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Structured sparse multiset 
canonical correlation analysis 
of simultaneous fNIRS 
and EEG provides new insights 
into the human action‑observation 
network
Hadis Dashtestani1, Helga O. Miguel1, Emma E. Condy1, Selin Zeytinoglu2, 
John B. Millerhagen1, Ranjan Debnath3, Elizabeth Smith4, Tulay Adali5, Nathan A. Fox2 & 
Amir H. Gandjbakhche1*

The action observation network (AON) is a network of brain regions involved in the execution 
and observation of a given action. The AON has been investigated in humans using mostly 
electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), but shared neural 
correlates of action observation and action execution are still unclear due to lack of ecologically 
valid neuroimaging measures. In this study, we used concurrent EEG and functional Near Infrared 
Spectroscopy (fNIRS) to examine the AON during a live‑action observation and execution paradigm. 
We developed structured sparse multiset canonical correlation analysis (ssmCCA) to perform 
EEG‑fNIRS data fusion. MCCA is a generalization of CCA to more than two sets of variables and is 
commonly used in medical multimodal data fusion. However, mCCA suffers from multi‑collinearity, 
high dimensionality, unimodal feature selection, and loss of spatial information in interpreting the 
results. A limited number of participants (small sample size) is another problem in mCCA, which leads 
to overfitted models. Here, we adopted graph‑guided (structured) fused least absolute shrinkage and 
selection operator (LASSO) penalty to mCCA to conduct feature selection, incorporating structural 
information amongst the variables (i.e., brain regions). Benefitting from concurrent recordings of 
brain hemodynamic and electrophysiological responses, the proposed ssmCCA finds linear transforms 
of each modality such that the correlation between their projections is maximized. Our analysis of 21 
right‑handed participants indicated that the left inferior parietal region was active during both action 
execution and action observation. Our findings provide new insights into the neural correlates of AON 
which are more fine‑tuned than the results from each individual EEG or fNIRS analysis and validate the 
use of ssmCCA to fuse EEG and fNIRS datasets.

Recent developments in non-invasive neuroimaging techniques have allowed for multi-modal measurement of 
brain activation, leading to more comprehensive understanding of the neural processes underlying cognition. 
One multi-modal approach is the combination of electrophysiological data derived from electroencephalography 
(EEG) with hemodynamic response data derived from functional near-infrared spectroscopy (fNIRS)1,2. EEG 
records electrical signal changes from neuronal firing through electrodes attached to the scalp. FNIRS is an opti-
cal neuroimaging technique that uses near-infrared light (670–820 nm wavelength) to measure the hemodynamic 

OPEN

1Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes 
of Health, Bethesda, MD, USA. 2Department of Human Development and Quantitative Methodology, University 
of Maryland, College Park, MD, USA. 3Leibniz Institute for Neurobiology, Magdeburg, Germany. 4Behavioral 
Medicine and Clinical Psychology Department, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 
USA. 5Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 
Baltimore, MD, USA. *email: gandjbaa@mail.nih.gov

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10942-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6878  | https://doi.org/10.1038/s41598-022-10942-1

www.nature.com/scientificreports/

response in the cerebral cortex, providing an indirect measure (e.g., blood oxygenation) of neuronal activation. 
Although other methods can also measure the hemodynamic response, such as functional magnetic resonance 
imaging (fMRI), fNIRS is non-invasive, cost effective, easier to apply, and less susceptible to motion artifact, 
making it more amenable to studies related to motor  activity3,4. EEG and fNIRS are a compelling combination 
of modalities due to their complementary features. EEG captures electrical activity with temporal resolution 
on the order of milliseconds, but lacks spatial resolution. Conversely, fNIRS has improved spatial  resolution5–7 
and greater tolerance to motion artifact than EEG, allowing the identification of specific regions of interest and 
greater flexibility in the behavioral paradigms employed. By combining these modalities, better understanding 
of neural activation can be achieved by leveraging the temporal resolution of EEG with the improved spatial 
resolution and methodological flexibility of fNIRS. Using this combined approach, studies of brain activation 
associated with live action or motor-based tasks may yield more specific, robust findings.

