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Managing uncertainty of expert’s 
assessment in FMEA with the belief 
divergence measure
Yiyi Liu & Yongchuan Tang*

Failure mode and effects analysis (FMEA) is an effective model that identifies the potential risk in 
the management process. In FMEA, the priority of the failure mode is determined by the risk priority 
number. There is enormous uncertainty and ambiguity in the traditional FMEA because of the 
divergence between expert assessments. To address the uncertainty of expert assessments, this work 
proposes an improved method based on the belief divergence measure. This method uses the belief 
divergence measure to calculate the average divergence of expert assessments, which is regarded 
as the reciprocal of the average support of assessments. Then convert the relative support among 
different experts into the relative weight of the experts. In this way, we will obtain a result with 
higher reliability. Finally, two practical cases are used to verify the feasibility and effectiveness of this 
method. The method can be used effectively in practical applications.

Risk assessment and prevention have drawn more and more attention in modern management. Risk represents 
the probability of an adverse event which will breach security and pose a threat. Assessments of risk are largely 
dependent on an analysis of the uncertainty. Failure mode and effects analysis (FMEA), a risk assessment method 
widely used in engineering and  management1, was first proposed by the Department of Defense, USA in  19492 
and used to solve quality and reliability problems in military products. FMEA has been gradually applied to 
all walks of life, including  aerospace3, automobile  manufacturing4, the medical  field5, food  safety6, and sup-
plier  selection7. The main purpose of FMEA is to identify potential failure modes and assess their causes and 
 influences8. The core parameter of FMEA is risk priority number (RPN)9, which is the product of three risk 
factors, which are the occurrence (O), severity (S), and detection (D) of a failure mode. The failure modes are 
ranked according to their RPN, and the failure mode with the highest RPN has the higher priority.

The traditional FMEA model can be roughly described as the following steps. (1) Identifying all failure modes 
in the target system. (2) Assessing the risk factors of these failure modes by experts. (3) Calculating the RPN 
value of failure modes according to the result of assessments. (4) Ranking the failure modes on the basis of RPN 
value. However, in practice, there is a great deal of uncertainty in assessing potential risks in systems with the 
traditional FMEA model, often yielding imprecise results. Because it is difficult to reach an agreement on the 
assessment of failure mode by different  experts10, coupled with the inaccurate cognition of the real problem by 
experts, the assessment of risk is inaccurate and  uncertain11. For example, if a very authoritative expert gives an 
assessment of a failure mode is (5,6,7) (assuming that his assessment is very close to the truth), the RPN value 
is 210. And another expert gives an assessment is (3,1,4). The RPN value is 12. Obviously, due to the second 
expert’s subjective opinion or incomplete understanding of the problem, their assessment has great ambiguity 
and uncertainty. The average RPN value is 111. It is very different from the real situation. In addition, the tradi-
tional FMEA has some  defects12,13. First, the traditional FMEA model ignored the relative importance between 
the three risk factors named O, S, and D. Different risk factors should have different weights, so there is no way 
to unify the weights of the three risk factors. Second, the traditional FMEA model divides ratings of O, S, and 
D into non-linear scales of grades [1, 2, 3, ..., 10]. It will eventually produce many repeated and intermittent 
values that will affect the ability of the management personnel to make effective decisions. Third, there are some 
subjective assumptions about the assessments of the failure mode by experts. Enough attention should be given 
to the weighting of each expert.

