
rates, we imposed an upper limit to the evoked firing rates in the input layer (by including a saturating sigmoid 
input–output relationship) at 400 spikes/s.

Figure 3c,d shows the spike-density functions of the input layer when the input current at uT = 2.5 mm stimu-
lated a fixed population size (0.5 mm), but with a variable current duration (β) and strength (I0). These latter 
two parameters were selected such that the SC neural population generated a fixed number of output spikes 
(Fig. 3h, purple line). Note that the amplitude of the spike density function of the central input neuron decreased 
with decreasing external current strength; at the same time, burst duration in(de-)creased with de(in-)creasing 
stimulus strength.

Figure 3e,f shows the input layer responses to the external currents when the input duration and strength 
were tuned such that the input population sent a fixed number of spikes to the SC. Figure 3g,h illustrates how 
the number of spikes of the input- (panel g) and output (panel h) layers varies in response to the chosen input 
currents with variable temporal behavior: a constant number of spikes of the input (green), vs. output layer 

(1)Iext(un, t) = I0exp
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Figure 3.  (a–f) Burst profiles of the input layer neurons in response to changes in the spatial–temporal 
parameters of the external input currents (see also S1 Table in Supporting Information). Red curve corresponds 
to the default parameter set. (a) Spatial distribution of the peak spike-density functions for σpop in 0.05–
1.0 mm, and  I0 in 2.0–3.0 pA at T = 15 deg. (b) Spike densities as function of time for the central neuron of the 
populations in (a). (c,d) Spatial (c) and temporal (d) spike-density distributions for β in 0.019–0.03  s−1, and  I0 in 
1.2–3.0 pA at the T = 15 deg site (σpop = 0.5  mm). Parameter values of the input currents were chosen such that 
the SC output generated a fixed number of spikes. (e,f) Spatial (e) and temporal (f) spike-density distributions 
for β in 0.019–0.03  s−1 and  I0 in 0.2–3.0 pA. Parameters now ensured a fixed number of spikes in the input layer. 
(g) Total number of spikes in the input layer for the two temporal variation scenarios (green and purple data). 
(h) Same as in (g) for the output layer.
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(purple). Note that if the number of spikes is constant in one layer, it either decreases (input) or increases (out-
put) in the other layer.

Superior Colliculus cells. The neurons in the SC layer receive the total synaptic input current, given by 
the synaptical weighted sums of the spikes from the input-layer, and from the SC neurons themselves, whereby 
the latter are relayed by conductance-based lateral excitatory-inhibitory synapses (equation (S7), in Support-
ing Information). Because of the location-dependence of the parameters specifying the AdEx equations for the 
SC neurons, their activity patterns depended on their location in the motor map. Neurons near the rostral site 
generate a small saccade with a high-frequency, short-lasting burst of activity, while at caudal sites the evoked 
activity has a lower peak firing rate, and longer burst duration, associated with a large  saccade14.

Lateral intra‑collicular connections. The saccade-related neurons in the SC population communicate with each 
other through lateral interactions, which cause all bursts to approximately synchronize with the central  cell13. In 
the original version of the model, these interactions were described by a “Mexican-hat” function (short-range 
excitation, and long-range  inhibition44), which acts as a soft winner-take-all  mechanism41.

Two Gaussians describe the spatial extent of the excitatory and inhibitory connection profiles, between neu-
ron, n, and any other neuron, i, in the motor map (apart from itself) as function of anatomical position. In the 
present study, we slightly modified the earlier proposal to:

with Wexc = 0.16 nS and Winh = 1.15 nS fixed excitatory and inhibitory weight parameters. The location-
dependent gain, Sn, causes the lateral interaction scheme to be site-dependent. These lateral connections have 
a direct effect on the spiking behavior of each neuron, and hence on the overall network dynamics. Strong 
excitation (re. inhibition) would result in an unbounded spread of the population activity across the motor map 
(and hence, an ever-increasing saccade amplitude), whereas strong inhibition would quickly fade out the neural 
activity altogether. We aimed to find parameter values that would ensure a balanced amount of excitation and 
inhibition, leading to a stable Gaussian population activity, in such a way that (considerable) spatial–temporal 
changes in the input population activity (as illustrated in Fig. 3) would lead to experimentally observed changes 
in the SC output saccades (equation (S1)).

