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Few generalized entropic relations 
related to Rydberg atoms
Kirtee Kumar1,2 & Vinod Prasad3*

We calculate the analytical and numerical values of the position space Shannon entropy, momentum 
space Shannon entropy, and total Shannon entropy, Sρ , Sγ , and S

T
 , respectively, of free and trapped 

Rydberg hydrogen-like atoms. The influence of atomic number Z, the principal quantum number n, 
and energy E on the Shannon entropy of the Rydberg atoms are illustrated. The scaling properties of 
Shannon entropy with energy of states E and the principal quantum number n have been reported 
for the first time to the best of our knowledge. Our work explains how Shannon entropy indicates 
localization-delocalization of the wavefunction. The total Shannon entropy as a measure of the 
number of nodes in the trapped Rydberg atom’s wavefunction is also discussed. We show why an 
uncertainty relation based on Shannon entropy is superior to Heisenberg uncertainty for Rydberg 
atoms.

Rydberg atoms are atoms in which one or more valence electron can be excited in states with extremely high 
principal quantum numbers n1,2. The valence electron is predominantly affected in such an atom by the posi-
tive charge of the ionic centre, not by its composition. These atoms that demonstrate the consistency of thought 
between the world of classical mechanics and quantum mechanics are important to study the correlation of 
classical and quantum regime. Although the study of Rydberg atoms has a long history, the advancement of 
laser technology has led to great experimental advances for researchers and has revived interest in such studies. 
Rydberg atoms are also significant in many research studies of astrophysics. These states in theory, give some 
advantages that could be exploited in the research for new applications. The special properties of Rydberg atoms, 
i.e., their extreme polarizability, long-range interaction, and long lifetime, have positioned them at the centres 
of highly active research areas of modern atomic physics and quantum information technology. In 2000, Jaksch 
et al. proposed a method of generating a fast phase gate using Rydberg atoms, which was the first proposal to 
use the blockade for quantum  information3. It was further extended to a mesoscopic regime of many-atom 
ensemble  qubits4. Rydberg blockade and antiblockade has also been suggested as a way to generate many-particle 
 entanglement5–12. Carr and Saffman have proposed and analysed an approach for preparation of high fidelity 
entanglement and anti-ferromagnetic states using Rydberg mediated interaction with dissipation for two atom 
 singlet13. It was further extended to a stationary three-dimensional entanglement between two-individual neutral 
Rydberg  atoms14 and maximally entangled states via dissipative Rydberg  pumping15. In the excitation spectra 
of ultra cold atoms of Rubidium and Cesium in their Rydberg states, dipole matrix elements and relevant ener-
gies were calculated using quantum defect  theory16. So, there are many studies related to Rydberg atoms which 
are promising platform for quantum state engineering, quantum metrology, quantum  simulation17,18, quantum 
 information21, quantum  computing19,20,22, sensing and imaging and quantum  optics23.

Firstly, Michels et al. introduced the idea of study of confined atom. They studied spectral broading of the 
hydrogen atom inside an impenetrable spherical  cavity24. The trapped atoms show enhanced response to exter-
nal perturbation compare to free atoms. In recently, mostly experiments are performed with Rydberg atoms in 
optical dipole traps and arrays of optical dipole traps. The atoms are temporarily excited to Rydberg states using 
resonant laser radiation. Typically, the ground-state atoms are trapped by off-resonant trapping radiation, but 
Rydberg atoms are not trapped. Rydberg atoms are repelled by the Laser-induced ponderomotive  potential25 and 
transversely trapped in the light tube for times up to 10 ms. The experiments of trapping Rydberg atoms have 
been reported in recent  years26–32. The theoretical description of trapped Rydberg atoms and their interaction 
with light and with each other is commonly performed using conventional quantum mechanical approach based 
on Schrodinger equation. The trapped Rydberg atoms have more quantum information than the free Rydberg 
atoms because the free atoms interact only at very short  range33. The trapped Rydberg atoms open up new pos-
sibilities for applications of quantum optics and quantum  information34,35. Therefore, trapped Rydberg atoms 
have taken importance in recent  studies36.
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The spread of the probability densities in both position and momentum space determine the physical and 
chemical properties of the Rydberg atoms. The multiple facets of this spread are currently quantified not only 
by means of radial expectation values in position and momentum spaces, but also by certain local and global 
information-theoretical measures. Various fundamental and/or experimentally measurable quantities such as 
the diamagnetic susceptibility, the potential energy, the kinetic energy, etc. are closely related to these spreading 
measures. In addition, they allow to determine various uncertainty measures.