For the above problems, some existing studies propose many methods to deal with the uncertainty in risk 
assessments by adopting existed theories such as fuzzy sets  theory14,15, Dempster-Shafer evidence  theory16, 
evidence  reasoning17, prospect  theory18, D-number  theory19, Z-number  theory20, R-number  theory21, fairness-
oriented consensus  approach22, grey relation analysis  method23, and best-worst  method24. Among them, Liu et al. 
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propose a method combining the fuzzy theory and technique for order preference by similarity to ideal solution 
(TOPSIS)25, which achieves the calculation of weights of expert decisions based on similarity. Wang et al. capture 
the experts’ diverse assessments on the risk of failure modes and the weights of risk factors by interval two-tuple 
linguistic variables and develop a ranking method for failure modes based on the regret theory and  TODIM26. 
 In27, the authors use the ambiguity measure(AM) to quantify the degree of uncertainty assessed by each expert 
for each risk item. An AM-based weighting method for weighted risk priority number is proposed  in28. A FMEA 
method based on rough set and interval probability theories is proposed  in29, which converts the assessment 
values of risk factors into interval numbers, and the interval exponential RPN is proposed to overcome the dis-
continuity problem of traditional RPN values.  In30, the authors propose a FMEA method based on Deng entropy 
under the Dempster-Shafer evidence theory framework, where the uncertainty of expert assessments is measured 
by Deng entropy and converted into the relative weights of experts and weights of risk factors. In addition to 
the above studies, some researchers have done some studies based on similarity measure in FMEA .  In31, Zhou 
et al. use the Similarity Measure Value Method (SMVM) to model the failure modes and their correlations. This 
method gains similarity among assessments based on the concept of medium curve and fuzzy number. Pang et al. 
propose a method to weight the experts based on the similarity of their assessments, which is calculated by fuzzy 
Euclidean  distance32. Furthermore, Jin et al.’s research introduce the Dice similarity and the Jaccard  similarity33. 
However, little research is conducted to improve FMEA from the standpoint of divergence measure, despite the 
fact that divergence measure and similarity measure share some characteristics, while Song and Wang use the 
form of “ 1− D(A,B) ” (D(A, B) represents the divergence of evidence) to measure the  similarity34. Most previous 
researches have improved the FMEA in view of the process of assessment. Those methods are able to effectively 
model the experts’ assessments as accurate data and deal with them with some appropriate methods. But for the 
data that has been modeled, it is necessary to measure the uncertainty among them by some methods, such as 
the divergence measure. Due to the fact that there is little research which combines the divergence measure and 
FMEA, the effectiveness of the method that introduces divergence measure into FMEA is necessary to verify. 
It’s also the motivation of this paper.

Because of the influence of subjective opinion and historical experience, expert assessments are often inac-
curate. The uncertainty among the assessments by different experts needs to be measured by some appropri-
ate methods. Processing data with imprecise information can be done using the Dempster-Shafer evidence 
 theory35,36. In Dempster-Shafer evidence theory, how to measure the divergence and conflicts between the 
evidence remains an open  issue37. There are many uncertainty measurement  methods38, such as ambiguity 
 measure39, total uncertainty  measure40, divergence  measure41, the correlation  coefficient42, and the fractal-based 
belief  entropy43. Recently,  Xiao44 proposed the belief divergence measure (BJS) on the basis of the Jensen-Shannon 
divergence  measure45. By replacing the probability assignment function with the mass function, BJS is able to 
effectively measure the divergence between different pieces of evidence. Therefore, this work propose an expert 
assessment uncertainty analysis method based on BJS.

The new method models the belief structure of expert assessment results, calculate the divergence among 
BPAS with BJS, and construct the divergence degree matrix. Since the divergence degree and the support degree 
of assessments are opposite concepts, the divergence degree of other BPAS to the current BPA is regarded as 
the reciprocal of the support degree. This theory is used to convert the average divergence degree into the aver-
age support degree, which is used to represent the weight of experts. By bringing the weight of experts into the 
calculation of RPN, a more accurate analysis of expert assessments will be obtained and the risk of the system 
will be reduced. Compared with other improved methods, BJS calculates the reliability by combining all the 
evidence rather than calculating the credibility of each piece of evidence in isolation, so the results calculated in 
this way have higher reliability. In addition, the method considers the relative importance of different experts, 
reduces the uncertainty caused by divergence that is produced by the subjectivity of different experts, and is 
more in line with the actual situation.

This paper’s contribution is that the new method proposed solutions in view of the traditional FMEA defects, 
in this way, provide a new idea to improve the FMEA method. In addition, this paper provides some new theoreti-
cal support for the research combining divergence and FMEA. The rest of this work is organized as follows: in 
Preliminaries" section reviews the theoretical basis of this work. In  "FMEA method based on belief divergence 
measure" section, aiming at FMEA, an expert assessment uncertainty measurement method based on the belief 
divergence measure is proposed. Then, an actual case is used to verify the application of this method in "Applica-
tions and discussion" section. Finally, "Conclusion" section summarizes the content of this work.