Network tuning. We employed brute-force search algorithms to find suitable values for the lateral inhibi-
tory and excitatory weight parameters, the feedforward projection strengths from input to output layer, and for 
intrinsic properties of the AdEx equations of the SC neurons.

Besides Wexc and Winh , we also tuned the widths of the Mexican-hat profiles (σinh and σexc) to yield an 
appropriate SC population size with synchronized activity, also when the total input activity profile would far 
exceed the normal default size of 0.5 mm (Fig. 3a). We further extended the model with the lateral synaptic gain 
parameter, Sn, as a location-dependent excitatory and inhibitory scaling.

The intrinsic biophysical parameters of the AdEx equations for the SC neurons (Supporting Information) 
were optimized by systematically varying their adaptation time constant, τq,n, in combination with the location-
dependent feedforward synaptic projection strengths between the layers, wFS

n  . In addition, we assessed the effects 
of varying the location dependence of the intra-collicular scaling parameter, Sn, on the saccade trajectories.

The adaptive time constant affects the susceptibility of the neuron to synaptic input and influences its instan-
taneous firing rate and bursting properties, and hence the kinematics of the saccade. As the feedforward synaptic 
projection strength between the input layer and SC layer determines the number of presynaptic spikes that is 
transferred from the input layer to the different locations of the SC layer, it mainly affects the SC neuron’s peak 
firing rate. The intra-collicular synaptic gain, Sn, normalizes the SC output against variability in the total input 
activity. Together, these three parameters caused a systematic change in the firing properties of SC cells along 
the rostral-caudal axis of the motor map, while ensuring a fixed maximum number of spikes for the neurons’ 
preferred saccades, Nu(R), with a sigmoid-like response sensitivity to large changes of the input firing patterns.

We employed a similar brute-force search method as employed  in40,41 to find the optimal location-dependent 
values of [τq,n, wFS

n , Sn] that ensured a fixed number of spikes per neuron for a saccade that kept a constant ampli-
tude and peak velocity for input patterns far exceeding the default strength of σpop = 0.5 mm (e.g., Fig. 3a). Note 
that the input currents in which we also varied the temporal stimulation properties (β) were not used to tune 
the parameters of the network.

Equation (3) summarizes the results of the network tuning for the adaptation time constant, τq,n, and for the 
top down-projection strengths, wFS

n  , as function of the map coordinate, un. Interestingly, to obtain appropriate 
saccade responses (see below), both parameters resulted to co-vary in a linear way with the anatomical rostral-
caudal location:

Figure 4a depicts the net intra-collicular lateral connection strengths from each neuron as obtained from the 
brute-force search. The lateral connections yield short-range excitatory and long-range inhibitory effects from 

(2a)wexc
i,n = Sn·Wexc · exp

(

−
||ui − un||

2

2σ 2
exc

)

for n �= i
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(
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(

−
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2σ 2
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(3)τq,n = 60−12 · un and wFS
n = 10−1.2 · un
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each neuron in the map. Effectively, SC neurons receive both excitatory and inhibitory potentials from cells 
endowed with different adaptation time constants, firing rates, and reversal potentials (Supporting Informa-
tion, S1 Table). Due to the strong symmetric lateral inhibitory connections in the SC layer the number of active 
neurons in the SC layer saturates when the external input current results in a large recruited input population 
that may far exceed the standard size of 0.5 mm.

Figure 4b shows the total intra-collicular lateral connection strengths for neurons across rostral to caudal 
site of the motor map. The lateral inhibitory and excitatory connection strengths decrease from the rostral to the 
caudal zone by means of the scaling parameter  Sn, which resulted to mainly influence the shape of the nonlinear 
main-sequence relationship of the model’s saccades between their amplitude and peak eye velocity. The following 
heuristically obtained relation provided satisfactory results (see “Results”):

Eye-movement trajectories. Eye movements were encoded by the linear ensemble coding scheme of the 
population activity in the SC motor map (equation (S1)). We applied the one-dimensional efferent motor map of 
equation (S2) to the new network configuration. The resulting eye-displacement vector, S(t), was smoothed with 
a Savitzky–Golay filter to compute the instantaneous eye velocity.