There has been continuous interest in the studies on information theoretic measures for quantum mechani-
cal systems. Entropy is a measure of the uncertainty associated with a random variable in information theory. 
Entropy usually refers to the Shannon entropy in this field, which measures the expected value of the informa-
tion stored in a message, usually in units such as bits, i.e., when the value of the random variable is unknown, 
it is a measure of the average information content that is missing. Claude E. Shannon presented this idea in his 
paper “A Mathematical Theory of Communication” in 1948, in which he set out to find fundamental limits on 
signal processing operations such as data compression and data storage and communication  reliability37. In other 
fields, such as statistical mechanics, cryptography, quantum  computing38, atomic and molecular  physics39–45 and 
 chemistry46,47, this theory has bee extended to a range of applications since its proposal.

From the underlying concepts of information theory, the global measure of Shannon entropy is fundamental 
to quantum information-theoretical measures.There are other global measures, besides Shannon entropy, which 
include Tsallis and Renyi entropies and Onicescu  energy48–51. The importance of the global measure is to study 
the uncertainty associated with the distribution of  probability52–55. An uncertainty relation based on the Shannon 
entropy known as BBM inequality derived by Beckner-Bialynicki-Birula and  Mycieslki56,57 which is a stronger 
version of the Heisenberg uncertainty principle of quantum mechanics, which is written as

where, d is the spatial dimension, Sρ and Sγ are Shannon entropy for position and momentum spaces, which 
are expressed as

respectively. Where, ρ(
→
r ) and γ (

→
p ) are the radial probability density in position and momentum space respec-

tively and they are written as ρ(
→
r ) = |�(

→
r )|2 and γ (

→
p ) = |�(

→
p )|2 , where �(

→
r ) and �(

→
p ) are the normalized 

wave function in position and momentum space respectively. One of the implications of the BBM inequality 
is that the lower bound values of the Shannon entropy sum are interpreted in such a way that if the position 
entropy increases, the momentum entropy will decrease in such a way that its sum follows the bound of BBM 
inequality. In physical science, Shannon entropy is a hypothesis that describes the spatial distribution of the 
wave function for different states. The concentration of wave function of the state is higher when the Shannon 
entropy is  small58. We may also assume that the wavefunction is localized when the Shannon entropy is low and 
delocalized when it is high. As a consequence, Shannon entropy can be used to estimate the stability of a system. 
When Shannon entropy is low, it is likely to be more stable, and when Shannon entropy is high, it is assumed 
to be unstable. Shannon entropy is also important in the study of the structure and dynamics of atomic and 
molecular systems since it is related to fundamental and experimentally observable quantities like kinetic energy 
and magnetic  susceptibility59. Shannon entropy has attracted a lot of attention due to its application in differ-
ent fields. Saha and Jose use Shannon entropy as an indicator of correlation and relativistic effects in confined 
 atoms60. Recently, many researchers have used various potentials to study the Shannon  entropy61–64. Shannon 
entropy for quantum heterostructures has also been  studied65–67. The Shannon entropy of the confined hydro-
genic atoms have been calculated in many previous  works68–71. Very recently, there are studies on the influence 
of electric field on the Shannon  entropy72,73. As a result, we intend to investigate the analytical and numerical 
calculation of Shannon entropy and various entropic uncertainty  relations74–78 for the Rydberg hydrogen atom, 
as suggested in the work’s concept.