Concurrent recording of EEG and fNIRS could be particularly beneficial in understanding the human action-
observation network (AON). The AON is a network of brain regions linking the actions of the self (action 
execution) to the actions of others (action observation)8. It has been proposed that the AON is associated with 
sophisticated social and learned behaviors that emerge in typically developing infants, such as complex imitation 
and shared  emotion9. The AON has been widely studied in humans using EEG, namely through measurement 
of mu (μ)  desynchronization10. It is suggested that μ desynchronization occurs both when someone performs an 
action and when they observe someone perform the same action, and thus has been the predominant measure 
of the AON in the human  brain11. However, whether μ desynchronization truly reflects a mirroring system in 
the human brain remains  controversial12,13. One reason for this controversy is the lack of spatial specificity in the 
measured neural response provided by EEG. fMRI studies have offered a more precise location of AON related 
brain  activity14,15 and have identified a key set of regions, including the ventral premotor cortex (PMv), inferior 
frontal gyrus (IFG), and inferior parietal lobe (IPL)16,17. However, fMRI studies are limited due to their high 
sensitivity to motion artifact, which is problematic in AON experimental protocols that involve the execution of 
a motor behavior. Most fMRI studies do not include an execution  condition15 or, if they do, the actions employed 
might not be ecologically valid (e.g., bite bars, ball squeezing)18,19. While the confines of fMRI are not ideal for 
adequate experimental designs of AON experiments, there is potential for fNIRS to fill this gap as it has increased 
spatial resolution compared to EEG and allows participants to move during data collection unlike  fMRI3.

Combining data from multiple neuroimaging techniques could be useful in understanding brain mechanisms 
related to the  AON20, but the analysis of multimodal information is inherently challenging. Canonical Correlation 
Analysis (CCA) is a classic way to evaluate the multivariate associations between two types of high dimensional 
data using canonical vectors or matrices (e.g., different neuroimaging modalities)21. However, CCA is designed 
for two datasets. Multiset CCA (mCCA) extends CCA to more than two  datasets22. While CCA maximizes the 
correlation between two canonical variates, mCCA optimizes an objective function of the correlation matrix 
of canonical variates from multiple random vectors such that the correlation between canonical variates is 
maximized. This method has been applied to fMRI datasets on multiple  participants23–27, multi-subject EEG 
 datasets28,29, fMRI and EEG multi-subject  datasets30, EEG and magnetoencephalography (MEG) multi-subject 
 datasets31, and fMRI, structural MRI and EEG  datasets32–34. There have also been previous studies using simulta-
neously recorded EEG and fNIRS. They have used a variety of data fusion approaches, including joint independ-
ent component  analysis35, CCA 5,6 or temporally encoded CCA 36. However, despite the strengths and applicability 
of CCA in such studies, it performs poorly when the number of features (e.g., brain regions) exceeds the number 
of observations (e.g., participants), which is often true in neuroimaging data analysis. This makes overfitting and 
limited generalizability prominent obstacles to overcome when using this approach.

While CCA does not perform feature selection, sparse CCA (sCCA) contains a built-in procedure to address 
this concern. SCCA extends on CCA by using a regularization technique to identify a sparse set of canonical vec-
tors (loading/projection vectors) for both sets of features. Although sCCA offers a simpler interpretation by creat-
ing sparse projection vectors with higher correlations, it does not consider the spatial correlation or structural 
relationship between input features (e.g., brain regions). This can limit usefulness of sCCA in high-dimensional 
data fusion looking to localize the neural response. Since neural activity in adjacent regions is likely more similar 
than neural activity in non-adjacent regions, correlating them so that their canonical coefficients have similar 
magnitudes can address this issue. Witten et al.37 introduced structured sCCA (ssCCA), which imposes a fused 
least absolute shrinkage and selection operator (LASSO)  penalty38 that tends to group neighboring features to 
recover their spatial structure.