Result
Bursting behavior of SC AdEx neurons. To illustrate the effect of varying the input stimulation (Eq. (1)) 
on the response behavior of the AdEx model of a typical SC neuron (nr 100), the time dependence of the neu-
ron’s membrane potential, V(t), is shown in Fig. 5, when the input (applied at T = 15 deg) varied in population 
size, σpop (Fig. 5a), or in stimulus duration and intensity, β, I0 (Fig. 5b).

The SC neuron in the center of the population (at uT = 2.5 mm) emitted fewer spikes, Nspk = 11, for the small 
input population size (σpop = 0.1 mm; a3), while it generated the same number of spikes, Nspk = 18, for the default 
input size (σpop = 0.5 mm; a2) as for the much larger input population (σpop = 1.0 mm; A1). In all three cases, 
V(t) had the same duration, as the stimulation input current had the fixed default value of β = 0.03  s−1. The burst 
profiles of the neuron (Fig. 4c) for the three different input currents had the same duration too, but the peak 
firing rate was clearly lower for the small input population.

When the input current was given a fixed population size (0.5 mm) but varied in its duration and intensity 
parameters (Fig. 5b), the resulting burst durations varied accordingly. The smaller β, the longer the membrane 
potential, V(t), and, consequently, the resulting burst profile of the neuron. However, in all three cases the emit-
ted number of spikes of the cell remained approximately constant at Nspk = 18 or 19.

Effect of spatial–temporal changes in the input population. Figure 6 illustrates the collicular burst-
ing profiles of the cells in the neural population for a saccade towards T = 15 deg for input population sizes, σpop, 
ranging from 0.05 to 1.0 mm, with I0 = 2.0–3.0 pA, and β = 0.03  s−1 (cf. Fig. 3a). Figure 6a shows the peak firing 
rates of all recruited neurons in the SC layer for each stimulation condition (color encoded). The red curve cor-
responds to the default stimulation strength with σpop = 0.5 mm and I0 = 3.0 pA. The number of excited neurons, 
as well as their peak firing rates, increased with increasing input population size, saturating around the default 
stimulus condition at about 550 spikes/s for the central cell. In Fig. 6b we show the normalized spatial–temporal 

(4)Sn = 1− 0.04u2n

Figure 4.  (a) The excitatory (σexc = 0.2 mm; dark-blue) and inhibitory (σinh = 0.7 mm; light-blue, shown 
inverted) intra-collicular synaptic connections, and their total effect (black line) for central neuron at neural 
population generating 15 deg saccade, result in a symmetric local excitatory and global inhibitory connectivity. 
The net excitation around the neuron (at 0) approaches the value of + 0.23. (b) Total effect of excitatory and 
inhibitory intra-collicular synaptic connections for neurons across motor map generating different saccade 
amplitude. The intra-collicular synaptic connections are stronger towards the rostral zone (thus counter-acting 
the higher firing rates) than towards the caudal zone (where cells have lower firing rates).
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activity patterns for the entire motor map for each of the different input populations. Note that the burst dura-
tions were the same for all stimulus conditions.

The few late spikes that are visible at the rostral end of the population (at the bottom of the panels), especially 
for the strongest inputs, are due to the rostral-caudal gradient in our revised lateral interaction scheme (Fig. 4; 
Eq. (4)). This causes slightly more net excitatory input weight to the rostral SC neurons than to the caudal SC 
neurons. These few extra spikes, however, add very little to the total saccade amplitude and kinematics, which 
are determined by all spikes within the total population (Eq. S1). In our earlier model 40 this late rostral tail was 
absent as there the lateral interactions were taken identical across the entire motor map (see Fig. 9 in 40).

Figure 7a,b shows the SC responses across the motor map while varying the duration parameter β of the input 
stimulus between 0.019  s−1 (long) and 0.03  s−1 (the default), for a fixed population size (σpop = 0.5 mm). The input 
current intensity, I0, co-varied with β between 1.2 and 3.0 pA in such a way that the number of spikes emitted 