Method
The non-relativistic Hamiltonian of a Hydrogen-like atom of mass M and atomic number Z with the nucleus 
placed in the center of an impenetrable sphere is

where e is the charge of electron and Vc(r) is the spherical hard confining potential which is written as

Where r0 is the radius of spherical confinement.
Using p = −ι�∇ , Hamiltonian becomes
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Using atomic unit (a.u.) ( � = 1, M = 1 and e = 1), Hamiltonian can be written as

So, the Schrodinger equation H� = E� is written as

In spherical coordinates the Schrodinger equation is written as

Because of spherical symmetry the above Schrodinger equation can be solved by the method of separation of 
variables. So, complete normalized wavefunction �nlm(r, θ ,φ) can be written as

where, Rnl(r) represents the radial part and Ylm(θ ,φ) is the angular part of the wavefunction. The angular part 
of wavefunction Ylm(θ ,φ) is same and radial part Rnl(r) is affected due to confining potential. So, the radial 
Schrodinger equation can be written as

Using Rnl(r) = ξnl(r)
r  , the radial equation finally reduces to the following form

where,Veff  is effective potential which is defined as Veff = −Z
r +

l(l+1)
2r2

.
For given effective potential, Eq. (12) is solved numerically by 9th order finite difference method using MAT-

LAB. The eigenvalues equation for radial Schrodinger equation is reduced to a matrix form. Diagnoalizing this 
matrix the eigenvalues and eigenvectors are obtained. So, radial wavefunctions Rnl(r) are obtained in position 
space using these eigenvectors. So, total normalized wavefunction �nlm(

→
r ) = Rnl(r)Ylm(θ ,φ) can written in 

position space. Using Dirac-Fourier transformation, the momentum space wavefunction of the position space 
wavefunction can be written as

Using �(
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p ) , we obtain probability density ρ(
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in momentum space respectively. From ρ(
→
r ) and γ (

→
p ) , we calculate the Shannon entropy Sρ in position space 

and the Shannon entropy in momentum space Sγ respectively, which are presented in next section.

Results and discussion
In the present work, we studied the differences in Shannon entropy between free Rydberg atoms and confined 
(trapped) Rydberg atoms. The study is limited to the S states with zero angular momentum (l = 0), which are 
known as linear states. As a model, we considered a spherical trapping potential with infinite wells. We have 
used atomic units throughout this paper.

Free linear Rydberg states. In Table 1, we have presented the values of the Shannon entropy in position 
space Sρ , the Shannon entropy in momentum space Sγ , Heisenberg uncertainty principle (HUP) and uncertainty 
relation based on the Shannon entropy ( ST = Sρ + Sγ ) with atomic number Z for n ≥ 6 for s-states of Hydro-
gen-like atoms. We note that as the atomic number Z increases while the principal quantum number n remains 
constant, the energy becomes more negative, implying that the energy decreases as Z increases. The nucleus 
has a more positive charge as Z increases, so the coulombic attraction force between the nucleus and electron 
increases, causing the nucleus to hold the electron tighter. The energy becomes less negative as n is raised while 
holding Z unchanged, showing that energy increases as n is raised. It is because of increasing of n, the distance 
between the nucleus and electron increases so the coulombic attraction force between the nucleus and electron 
decreases, due to this nucleus holds the electron less tight. As Z increases while n remains constant, potential 
energy becomes more negative, meaning that potential energy decreases as kinetic energy rises. As Z increases, 
the wavefunction of the electron compresses in position space and expands in momentum space, resulting in a 
wavefunction that is localized in position space but delocalized in momentum space. However, we know that as 
n increases while Z remains constant, the distance between the nucleus and electron increases, therefore poten-
tial energy becomes less negative, meaning that potential energy increases and kinetic energy decreases. As n 
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increases, the wavefunction of the electron expands in position space and contracts in momentum space, result-
ing in wavefunction delocalization in position space and localization in momentum space, as shown in Fig. 1. 
Standard deviation and Shannon entropy can also be used to explain this. With principal quantum number n 
and atomic number Z, we observed the variation of variance in position space �r and variance in momentum 
space �p . Keeping n constant, �r decreases for increasing of Z and �p increases for increasing of Z. However, 
if Z remains unchanged, �r increases as n increases, and �p decreases as n increases. This also shows that the 
wavefunction in position space becomes localized and delocalized in momentum space as Z increases (while 
holding n constant), and vice versa. Here, we can also notice that product of variance �r�p is independent with 
Z and equal for all values of Z, but it depends on n and increases for increasing of n. Now we can see how Shan-
non entropy changes with principal quantum number n and atomic number Z in linear Rydberg states. Rosa 
et al. derived and analyzed the expressions for entropy and complexity of linear Rydberg states of Hydrogenic 
 atoms79. Yanez et al. obtained the analytical results for the ST of free H-like  atoms80,81. The scaling properties of 
Shannon entropy with atomic number Z were also discussed in previous  works82,83. Guevara et al.84 obtained Sρ 
and Sγ as a function atomic number Z for the ground state of H-like atoms and have made an interesting obser-
vation that total Shannon entropy ST is independent of Z within the series and that for the ground state 1s the 
Shannon entropy for position space and momentum space are, respectively given by