The present study uses a multiset version of sparse structured CCA (ssmCCA) to examine brain signals 
derived from concurrent EEG and fNIRS during an action execution-observation task. Specifically, ssmCCA is 
used to decode and fuse electrical and hemodynamic responses associated with neural activation to expand our 
understanding of brain activation during AON (execution and observation) conditions. Using a multimodal 
neuroimaging approach combining EEG and fNIRS to investigate the AON we aim to identify more specific 
regions of interest in the brain and further advance our understanding of social neuroscience. We propose that 
if EEG and fNIRS each contain greater temporal or spatial information respectively, then a multimodal imaging 
approach using fusion analysis will yield more specific brain activation patterns than either EEG or fNIRS when 
analyzed alone. This will be assessed by comparing the activation patterns yielded from the unimodal analyses 
of fNIRS and EEG to the multimodal approach using ssmCCA. This paper is organized as follows: first we intro-
duce the mathematical approach behind ssmCCA, then the details of the experiment and data preprocessing for 
both fNIRS and EEG datasets are presented. The data fusion procedure is then applied and findings from this 
approach compared to unimodal EEG and fNIRS analyses are presented, followed by a discussion interpretting 
our results and relating them to the previous literature.
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Method
Data fusion approach. Structured sparse CCA (ssCCA). CCA is a standard method to explore the rela-
tionship between two sets of multi-dimensional variables. When the number of samples (i.e., participants) are 
smaller than the number of features ( n ≪ p and n ≪ q ), overfitting becomes an inevitable problem. Usually 
in this situation, only fractions of features in each set are necessary for characterizing the two-set correlation. 
To mitigate the overfitting and lack of generalization problem, a sparsity constraint has been added to the tra-
ditional CCA  problem37,39. To make both canonical variates sparse, either an l1-norm (LASSO)  term40,41 or a 
combination of l1-norm and l2-norm (fused LASSO)38,42 are added to the traditional CCA model. Recently, 
there have been a number of structured sparse CCA (ssCCA) approaches proposed using graph/network-guided 
fused LASSO  penalties43–46. In this paper, we take advantage of the model suggested by  He47 where a network 
is represented by undirected weighted graph, G . GraphNet, a more general form of a traditional elastic net 
 regularizer43–46, can be written as:

where M is a matrix, and ( �1, γ1 ) are regularizing parameters. The vertices in G correspond to features (e.g., brain 
regions, optodes) and each edge, lij , indicates if there is a link between optode i and j in G ; all the weights of lij 
in the network depend on their adjacency conditions (e.g., high or low correlation). We have an elastic net when 
M = I in a GraphNet. Generally, M = L , where L is the Laplacian matrix of a graph. Let A be a sample correla-
tion matrix, called the adjacency matrix, in which the higher pairwise correlation between two features corre-
sponds to a larger weight. We identify p as features/brain regions in the dataset and a diagonal matrix, D , with 

the following diagonal entries: ( D = diag(d1, d2, . . . , dp ), where D(i, i) =
p
∑

j=1

A
(

i, j
)

 . The Laplacian matrix, L , is 

defined as L = D −W . In the case of M = L , it has been shown that:

where wik depends on pairwise correlation of X and Y   respectively47. This cost function also indicates that the 
adjacent regions linked in initial structure are expected to have similar  weights48,49. To this end, the ssCCA 
would be formulated as:

subject to:

where C = (c1, c2, c3, c4) > 0 are regularization parameters. Here, c3 and c4 are used to regularize the cost function 
controlling for spatial structure, and Lw1 and Lw1 are Laplacian matrices of modality 1 and 2 associated with w1 
and w2, respectively. Witten et al.37, Chen et al.43 reformulated the constraints on w1 and w2 in Lagrangian form:

where the regularization parameters �1, �2,α1 and α2 correspond to c1, c2, c3 and c4 , in (3) respectively.

Structured sparse multiset CCA (ssmCCA). Thus far, the ssCCA we have formulated does not consider more 
than two datasets. However, traditional CCA can be extended to more than two variables in different  ways22. 
MCCA is the generalization of the CCA model where an objective (cost) function corresponding to the correla-
tions between canonical vector pairs should be optimized such that the overall correlation between them is 
maximized: 

[
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(|ρ[n]
k,l |) . The subscript indicates the dataset, and the superscript indicates 

the observation in the dataset (e.g., ρ[n]
k,l  is the correlation between the n th canonical variates from k th and l  th 

datasets).
In order to solve mCCA  Kettenring22 introduced five objective functions (e.g., F(x) = x indicates the sum 

of correlations (SUMCOR) cost function while F(x) = x2 corresponds to the sum of squares correlations (SSQ-
COR) cost function):

where function F(·) is the cost function. Here, we chose the SUMCOR cost function to estimate canonical vari-
ates. The procedure can be summarized in the steps bellow.
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Step 2

subject to:

where d ≤ min (rank(Xm)) . The matrices L[n]
w
[n]
m

 are the semi-positive definitive Laplacian matrices of  M datasets, 
and c1[n]m  and c2[n]m  are the penalty terms for the n th observation throughout all the M datasets.