Figure 5.  Effect of varying external current input parameters, such as the recruited input population size (σpop), 
stimulus duration (β), and input stimulus amplitude  (I0) on the bursting characteristics of an AdEx neuron at 
 un = 2.5 mm (neuron nr. 100) in the SC output layer [τq = 30, W FS = 3]. (a,b) Show the membrane potential, V(t), 
and a dot-display of the individual spikes (top), for three input current population sizes around T = 15 deg: (a1) 
σpop = 1.0 mm, (a2), σpop = 0.5 mm (the default stimulation input), (a3) σpop = 0.1 mm, and for three stimulus 
duration/intensity values: (b1) β = 0.026/I0 = 2.46, (b2) β = 0.024/I0 = 2.1, (b3) β = 0.020/I0 = 1.4. (c) Corresponding 
spike density functions for varying the external stimulation population size, and (d) for varying the external 
stimulus duration/intensity parameters. Line colors correspond to the traces in (a,b).
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by the input population decreased with increasing β (cf. Fig. 3c,d, and the purple data points in Fig. 3g,h). As a 
result, the total number of spikes emitted by the SC population, and hence the saccade amplitude, was independ-
ent of β (see also below, and “Methods”, “External input current”).

Saccade kinematics. In Fig. 8 we show the evoked saccade amplitude and its peak velocity, as a function 
of the external input current’s population size (Fig. 8a,b), and as function of β (Fig. 8c,d). The input stimula-
tion was applied at three different sites on the input map, corresponding to T = 15, 20 and 30 deg, respectively. 

Figure 6.  Burst profiles of the neurons in the network with lateral intra-collicular connections in response to 
the external input current that induces different input population sizes around T = 15 deg. (a) Peak firing rates 
of the SC neural population. Red curve is the response to the default input current with σpop = 0.5 mm. The 
population grows with input size up to the default current for low input strengths (light blue), after which it 
remains approximately invariant (dark blue). (b) Firing rate distributions of the neural population in the motor 
map as function of time, normalized to the absolute firing rate of the central cell (550 spks/s). Each panel shows 
the result for a specific input population size (indicated in mm). Red outlined panel corresponds to the default 
stimulation condition (0.5 mm). Panels preceding the default show that the SC population grows with the 
input population; panels following the default show that the number of active neurons remains approximately 
constant, even though the input population size grows to the double size.

Figure 7.  Burst profiles of the SC population in the network in response to the external input current with 
varying temporal properties (β,  I0), selected such that the total number of input spikes sent to the SC motor 
map decreased with increasing β (see Fig. 2c,d). Same format as in Fig. 5. (a) Peak firing rates of the neural 
population in the motor map. Red curve corresponds to the default (β = 0.03  s−1). The SC peak firing rate 
increases with β and reaches a plateau around the default. The total number of SC spikes remained constant (see 
also Fig. 2g,h, purple data). (b) Firing patterns of the neural population as function of time for the different β 
values. Note that burst durations decrease with increasing β.
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When the input population size fell below the default value of σpop = 0.5 mm, evoked eye movements fell short 
of the intended site-specific target location. Around the default size of 0.5 mm (red symbols), the evoked sac-
cade amplitudes approached the final, site-specific values (Fig. 8a). Above the default population size, saccade 
amplitudes maintained their site-specific size (Fig. 8a) over the full range of input strengths. The associated peak 
eye-velocity followed a similar input-dependent behavior for changes in the input population size (Fig. 8b). Fig-
ure 8c,d show the eye-displacement amplitude and peak eye-velocity as function of β. The input current yielded 
a fixed population size (0.5 mm) with a variable duration and strength, such as to generate a fixed number of SC 
output spikes. The evoked saccade amplitudes remained close to the site-specific optimal values for all values 
of β, which is to be expected when the total number of SC spikes remains invariant. Yet, the peak eye velocity 
increased slightly with β: short input bursts (i.e., with a high-frequency input stimulation) yielded slightly higher 
velocities than longer inputs (at low-frequency stimulation).

The kinematic main-sequence behaviors of the model’s saccades are quantified in Fig. 9. The nonlinear 
amplitude-peak velocity relation of the model is quite comparable to the results from actual saccades, reported 
for monkey and  human2,36 (see also Fig. 1a, for a comparison with monkey stimulation data). To quantify the 
model’s output in response to the default current stimulation applied at different input sites (red dots), we fitted 
a saturating exponential function:

where  V0 (deg/s) is the saturation velocity for large R, and α (in  deg−1) is a measure for the slope of the relation 
near R = 0. The red curve in Fig. 9a corresponds to  V0 = 1637 deg/s and α = 0.031  deg−1. Note that for the differ-
ent input-stimulation conditions, the evoked saccade amplitudes could vary substantially (see also Fig. 5, for 
single-cell examples), but the associated peak velocities of these smaller eye movements were also slower than 
for equally sized normal saccades, as all non-default data points fell below the default main-sequence curve 
(cf. with Fig. 1a). Thus, a fixed site in the SC motor map can generate saccades of different sizes, by variation of 
the recruited population size. In the model, the latter comes about by weak stimulation of the cells in the input 
layer. The kinematics of pooled fast and slow saccades have been shown to be well described by the following 
linear  relationship2,3:

where k is the slope (dimensionless) of the relation. In Fig. 9b we applied this relation to the default model sac-
cades (red), obtaining a slope of k = 2.0, which is close to the experimentally obtained values for human  saccades2; 