We use ns states position space wavefunction of the Hydrogen-like atom and obtain the corresponding momen-
tum space wavefunction using Dirac-Fourier transformation (Eq. (13)) and obtain Sρ and Sγ using Eq. (2) and (3) 
as a function of principal quantum number n and atomic number Z for free system, respectively can be defined as

Summing Eqs. (16) and (17) and we get total Shannon entropy

which is not affected by the value of Z. Thus, in a one-electron atomic structure, ST is a function of the principal 
quantum number n rather than the atomic number Z. Now that we’ve gone over our numerical result from 
Table 1, we can see that ST remains constant as Z changes (while keeping principal quantum number n con-
stant) and that ST increases as principal quantum number n increases.As a result, our results satisfy the Z and 
n dependency described by Eq. (18). We’ve found that ST follows the bound of the BBM inequality, which is 
defined by Eq. (1). Shannon entropy in position space Sρ and Shannon entropy in momentum space Sγ numerical 
values satisfied the analytical values of Sρ (Eq. (16)) and Sγ (Eq. (17)) for all values of Z and n. Shannon entropy 
in position space Sρ decreases while in momentum space Sγ increases for increasing of Z holding n constant. 
But, Sρ increases for increasing of n and Sγ decreases for increasing of n holding Z constant. Increasing Shannon 
entropy denotes wavefunction delocalization (wavefunction expansion), while decreasing Shannon entropy 
denotes wavefunction localization (wavefunction compression). As a conclusion of our results, we can state that 
the wavefunction in position space is localized while wavefunction in momentum space becomes delocalize as 
Z increases (while n remains constant), and vice versa as n increases (while Z remains constant). Figures 1 and 
2 represent the variance of the wavefunction and electron probability density in position space as a function of 
r with Z and n, respectively, demonstrating that raising Z compresses both the wavefunction and the electron 
probability density while increasing n expands both. 

Now, using Eqs. (16) and (17), and logarithmic operation logn M = logn b× logb M , the variation (difference) 
in Sρ and Sγ for cases of the atomic number (a) Z1 , (b) Z2 (holding n constant) can be written as

where, X = log2(Z2/Z1).
From Eqs. (19) and (20), we conclude that the variation of Shannon entropy with Z is independent to principal 

quantum number n and depends only to Z2/Z1 and also observes that the variation of Shannon entropy in posi-
tion space Sρ with Z is equal to negative of the variation of Shannon entropy in momentum space Sγ with Z for 
constant n ( δSρ(Z) = −δSγ (Z) ≈ −2.08X ). Negative sign of δSρ(Z) shows that Sρ decreases with increasing of Z 
and positive sign of δSγ (Z) show that Sγ increases with increasing of Z. So, we can say that raising Z compresses 
the wavefunction in position space while expands wavefunction in momentum space in the same ratio. Due to 
this, total Shannon entropy ST remains constant with changing in Z for constant n. As a result, despite the com-
pression of electron probability density, total Shannon entropy ST remains constant with a rise in Z for constant 
n, as Sen observed for the ground state Hydrogen-like  atoms85. In Table 2, Z1 and Z2 are to indicate the atomic 
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Table 1.  The variation of Energy E, variance in position space �r , variance in momentum space �p , Shannon 
entropy in position space Sρ , Shannon entropy in momentum space Sγ , Heisenberg uncertainty principal 
�r�p and uncertainty relation based on entropy ST = Sρ + Sγ with atomic number Z and principal quantum 
number n for Rydberg linear states of free Hydrogen-like atoms.