Step (1) can be solved using a partial derivative function of the SUMCOR objective function with respect to 
each w[1]

m  and equating it to zero to find the optimizing point. Since the SUMCOR objective function is a linear 
function of each w[1]

m  , the partial derivative is a constant, and therefore the closed form solution exists. The itera-
tive algorithm starts from randomly initializing canonical variates and each w[1]

k  vector is updated subsequently 
to guarantee cost function optimization. All the w[1]

k  vectors are updated after the one step procedure. The pro-
cedure continues until convergence criteria are met and the w[1]

k  vectors are considered as the optimal solution.
At step (2), the SUMCOR problem in (8) can then be reformulated in Lagrangian form:

where 1 ≤ n ≤ N  , 1 ≤ k, l ≤ M , k  = l. As a reminder, n represents the n th observation in k th and l  th data-
sets, and the regularization parameters �[n]1k , �

[n]
2k ,α

[n]
1k  and α[n]

2k  correspond to c1[n]k  , c2[n]k  , c1[n]l  and c2[n]l  in (8) 
respectively.

Parameter optimization. The parameters in (9) that should be optimized are ( �[n]1k , �
[n]
2k ,α

[n]
1k  , α[n]

2k  ). We applied 
the leave-one-out cross validation technique in which we estimated the model parameters (canonical variates) 
for n − 1 samples (participants) and calculated the errors on our one-left-out sample. We adopted the two steps 
cross-validation  technique50. First, we found optimal values of αi when �i was set to zero and, second, we used 
these optimal αi values to estimate optimal values of �i . To address the overfitting problem and improve model 
generalization, Waaijenborg et al.51 suggested that the test sample correlation should be approximately equal to 
the training sample correlation. In other words, the absolute difference between the estimated canonical correla-
tions of the training and test samples are minimized.

Participants. Data were collected at two sites: the National Institute of Health (NIH) and University of Mar-
yland (UMD). At NIH, participants were recruited from the healthy volunteer database at the National Institutes 
of Health. At UMD, participants were recruited through the program for Research for Extra Credit supported 
by the Department of Psychology. All experiments and methods were performed in accordance with guidelines 
provided in the study protocol (number: 18-CH-0001), which was approved by the Office Of Research Support 
and Compliance (ORSC) at NIH. In addition, all participants signed an informed consent approved by each site’s 
Institutional Review Board (IRB) prior to the start of the experiment.

Forty healthy right-handed volunteers participated in the experiment at NIH the site; however, data from 27 
participants had to be discarded as a result of technical malfunctions which caused either incomplete recording or 
poor signal quality in one or both modalities. The final sample consisted of seven females and six males. Twenty 
healthy volunteers participated at UMD. Data from eight participants was considered for further analysis (3 
female and 5 male, mean age, 24.62 years). Between both sites, the final sample used for the data fusion algorithm 
consisted of 21 participants (22–29 years of age; mean age, 24.9 years).

Experimental design. Our experiment was adapted from a paradigm used in the EEG mirror neuron 
literature with infant  populations52. The paradigm consisted of 15 trials of action observation and 15 trials of 
action execution. Each trial was followed by a 20 s recovery period during which the participant passively viewed 
a moving pendulum. For further information on the paradigm we used please see Miguel et al.53.
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Data acquisition. EEG and fNIRS data were recorded simultaneously. EEG data were collected using the 
Geodesic EEG System 400 (Magstim EGI, Eugene, OR) with 128 electrodes at a sampling rate of 256 Hz. Par-
ticipants’ heads were fit with elastic EGI Geodesic Sensor Nets based on their head size. We measured head 
circumference, nasion-to-inion, and preauricular point distances to ensure proper placement of the EEG cap. 
The vertex (Cz) electrode was used as the reference. Data were exported to a MATLAB (Mathworks, Natick, 
MA) compatible format using Net Station software for offline processing with the EEGLab (v13.4.4b)  toolbox54.

fNIRS data were collected using the Hitachi ETG-4100 system equipped with 10 infrared sources and 8 
detectors placed over the somatosensory and parietal regions as in our previous fNIRS study investigating the 
 AON53. A total of 24 channels (12 per hemisphere) measured changes in oxygenated hemoglobin (HbO) and 
deoxyhemoglobin (HbR) concentration.

After collecting experimental EEG/fNIRS data, we recorded the positions of sources and detectors on the 
head in reference to the nasion, inion, and preauricular landmarks using a 3D-magnetic space digitizer (Fastrak-
Polhemus). This accounted for additional variations in cap placement and verified which channels covered each 
brain region. Figure 1 shows how fNIRS optodes were secured within the elastic of the EEG cap using custom-
designed silicone fixtures, as well as the sensitivity profile of the fNIRS probe across the cortex.