(5)Vpeak = V0

(

1− exp(−α · R)
)

(6)Vpeak · D = k · R

Figure 8.  (a) Eye-displacement amplitude, and (b) peak eye velocity, as a function of the input current’s 
population size for stimulation at sites corresponding to T = 15, 20 and 30 deg. Beyond the default input 
population size of σpop = 0.5 mm (red symbols), the eye displacement amplitude and peak eye velocity are nearly 
independent of stimulation strength, while below 0.5 mm they both systematically decrease with decreasing 
input size. (c) Eye-displacement amplitude, and (d) peak eye velocity, as a function of the input current’s 
temporal parameter at sites corresponding to T = 15, 20 and 30 deg. The input currents generate fixed number 
of spikes at SC layer. Whereas the eye displacement remained invariant, peak eye velocity increased with β: the 
shorter the input duration (large β), the higher the velocity.
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it expresses the fact that saccades typically have single-peaked, skewed eye-velocity profiles that resemble a 
‘triangular shape’ (cf. Fig. S2d). Figure 9b shows that this relationship also describes all saccade data from the 
model, as also the smaller and slower eye movements evoked from the different input stimulation parameters 
all follow the same linear relationship.

Discussion
Summary. We studied the properties of a simple, one-dimensional two-layer spiking neural network model 
with a cortical input and collicular output layer subjected to a large variation in the spiking input patterns. To 
investigate the relationship between the resulting SC firing patterns, saccade metrics, trajectories, and kinemat-
ics as a function of the input current profiles, we varied the input stimulation patterns both in the spatial domain 
(input population size) and in the temporal domain (input population firing rates and burst durations).

Electrophysiological studies have shown that the saccadic system is quite robust against a large variability in 
SC input activation, but at near-threshold stimulation levels the evoked saccades become both smaller and slower 
than expected from the normal main  sequence36,38. Furthermore, varying the input stimulation frequency, while 
keeping the total current fixed, modulates the saccade  velocity37. Our previous spike-count  model40,41 could not 
account for these observations, as it was not designed to cope with a large spatial–temporal variation of the input.

By re-tuning the synaptic connectivity between the cortical input and SC output layers, and the intra-collicular 
excitatory-inhibitory lateral interactions, the new model was able to generate the changes in saccade properties 
that are associated with the presumed variation in input population size and input firing frequencies, as obtained 
in electrophysiological  studies36,38.

Mechanisms. Once the SC neurons in the model are recruited by the input, local excitatory synaptic trans-
mission among nearby cells rapidly spreads the activation across the motor map to create a neural activity pat-
tern, dictated by the most active central cells in the population. As a result, the burst shapes of the cells within the 
population were highly  correlated13,41. Note that the evoked population activity in the SC output layer does not 
grow without bound, but it is automatically constrained, both in its spatial extent, and in its bursting behavior 