States Z E �r �p Sρ Sγ �r�p ST = Sρ + Sγ

6s

0.5 − 0.003472 36.328316 0.101017 16.486441 − 6.52921 3.669771 9.957207

1.0 − 0.0139 18.171143 0.201978 14.40713 − 4.449904 3.671383 9.957226

2.0 − 0.056 9.080299 0.404376 12.327846 − 2.370805 3.671852 9.957041

3.0 − 0.125 6.084213 0.603411 11.111565 − 1.154556 3.671281 9.957009

4.0 − 0.222 4.541914 0.80906 10.248586 − 0.291635 3.674681 9.956951

7s

0.5 − 0.002551 49.576747 0.086018 17.3767 − 7.016642 4.264505 10.360058

1.0 − 0.010204 24.790471 0.172067 15.297386 − 4.93739 4.265616 10.359996

2.0 − 0.040816 12.388781 0.344528 13.218098 − 2.858331 4.268286 10.359767

3.0 − 0.091837 8.255441 0.517394 12.001818 − 1.641522 4.271314 10.360296

4.0 − 0.163265 6.191006 0.690437 11.138845 − 0.778891 4.2745 10.359954

8s

0.5 − 0.001953 64.581759 0.075439 18.149252 − 7.434644 4.871981 10.714608

1.0 − 0.007812 32.273913 0.151015 16.06995 − 5.355824 4.873848 10.714126

2.0 − 0.03125 16.137925 0.302288 13.99062 − 3.275737 4.878308 10.714883

3.0 − 0.070312 10.752641 0.45413 12.774206 − 2.05662 4.883101 10.717586

4.0 − 0.125 8.062925 0.60621 11.911413 − 1.197129 4.887825 10.714284

9s

0.5 − 0.001543 81.536051 0.067328 18.83181 − 7.803804 5.489621 11.028006

1.0 − 0.006173 40.760914 0.134755 16.752463 − 5.725004 5.492741 11.027459

2.0 − 0.024691 20.372147 0.269904 14.673131 − 3.64287 5.498518 11.030261

3.0 − 0.056 13.582061 0.405377 13.45688 − 2.427931 5.505855 11.028949

4.0 − 0.098765 10.183177 0.541329 12.593905 − 1.564951 5.512452 11.028954

10s

0.5 − 0.00125 100.515588 0.060827 19.443195 − 8.130654 6.1141 11.312541

1.0 − 0.005 50.242804 0.121765 17.363776 − 6.050467 6.117807 11.313309

2.0 − 0.02 25.113544 0.24398 15.284466 − 3.971259 6.127203 11.313207

3.0 − 0.045 16.740561 0.366513 14.068172 − 2.754818 6.135626 11.313302

4.0 − 0.08 12.552185 0.489656 13.205204 − 1.892796 6.146249 11.312408
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Figure 1.  The variation of Wavefunction � with r and atomic number Z for 7s state (a), 8s state (b), 9s state (c) 
and 10s state (d) of free Hydrogen-like atoms.
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number, for example the quantities in Table are calculated separately for cases of atomic number (a) Z = Z1 , (b) 
Z = Z2 and then their respective differences are evaluated. These results are verified by Eqs. (19) and (20) and 
equal value of Z2Z1 have equal δSρ(Z) and δSγ (Z) but opposite to each other for each principal quantum number 
n. A negative value of δSρ(Z) shows that the wavefunction and electron probability density in position space is 
compressed (localized) with increases of Z and which compress in a ratio equal to δSρ(Z) , shown in Figs. 1 and 
2. The wavefunction and electron probability density in momentum space expands (delocalizes) with increases 
in Z and expands in a ratio equal to δSγ (Z) if δSγ (Z) is positive.