Preprocessing. EEG data preprocessing. EEG data were pre-processed using EEGLab software using the 
method proposed by Debnath and  colleagues55. EEG channels on the boundary of the electrode net (24 chan-
nels) were excluded from analyses because they were contaminated by eye, face, and head movements (17, 38, 
43, 44, 48, 49, 113, 114, 119, 120, 121, 125, 126, 127, 128, 56, 63, 68, 73, 81, 88, 94, 99, 107). Then, high-pass and 
low-pass filters with respective cut off frequencies of 0.3 and 49 Hz were applied to the continuous data. Using 

Figure 1.  fNIRS probe design. The picture on the top left shows how the fNIRS probe was embedded within an 
elastic, 128-electrode electroencephalogram (EEG)  cap53. The top right, bottom left, and bottom right pictures 
depict the sensitivity profile for the fNIRS probe geometry generated in AtlasViewer software. The color scale 
indicates the relative sensitivity in log 10 units from − 1 (blue) to 1 (red). Dots represent  source and detector 
pairs; yellow lines indicate fNIRS measurement channels. Six ROIs were derived from the 12 fNIRS channels 
located in each hemisphere: pre-central region, post-central region, superior parietal lobule, inferior parietal 
lobule, supra-marginal gyrus and angular gyrus.
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the EEGLAB plugin  FASTER56, artifactual channels were identified and subsequently removed. In order to re-
move eye blinks, respiratory, and muscle movement noise in the data, we applied extended infomax independent 
component analysis (ICA). During preprocessing we used the interpolation option to estimate electrical activity 
of the noisy electrodes mentioned above that had been removed prior to the ICA. This is a popular and well-
established technique that has been mentioned in the EEGLAB tutorial. Using the ADJUST  plugin57 to EEGLAB, 
artifactual independent components (ICs) were removed and the remaining data were epoched into − 1.5 s to 
1.5 s intervals relative to the “Start Action” (SA) marker for each trial. Therefore, we extracted a total of 30 seg-
ments encompassing the 15 trials of each condition (observation and execution). These preprocessed data were 
used to conduct unimodal EEG analyses to assess AON activity as detected by EEG alone and were also carried 
forward into the EEG-fNIRS fusion analysis.

fNIRS data preprocessing. The fNIRS signal was processed using HOMER2 (MGH—Martinos Center for 
Biomedical Imaging, Boston, MA, USA), a MATLAB software package (The MathWorks, Inc., Natick, MA, 
USA). Only valid trials as identified through behavioral coding were retained in HOMER2 for data processing. 
Using the optical density data, we used Principal Component Analysis (PCA) set at 0.9 for movement artifact 
 removal58. Data were low-pass filtered at 0.5 Hz to remove physiological influence from the signal and were then 
used to calculate the change in concentration of the hemoglobin chromophores using to the modified Beer-
Lambert  Law59. Traces were then segmented into 25-s epochs around the trigger stimulus for each trial (start 
action; SA), with each epoch starting − 5 s prior to each stimulus (0 s). Baseline correction corresponded to the 
mean HbO/HbR values from − 5 to 0 s. The hemodynamic response function was then generated at each chan-
nel for each condition by participant by averaging all of a participant’s response curves from all trials within a 
condition into a single hemodynamic curve for each channel. Due to a greater signal to noise ratio we only used 
the HbO signal for remaining analyses, similar to previous work in  fNIRS60.

Mapping fNIRS electrodes via Atlas Viewer. We determined the anatomical regions covered by each fNIRS 
channel within each participant using the optode coordinates taken from the Polhemus digitizer. These coor-
dinates were then entered into  AtlasViewer61 to scale the Colin29 brain atlas to each participant’s head. Atlas-
Viewer generated the MNI coordinates of each channel and the corresponding region of interest (ROI) for each 
channel was identified. Due to differences in head size, channels were not consistently positioned over the same 
brain region for all participants. Hence, the analyses were conducted using an ROI approach. The ROIs indicated 
were: postcentral, precentral, supra-marginal, inferior parietal and angular, located in both left and right hemi-
sphere. Using the preprocessed fNIRS data and the ROI data, unimodal fNIRS analyses were conducted to assess 
AON activity as detected by fNIRS alone and were also carried forward into the EEG-fNIRS fusion analysis.