Figure 9.  Nonlinear main-sequence behavior of the model. (a) Red dots: Saturating amplitude-peak eye 
velocity relation (Eq. (5)) for the default input current (σpop = 0.5 mm; β = 0.03;  I0 = 3.0 pA) applied at 10 
different sites. Blue dots: peak eye velocity of saccades evoked at sites T = 15, 20, 30 and 40 deg, respectively, for 
input currents with different input population sizes (from 0.05 to 1.0 mm), and fixed β. Purple dots: peak eye 
velocity of saccades evoked at the same sites, for input currents (σpop = 0.5 mm) with changing (β,  I0), which 
kept the number of SC spikes constant. Green dots: same, for input currents with changing (β,  I0), keeping the 
number of input-layer spikes constant (compare with Fig. 1a). (b) The model saccades all follow the strict linear 
relationship (Eq. 6) for all stimulation conditions, and for all fast and slow saccades of (a).
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(peak firing rates), by the inhibitory currents acting on the neurons whenever the external stimulation current 
attains high values. These inhibitory currents are due to the synaptic far-range lateral inhibition, which ensures 
that the population size remained within about 0.5 mm in diameter and was largely independent of the applied 
current when the stimulation parameters exceeded their default values. Conceptually, the lateral interactions 
normalize the population activity. In our updated network, the inhibitory and excitatory lateral connection 
strengths decrease (Fig. 4b) from rostral to caudal zone by means of scaling parameter  Sn, thereby influencing 
the shape (determined by α and  V0 in Eq. (5)) of the nonlinear relationship between saccade amplitude and peak 
eye velocity by reducing the firing rates of caudal neurons. It also leads to a small rostral-caudal asymmetry in 
the population activation, as seen by the low-activity late tail of spikes at the rostral side (Figs. 6b and 7b).

A systematic relationship between input current characteristics and the properties of evoked movements such 
as amplitude, velocity and duration has been demonstrated in electrical microstimulation experiments in monkey 
 SC36–38 (Fig. 1a). These studies reported that the evoked movement amplitude monotonically increased with 
the stimulation strength for low currents, while saturating at higher current strengths. These input-dependent 
properties had not been accounted for by our original linear ensemble-coding  model41, which assumed a fixed 
Gaussian input pattern, leading to a strong dependence on the input parameters. Yet, the actual electrophysiologi-
cal results seem to suggest that the external input acts predominantly as a trigger for the SC population-creating 
process. The intrinsic properties of the SC network subsequently set up the activity patterns of the cells, rather 
than the details of the external stimulus itself. That is, the effects of electrical stimulation would be mainly caused 
by intrinsic synaptic transmission, rather than by direct stimulation of the electric field to activate the neurons.

Although a more recent version of the SC model generated an SC population that relied less on the details of 
the input current, the model could not produce the small-amplitude, slow movements near stimulation thresh-
old. In addition, the input currents were described by stylized rectangular pulses, rather than by realistic spikes 
from cortical population  inputs40.

The present spiking-neural network model was able to generate small-amplitude, slower-than-normal sac-
cades at low currents, which increased to a site-specific maximum at higher current strengths. We showed that 
the intra-collicular lateral connections could be tuned to generate saccades that faithfully followed the nonlin-
ear main-sequence relations of normal, visually evoked saccades (Fig. 8). Importantly, above the default value, 
the saccade metrics were unaffected by changes in the input stimulation parameters (Fig. 8c). In addition, the 
saccadic peak eye velocity was also modulated by the temporal properties of the input current: at short input 
burst durations (i.e., high input burst frequencies, but with a constant number of SC spikes), the evoked saccade 
velocities were higher, than at longer input (low-frequency) bursts (Fig. 8d).

Relation single-unit SC activity and ensuing saccade. Note that the linear ensemble-coding model 
predicts, in its simplest form, that the number of spikes of a given SC neuron for a fixed saccade should always 
be the same. However, this prediction hinges on the rather strong assumption that a single localized population 
of SC neurons generates the saccade, of which we can only be sure for a single-target visually evoked saccade in 
otherwise darkness and no other competing task demands or distractors. In a previous study, we applied this 
simple idea also to a double-target stimulation task, which can yield a variety of double-step responses, includ-
ing strongly curved  saccades45. This work showed that the expected activity for a given SC neuron could vary 
substantially, even when the overall vectorial displacement of the eye would be identical for all these trajectories. 
Thus, under such conditions, the strict relationship between SC spiking activity and ensuing saccade metrics 
and kinematics is broken, even though the saccade could still be generated by the same linear ensemble-coding 
mechanism.

In contrast, when these highly curved trajectories would result from an intended saccade to a single visual 
goal, but perturbed, e.g., by a blink response, the SC activity invariably relates to the overall saccade displacement 
vector, irrespective of the amount of  curvature46. The reason for this apparent discrepancy in neural behavior, 
despite an overall identical saccade behavior, is in the profound differences of the underlying neural program: 
when the total saccade trajectory results from the sum of two temporally overlapping sub-populations, which 
are related to the two visual goals, it can be generated in many ways. The problem with such situations is that 
with a single-unit recording technique it will be impossible to know the potential involvement of other parts of 
the SC motor map in a double-step scenario, beyond the cells around the recording electrode.