The variation (difference) in Sρ and Sγ for cases of principal quantum number (a) n1 , (b) n2 (holding Z con-
stant) can be written as

where, N = log2(n2/n1).
From Eqs. (21) and (22), we conclude that the variation of Shannon entropy with principal quantum number 

n is independent to Z and depends only to n2/n1 and also observe that the variation of Shannon entropy in posi-
tion space Sρ with n is not equal to the variation of Shannon entropy in momentum space Sγ with n for constant 
Z ( δSρ(n)  = δSγ (n) ). Increasing ’n’ results in the expansion of wavefunction in position space and compression 
of the wavefunction in momentum space but increase and decrease are not in the same ratio. Due to this, total 
Shannon entropy ST doesn’t remain constant with increase in n for constant Z. So, the variation of total Shannon 
entropy ST with n for constant Z as δST (n) = δSρ(n)+ δSγ (n) ≈ 1.4N  . Positive sign of δSρ(n) shows that Sρ 
increases with increasing of n and negative sign of δSγ (n) show that Sγ decreases with increasing of n.

For the free system, we can describe Sρ and Sγ as functions of Energy E and principal quantum number n, 
respectively.

Summing Eqs. (23) and (24) and we get total Shannon entropy
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Figure 2.  The variation of Probability density |�|
2 with r and atomic number Z for 7s state (a), 8s state (b), 9s 

state (c) and 10s state (d) of free Hydrogen-like atoms.
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Since total Shannon entropy, ST is independent of energy E for constant n. Now, using Eqs. (23) and (24) we can 
write the variation (difference) in Sρ and Sγ for cases of Energy (a) E1 , (b) E2 (holding n constant) as

where, Y = log2(
E2
E1
).

From Eqs. (26) and (27), we conclude that the variation of Shannon entropy with E is also independent to 
principal quantum number n and depends only to E2E1 and also observe that the variation of Shannon entropy in 
position space Sρ with E is equal to negative of the variation of Shannon entropy in momentum space Sγ with E 
for constant n ( δSρ(E) = −δSγ (E) ≈ −1.04Y  ). Negative sign of δSρ(E) shows that Sρ decreases with increasing 
of E2E1 and positive sign of δSγ (E) show that Sγ increases with increasing of E2E1.Due to this, total Shannon entropy 
ST remains constant with changing in energy E for constant principal quantum number n.

Trapped linear Rydberg states. There have been numerous studies on trapped Rydberg states. In Fig. 3, 
we have plotted the variation of Shannon entropy in position space Sρ and Shannon entropy momentum space 
Sγ as a function of confinement radius for trapped linear Rydberg states of hydrogen-like atoms. As shown in 
insets, the results are for five values of atomic number namely Z = 0.5, 1, 2, 3, and 4. Fig. (3(a)) represents for 7s 
states, (3(b)) for 8s states, (3(c)) for 9s states and (3(d)) for 10s states. We observe that for all s states the value of 
Shannon entropy in position space Sρ decreases with increasing compression while Shannon entropy momen-
tum space Sγ increases, which is as expected. As a result, we can say that as compression increases, the spatial 
wavefunction becomes more localized and the momentum wavefunction becomes more delocalized. Except for 
free atom( at large value of r ), δSρ/δr  = −δSγ /δr at each value of r. The Dirac-Fourier transform, which relates 
the densities in the position and momentum spaces differently under differently spatially confined spaces (dif-
ferent r), is the reason for this difference in the variation of two  entropies85. Therefore, the total Shannon entropy 
ST = Sρ + Sγ is not constant when r changes from the free atomic state ( r = ∞ ) to 0. Total Shannon entropy 
ST , corresponding to Sρ and Sγ which are presented in Fig. 3, is displayed in Fig. 4. As in case of Sρ and Sγ , the 
results of ST are presented for five values of atomic number namely Z = 0.5, 1, 2, 3, and 4. The straight lines show 
the value of ST for two extreme cases, one for free Hydrogen atom (FHA) and second for particle in a spherical 
box (PISB). Figure (4(a)) represents for 7s states, (4(b)) for 8s states, (4(c)) for 9s states and (4(d)) for 10s states. 
We observe that the total Shannon entropy ST increases with increasing compression (r changes from ∞ to 0) 
and makes several peaks. Near tight confinement, ST decreases with increasing more compression and becomes 
the equal particle in a spherical box (PISB) for each value of Z. Because there is an equal number of nodes in the 
wavefunction for each value of atomic number Z for constant principal quantum number n, so, there is an equal 
number of peaks in the total Shannon entropy ST for each value of Z for constant principal quantum number n. 
But the position of each peak shifts to tight confinement with increasing the atomic number Z and it is inverse 
proportional to Z for constant n because the extension of the wavefunction decreases with the increasing the 
atomic number Z for constant principal quantum number n. But the height of each peak is independent of the 
atomic number Z for a constant principal quantum number n. The minimum value of the total Shannon entropy 
ST equals ST of the free hydrogen atom (FHA) for all values of Z. As a result, total Shannon entropy ST for free 
atoms is unaffected by the atomic number Z, as discussed in the previous subsection. The maximum value of 
the total Shannon entropy ST is the central peak which is nearest the critical radius ( rc ). The critical radius is the 
characteristic radius of atoms, where the energy of atoms (E) becomes zero. And we have already discussed that 