EEG‑fNIRS data fusion. First, we convolved the mean power in the µ frequency band (8–13 Hz in adults) 
for each EEG channel with the hemodynamic response function (HRF) using a gamma  distribution62. AON 
activation in EEG is characterized by decreased power in the µ frequency band, whereas in fNIRS, AON activa-
tion is indexed by an increase in HbO over specific brain regions, specifically bilateral superior parietal lobule, 
bilateral inferior parietal lobule, right supra-marginal region and right angular  gyrus53. To account for the power 
decrease in EEG, we used the inverse value of the power in the µ frequency band for EEG prior to applying 
the HRF convolution. We also used a 1000 Hz sampling rate to resample the EEG data. Since SA markers were 
considered the set point (0) over a 3-s epoch from − 1.5 s to 1.5 s, a total of 3000 datapoints were extracted. This 
resulted in the EEG matrix E ∈ Rsamples×channels

(

R3000×128
)

.
fNIRS data were averaged over all the 30-s trials, which consisted of − 5 s before the stimulus and 25 s after 

at each channel. The SA marker was considered as the zero point in time in both the fNIRS and EEG data-
sets. The fNIRS signal was sampled at a rate of 10 Hz, resulting in an fNIRS matrix for each participant of 
N ∈ Rsamples×channels

(

R300×24
)

 . After projecting the fNIRS dataset to MNI space for each subject, we used the 
12 regions of interest identified in AtlasViewer (see preprocessing, Sect. 2.4.3). Hence, the final fNIRS data 
matrix was ∈ Rsamples×ROIs

(

R300×12
)

 . Since CCA requires the same number of data samples (though a different 
number of features is still possible), we downsampled the EEG datasets. The final EEG and fNIRS datasets had 
the following dimensions: E ∈ R300×128 , N ∈ R300×12 , respectively. Figure 2 illustrates our preprocessing pipeline.

We randomly divided 21 datasets (overall 42 since each participant had two sets of data: one EEG and one 
fNIRS dataset) into two subsets: a training set and test set. The optimal parameters were obtained from the train-
ing dataset by threefold cross validation. Then, we used the estimated parameters on the test sets to predict the 
correlation between the datasets. The main reason we chose threefold cross validation over the leave-one-out 
technique is the lower variance provided by this method. In the case of leave-one-out, where 90% of data are 
used for training and 10% used for testing, the test set is very small, so there is high variation in the perfor-
mance estimate across different samples of data and across the different partitions of the same data forming the 
training and test sets. threefold validation reduces this variance by averaging over 3 different partitions, so the 
performance estimate is less sensitive to the partitioning of the data. We also repeated threefold cross-validation, 
where the cross-validation is performed using different partitioning of the data to form 3 subsets, and then took 
its average as well.

Results
Unimodal fNIRS. FNIRS findings suggested that bilateral superior parietal lobule (SPL), bilateral inferior 
parietal lobule (IPL), right supra-marginal region (SMG) and right angular gyrus (AG) are candidate regions of 
the human AON, as previously reported in Miguel et al.53. Figure 3 represents a summary of our findings.
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Figure 2.  Preprocessing workflow for EEG and fNIRS datasets. After preprocessing, 42 datasets in total entered 
the ssmCCA algorithm.

Figure 3.  Unimodal fNIRS results. HbO reconstruction maps for Execution and Observation in the Left and 
Right Hemisphere from − 5 to 25 s. Overall, our results showed the parietal regions, including bilateral superior 
parietal lobule, bilateral inferior parietal lobule, right supra-marginal region and right angular gyrus are 
candidate regions of the human  AON53.
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Unimodal EEG. Results from EEG unimodal analysis indicated bilateral μ desynchronization in central 
and parietal regions for execution, whereas observation resulted in bilateral μ desynchronization in the parietal 
region (unimodal EEG findings are in the process of publication). Figure 4 provides a topographic view of the μ 
desynchronization from the EEG data.

EEG‑fNIRS fusion. We applied our proposed ssmCCA technique to analyze the correlation between EEG 
and fNIRS datasets of the 21 participants during the action execution and action observation conditions sepa-
rately. Our ssmCCA aims to find canonical variates (components) that are the best representative of their own 
modalities and, at the same time, correlate robustly with the corresponding canonical variates of the other 
modality. Here, we extracted four canonical variates of which one was statistically significant. Table 1 shows 
these components, their corresponding correlation, and statistical significance for action execution and observa-
tion. Notably, the left parietal inferior region showed a significant correlation during action observation (r = 0.48, 
p = 0.041), and a marginally significant correlation during action execution (r = 0.39, p = 0.055). Figure 5 provides 
a schematic view of the brain regions associated with action execution and action observation.