To avoid such ambiguities, we did not consider oculomotor scenario’s that could give rise to several simultane-
ously activated SC cell populations, other than those leading to a single localized (near-)Gaussian.

Peel and  colleagues35 observed that after local cooling of the FEF, the total number of spikes of an SC neuron 
for memory-guided saccades slightly decreased (by about 10% on average) when compared to visual evoked or 
pre-cooling memory-guided saccades, without affecting the overall saccade metrics. The decrease in spike count 
was absent for direct visual-evoked saccades. They proposed that the FEF-SC-Brainstem saccade pathway could 
be (acutely) bypassed by a parallel circuit (possibly involving the fastigial nucleus) to overcome the reduced 
input to the SC upon local FEF cooling. In this way, the extra signal from the parallel pathway would add to the 
reduced command from the SC, and still ensure a correct saccade amplitude. As in that case the relationship 
between the saccade metrics (number of spikes) and kinematics (firing rate) is broken, it may support the idea 
of a parallel pathway that can compensate for missing SC output. However, use of this alternative pathway is 
task dependent. Moreover, with the FEF intact, the strict spike-count—saccadic eye-displacement relationship 
holds for all saccades: slow memory-guided responses and fast direct visual-evoked saccades alike. Hence, under 
normal conditions, the direct FEF-SC-Brainstem pathway appears to be the major final common circuit for all 
saccades. This is also in line with the observation that an acute bilateral muscimol-induced inactivation of the 
SC practically abolishes the monkey’s ability to generate normal  saccades34.
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Future work. Although our improved model can account for a wide range of saccadic and SC response 
behaviors under widely different stimulation conditions, it still has several limitations. First, the model should be 
extended to two dimensions to enable saccades in all directions. The current model architecture allows for a rela-
tively straightforward (but computationally expensive) extension and parameter tuning to a two-dimensional 
 network40,47.

A second aspect of real neurophysiological SC firing behavior, missing in our model, is the presence of prelude 
activity and post-saccadic activity for a large subset of cells. Clearly, these pre- and post-spikes do not contribute 
to the actual execution of the eye movement, as they don’t reach the saccadic burst generator. In our model, all 
spikes contribute to the saccade (Eq. S1), and therefore there is no distinction between prelude, burst, and post-
saccadic spikes; there is just a single burst in all cells. Thus, to incorporate that SC neurons may also fire before 
and after the saccade at a relatively low rate will require the presence of separate onset and offset mechanisms 
that act downstream from the motor map. The former triggers the burst generator (by inactivating the omni-
pause gate) as soon as the total prelude activity exceeds a certain threshold, whereas the latter will stop the burst 
generator (i.e., reactivates the omnipause gate) as soon as the subsequent number of SC spikes reaches a fixed 
level.  In14 we had shown that the excess of recorded post-saccadic spikes observed in a number of SC neurons 
would allow for more flexibility of the dynamic spike-counting model to maintain saccade accuracy, e.g., in case 
of (temporary) local inactivation of the SC.

Possibly, such a potential ‘reservoir’ of extra spikes in the population may also better deal with the consider-
able noisy variations in the firing behavior of real neurons within the population. Indeed, an important factor that 
is lacking in the current model is the presence of intrinsic multiplicative and additive noise in the parameters and 
neuronal dynamics, which would introduce variability in the evoked SC responses and the resulting saccades.

Recently, evidence was provided that in the head-unrestrained monkey the initial eye-in-head position 
strongly influences the gaze-shift kinematics, and that it has a systematic modulatory effect (‘gain field’) on the 
SC burst  characteristics48. Interestingly, the large variation in gaze kinematics for a given gaze-displacement 
vector, was associated with a similar variation of the SC firing rates: slow gaze shifts were endowed with lower 
firing rates than fast gaze shifts. Yet, the instantaneous cumulative spike count of the SC cells faithfully encoded 
the straight gaze (i.e., eye in space) trajectory by following a similar linear relationship as was found for the 
head-restrained monkey’s eye  movements14. A more complete model of the SC motor map in gaze control will 
have to include the control of eye-head gaze shifts, where the contribution of the eye- and head movement will 
systematically depend on the initial eye-in-head position, and in which an eye position signal modulates the 
spiking activity within the SC motor map.
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