(25)ST ≈ 2 ln n+ 5 ln 2+ 3 lnπ −
1

3
,

(26)Sρ(E2)− Sρ(E1) = δSρ(E) = −
3

2
Y ln 2 ≈ −1.04Y

(27)Sγ (E2)− Sγ (E1) = δSγ (E) =
3

2
Y ln 2 ≈ 1.04Y

Table 2.  The analytical and numerical values of the variation (difference) of Shannon entropy in both position 
space and momentum space for cases of atomic number (a) Z1 , (b) Z2.

Analytical results 6s 7s 8s

Z1 Z2 X = log2(Z2/Z1) δSρ(Z) δSγ (Z) δSρ(Z) δSγ (Z) δSρ(Z) δSγ (Z) δSρ(Z) δSγ (Z)

0.5

1.0 1.0 − 2.079442 2.079442 − 2.079311 2.079306 − 2.079314 2.079252 − 2.079302 2.07882

2.0 2.0 − 4.158883 4.158883 − 4.158565 4.158405 − 4.158602 4.158311 − 4.158632 4.158907

3.0 2.584963 − 5.375278 5.375278 − 5.374876 5.374654 − 5.374882 5.37512 − 5.375046 5.378024

4.0 3.0 − 6.238325 6.238325 − 6.237855 6.237575 − 6.237855 6.237751 − 6.237839 6.237515

1.0

2.0 1.0 − 2.079442 2.079442 − 2.079284 2.079099 − 2.079288 2.079059 − 2.07933 2.080087

3.0 1.584963 − 3.295837 3.295837 − 3.295565 3.295348 − 3.295568 3.295868 − 3.295744 3.299204

4.0 2.0 − 4.158883 4.158883 − 4.158544 4.158269 − 4.158541 4.158499 − 4.158537 4.158695

2.0
3.0 0.584963 − 1.216395 1.216395 − 1.216281 1.216249 − 1.21628 1.216809 − 1.216414 1.219117

4.0 1.0 − 2.079442 2.079442 − 2.07926 2.07917 − 2.079253 2.07944 − 2.079207 2.078608

3.0 4.0 0.415037 − 0.863046 0.863046 − 0.862979 0.862921 − 0.862973 0.862631 − 0.862793 0.859491
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height of the peak of ST is independent of the atomic number Z for constant principal quantum number n, so we 
can say the maximum total Shannon entropy ST is also independent of the atomic number Z for constant princi-
pal quantum number n. Also, there is an increasing number of nodes in wavefunction with increasing principal 
quantum number n. As a result, the number of peaks in the total Shannon entropy ST increases in perfect agree-
ment with the principal quantum number n. From Figs. 1 and 4, it is interesting that the number of peaks in the 
total Shannon entropy ST is dependent on the number of nodes and they follow the relation

where, A = Number of peaks in ST , B = Number of nodes in the wavefunction, and n principal quantum number.
So, we can say that the number of peaks in total Shannon entropy indicates the number of nodes in the 