Moreover, we examined the performance of our ssmCCA approach to two other common CCA approaches, 
smCCCA and mCCA. In Fig. 6, the correlations of components 1 to 4 are plotted across all three fusion 
approaches, with ssmCCA showing the largest correlation magnitudes across all four components in both the 
action and observation conditions.

Discussion
Recent studies have shown great potential in combining multimodal brain imaging data captured from multiple 
participants by leveraging the rich information each modality provides. In this study, we developed a ssmCCA 
algorithm to explore relationships between multi-modal datasets to take advantage of the relative strengths of 
both EEG and fNIRS. The focus of this work was to use multimodal, multi-participant data fusion to character-
ize the human AON while addressing common problems in medical data processing, such as smaller sample 
size and other CCA methodological challenges, and show greater specificity in findings using a multimodal 
approach than the unimodal approaches alone. It is worth noting that the significance of this work is two-fold: 

Figure 4.  Unimodal EEG results. Our EEG results show strong μ desynchronization during execution and 
observation conditions. Here power synchronization is indicated by warmer colors on the colorbar, while 
desynchronization is shown using cooler colors. Thus, μ desynchronization can be seen in blue for both action 
execution and action observation. However, the  source of μ desynchronization is unspecified across the cortex 
due to poor spatial resolution of EEG.

Table 1.  The brain regions and their cross modality correlation and corresponding Pvalues.

Action execution Action observation

Correlation
Corresponding fNIRS 
region

Corresponding EEG 
channel P-value Correlation

Corresponding fNIRS 
region

Corresponding EEG 
channel P-value

Comp 1 0.3905 Parietal_Inf_L E51, E52, E53, E59, E60 0.055 0.4823 Parietal_Inf_L E52, E53, E59, E60 0.0416

Comp 2 0.3821 Postcentral E37, E41, E42 0.0572 0.3753 Supra-marginal-L E66, E69, E70, E71, E74 0.0512

Comp 3 0.3548 Supra-marginal_L E66, E69, E70 0.0605 0.3310 Postcentral L E37, E41, E42 0.0624

Comp 4 0.3350 Precentral_L E19, E20, E24, E27 0.0647 0.3351 Precentral_L E19, E20, E27 0.0762
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1. It provides methodological advancement in the field of multimodel imaging, and 2. It addresses an important 
research question affording better understanding of the AON.

Our proposed ssmCCA is an unsupervised learning algorithm which finds canonical variates without any 
prior information. As the quality and interpretibilty of the CCA components depend on the usefulness and 
relevance of each set of extracted features that are active across sets, our proposed ssmCCA model combines 
mCCA with l1-norm type penalty to automatically remove irrelevant features (sparsity constraint). This feature 
selection enhancement also mitigates overfitting problems caused by high-dimensional data sets with few corre-
lated components and a small sample size. Adding l2-norm penalty, we assure the correlation between canonical 
projections is maximized without neglecting the local structure of the data (i.e., the adjacency in brain regions). 

Figure 5.  Extraced brain regions associated with execution (axial view on the top left, sagittal view on the 
bottom left) and observation (axial view on the top right, sagittal view on the bottom right). The color bar 
refers to the significance of the region (component). Our analysis shows the left inferior parietal lobule is the 
region which shows the highest covariation in fNIRS and EEG recordings (the most significant component). 
Interestiingly, the covariation in fNIRS and EEG signals in the right hemisphere are not shown to relate in our 
AON paradigm. Image generated using BrainNet Viewer  software63.

Figure 6.  Correlations by their corresponding components resulting from EEG-fNIRS fusion applying mCCA, 
smCCA and ssmCCA.
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Figure 6 also shows the advantage of using ssmCCA over smCCA (without considering l2-norm penalty) and 
mCCA (with no consideration of l1-norm and l2-norm penalties). As shown, applying those regularizations has 
improved the correlation between the two datasets and provided us with more accurate representation. Not only 
has our study contributed to the advancement of a method to combine EEG and fNIRS datasets, but also added 
to the AON literature by identifying a candidate ROI of the AON system in humans.