wavefunction. But we know that extension of the wavefunction increases with increasing principal quantum 
number n. As a result, as the principal quantum number n increases, the position of each peak changes toward 
less confinement, while the atomic number Z remains constant. But the height of each peak increases with 
the increase of principal quantum number n for constant atomic number Z. So, the maximum total Shannon 
entropy ST increases with the increase of principal quantum number n. However, for free atoms, the total Shan-
non entropy ST is proportional to the principal quantum number n; as n increases, ST increases, as stated in the 
previous subsection. So, we can say that the minimum ST increases with increasing principal quantum number 
n in the same ratio of increase of the maximum ST . Therefore, the difference between the maximum ST and the 
minimum ST is independent atomic number Z and principal quantum number n. From Fig. 4, the difference 
between maximum ST and minimum ST is always approximately 1.41 for confined linear states. However, the 
difference between the total Shannon entropy ST corresponding to a particle in a spherical box (PISB) and a free 
Hydrogen atom (FHA) decreases as the principal quantum number n increases. The fact that the kinetic energy 
of the electron in FHA varies as 1

n2
 , while the kinetic energy of the electron in PISB is directly proportional to 

n2 , provides a rough approximation of states where the difference in total Shannon entropy ST of PISB and 
FHA becomes almost zero. As a result, we expect these two entropies to equalize for n ≈ 15 since the electron’s 
kinetic energy is the same in both FHA and PISB for n ≈ 15 . This behavior of the total Shannon entropy in the 
CHA, PISB(no coulombic potential), and FHA(no confinement) is due to the effects of the Coulomb potential/
confinement86. In Figure 5, we have plotted the variation of the product of variance in position space �r and 
momentum space �p (Heisenberg’s Uncertainty) as a function of confinement radius for linear Rydberg states 
of confined hydrogen-like atoms. As shown in insets, the results are for five values of atomic number namely 
Z = 0.5, 1, 2, 3, and 4. The straight lines show the value of �r�p for two extreme cases, one for free Hydrogen 
atom (FHA) and second for particle in a spherical box (PISB). Figure (5(a)) represents for 7s states, (5(b)) for 8s 
states, (5(c)) for 9s states and (5(d)) for 10s states. We observe that �r�p decreases with decreasing compression 
(r changes from 0 to ∞ ). Near high compression (r → 0), �r�p become the equal value of �r�p of particle in a 
spherical box (PISB) for each value of Z. However, for free atom (r → ∞ ), �r�p becomes equal to the value for 

(28)A =
B
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Figure 3.  The variation of Shannon entropy in position space Sρ and Shannon entropy in momentum space 
Sγ with confinement radius r and atomic number Z for 7s state (a), 8s state (b), 9s state (c) and 10s state (d) of 
trapped Hydrogen-like atoms.
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free Hydrogen atom (FHA) for each value of Z. �r�p increases as both the radius r and the atomic number Z of 
free atoms increase. So, Heisenberg’s Uncertainty �r�p is not constant with the atomic number Z for increas-
ing the radius of free Rydberg atoms. However, uncertainty based on Shannon entropy is independent of the 
atomic number Z for free atoms for increasing the radius of free Rydberg atoms. Also, the number of nodes in 
the wavefunction does not affect �r�p . Hence, uncertainty relation based on Shannon entropy is superior to 
Heisenberg uncertainty for trapped Rydberg atoms.

Conclusion
In this work, the entropic measures like Shannon entropy in position and momentum spaces are presented 
for free and trapped Rydberg states of Hydrogen like atoms. We restricted our studies to principal quantum 
number ranging from 6 to 10. However, qualitative behaviour of these measures would reflect similar behaviour 
for higher excited states. We are able to compare the numerical values of Shannon entropy to analytical values 
for this system. We show that the total Shannon entropy ST in case of linear Rydberg states is independent of 
atomic number Z and of course it is depends on n (principal quantum number). It is worth to mention that we 
have been able to show the measure of contraction (expansion) of wavefunction in terms of the difference of the 
Shannon entropies in respective spaces in terms of Z (atomic number) and n (principal quantum number). To 
the best of our knowledge this dependence of wavefunction localization (delocalization) in quantitative manner 
has not been reported so far. It is also shown that Shannon entropic uncertainty are better measure compare to 
Heisenberg Uncertainty relation for trapped Rydberg atoms. Finally, we understand that work presented here 
will provide useful information for further studies in trapped Rydberg species.
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