Our results are consistent with the AON literature. The ssmCCA analysis indicates canonical components in 
the inferior parietal, postcentral, supra-marginal, and precentral regions of the left hemisphere when participants 
performed action execution. As is well-established, motor execution engages mostly the contralateral sensory-
motor  cortex64–67, indexed by the precentral and postcentral regions in our study. Since participants in this study 
were all right-handed, the major components were detected on the left side of the brain. In the observation condi-
tion, we see the extracted components in inferior parietal, supra-marginal, postcentral, and precentral regions in 
the left hemisphere. Although the same sensory-motor regions are activated, the more dominant regions seem 
to be more posterior during the observation condition, as found in previous  studies11,68. More importantly, the 
left inferior parietal lobe is shown to undergo the highest covariation (equivalent to greater oxyhemoglobin/
decreased μ power) of simultaneous EEG and fNIRS data across both action execution and action observation, 
indicating that this is the strongest AON candidate region. Several unimodal studies have indicated involvement 
of many of these regions during action execution and action  observation15,69,70. Our fNIRS unimodal analysis 
also implicated these regions amongst a larger set of areas of the brain involved in the human AON Fig. 353. The 
unimodal fNIRS findings showed widespread activation across the parietal regions, including bilateral superior 
parietal lobule, bilateral inferior parietal lobule, right supra-marginal region and right angular gyrus, during 
action execution and action observation, whereas our multimodal analysis was able to identify regions with more 
specificity than the unimodal approach.

In addition, our results from the EEG unimodal analysis shows μ desynchronization in both execution and 
observation conditions across the cortex, with limited spatial specificity of μ desynchronization Fig. 4. However, 
we do see a “hemisphere effect” during execution such that there was greater activity in the left central com-
pared to right central regions, which is consistent with the contralateral effect seen in our multimodal findings. 
However, there was no hemisphere effect in the observation condition when using the unimodal EEG analysis, 
thus characterization of the AON through EEG alone was not specific to one hemisphere. Therefore, the find-
ings from our data fusion analysis appear to be consistent with both unimodal analyses while also more specific, 
pointing to the left inferior parietal lobe as the region that presents the highest covariation between EEG and 
fNIRS signals during an AON paradigm.

While the results from our study support the use of ssmCCA to fuse simultaneous EEG and fNIRS data in 
an attempt to better characterize the spatial profile of cortical activation during an AON paradigm, there were 
limitations that could be addressed in future research. For the sake of understanding the AON, especially given 
our findings of lateralized components, it will be important for future studies to include left-handed participants. 
Furthermore, we offered a comparison of the ssmCCA findings to the fNIRS alone and EEG alone findings; how-
ever, the EEG alone findings did not utilize source localization estimates. Given that sources for surface EEG are 
generally understood to originate from throughout the brain and show minimal spatial specificity, EEG source 
localization estimates would be a useful comparison to ssmCCA findings from the multimodal dataset, or even 
to use in the ssmCCA to further increase specificity of our findings. Lastly, the simultaneous collection of fNIRS 
and high density EEG data (128 + electrodes) was challenging. Not only was the initial integration of the two caps 
difficult, but data loss in one or both modalities led to a notably smaller sample size for the multimodal analyses. 
One potential solution is to determine whether high density EEG offers an advantage when using ssmCCA, or if 
a similar result could be obtained using a more sparse array of EEG electrodes. Determining this could minimize 
cap integration issues while offering the same quality of multimodal findings and will be further investigated. 
Similarly, in order to clarify the role of ssmCCA in multimodal analyses, it will also be useful to apply ssmCCA 
to multimodal datasets that are collected both simultaneously and sequentially. It is possible that sequential data 
collection can provide similar multimodal findings as simultaneous data collection when using ssmCCA, which 
again would minimize the integration issues mentioned above. Finally, we can also apply ssmCCA to investigate 
the temporal components of the AON by focusing on the timing aspects of EEG timeseries as opposed to the 
spatial aspects, as done in the present study. Since EEG captures cortical dynamics in milliseconds, and our 
paradigm recorded different action markers, such as starting the action and lifting the object, we could charac-
terize how the AON is firing in relation to each of these actions, as well as the sequence AON activation over the 
course of the paradigm. This would help determine whether the sequence and timing of AON activation is the 
same during both action execution and action observation or if there is a time lag or difference in the activation 
sequence. However, this would require enough spatial resolution to delineate which cortical areas are firing at 
different times over the course of the paradigm, which is why the present study focused on improving spatial 
resolution with this approach. Nonetheless, ssmCCA could also potentially be used to calculate accurate timing 
of the AON response between conditions, which may afford additional insight into AON function.

Data availability
All raw nirs and mmf (EEG raw data) files that support the findings of this study along with the method imple-
mentation ssmCCA are available on Dash, a NIH Data and Specimen Hub https:// dash. nichd. nih. gov/ Mirror 
Network in At-Risk Infants [Study ID: currently the data is being transferred. The ID will be generated upon a 
completion of data transfer].
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