Preliminaries
Dempster‑Shafer evidence theory. The D-S evidence theory (DST) is a very effective tool to process 
the data with uncertainty. From data modeling to uncertainty measurement and data fusion, every step has 
useful methods to finish. Research on the DST has made great progress in recent years. Accordingly, the FMEA 
method in DST has great advantages. The DST was first proposed by Dempster in 1967 and further developed 
by  Shafer46,47. DST is a generalization of Bayesian subjective probability theory and also an extension of classi-
cal probability theory. As a mathematical framework for representing uncertainty, DST combines the degree of 
belief from independent evidence items. DST is defined as below:

Supposing � is a fixed, exhaustive set of mutually exclusive events whose probability of occurrence does not 
interfere with each other. � is expressed by the following formula:

where � is called the frame of discernment, and the set of all subsets of �(such as formula (2)) is called the power 
set of � , which is recorded as 2�.

(1)� = {H1,H2,H3, . . . ,Hn}
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where ∅ is an empty set, and the elements in 2� are called propositions.
The mass function, also known as basic probability assignment (BPA), represents the mapping relationship 

between an element in 2� and interval [0,1]. It is defined as follows:

Mass function also satisfy the condition as follows:

For a focus element A of � , its Belief function bel (A) is defined as follows:

The plausibility function pl (A) of A is defined as follows:

The bel(A) is the lower bound function of proposition A, and the pl(A) is the upper bound function of 
proposition A.

Assuming that m1 and m2 are two BPAS under the frame of discernment � , B and C are the focus elements of 
m1 and m2 , respectively. By using the Dempster’s combination rule, the two groups of BPAS are fused to obtain 
a new set of probabilities. Dempster’s combination rule is defined as follows:

where k represents the degree of conflict between two evidence bodies, which is called the conflict coefficient, 
k is defined as follows:

FMEA. FMAE is a management tool for system reliability with a highly structured approach that provides a 
set of effective technologies for risk assessment and  prevention11,48, and has been widely used in product quality 
monitoring, decision-making, other fields. FMEA mainly relies on experts to assess different failure modes so 
as to determine the priority of each failure mode. Those failure modes with a high RPN value often get focused 
attention to reduce the risk of the system effectively. The calculation of RPN is an important step in FMEA, and 
the definition of RPN is as follows:

The RPN consists of the probability of failure occurrence (O), the severity of failure occurrence (S), and the 
probability of failure being detected (D). The traditional RPN model multiplies the three risk factors (O, S, and 
D) to obtain the RPN value, as shown in formula 9:

In tradition, the grades of O, S, and D are often divided into 10 levels, in which each level of assessment is 
given different explanations. The assessment level for O is shown in Table 1, and the assessment levels for S and 
D can be found  in49.

Divergence measure. The divergence measure can effectively measure the divergence and conflict between 
evidence. The divergence, like the similarity, measures the conflict from a distance perspective, but the diver-
gence and similarity are diametrically opposed concepts.There are many existing divergence measurements, 
summarized below.

For two probability distributions A = a1, a2, . . . , an and B = b1, b2, . . . , bn . The JS divergence measure is 
denoted  as45:

The BJS divergence measure was proposed by Xiao based on the JS divergence measure. Supposing that there 
are two BPAS, m1 and m2 , the BJS divergence measure between them is denoted  as44:

where,

(2)2� = {∅, {H1}, {H2}, . . . , {Hn}, {H1,H2}, {H1,H2, . . . ,Hn}}

(3)m : 2� → [0, 1]

(4)m(∅) = 0,
∑

A⊂�

m(A) = 1

(5)Bel(A) =
∑

B⊆A

m(B)

(6)pl(A) =
∑

A∩B=∅

m(B)

(7)m(A) = (m1 ⊕m2)(A) =
1

1− k

∑

B∩C=A

m1(B)m2(C)

(8)k =
∑

B∩C=∅

m1(B)m2(C)

(9)RPN = O × S × D

(10)JS(A,B) =
1

2

[

√

∑

i

Ai log
Ai

1
2Ai +

1
2Bi

+

√

∑

i

Bi log
Bi

1
2Ai +

1
2Bi

]

(11)BJS(m1,m2) =
1

2

[

S

(

m1,
m1 +m2

2

)

+ S

(

m2,
m1 +m2

2

)]
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BJS is also defined as the following formula:

where, H(mj ) represents Shannon entropy, and H ( mj ) is defined as:

The Reinforced belief divergence measure (RB divergence measure) was proposed by Xiao in 2019. It mainly 
measures the divergence among belief functions. For two belief functions in the frame of discernment, m1 and 
m2, the RB divergence measure is denoted  as50:

where

The divergence measure proposed by Wang et al. between m1 and m2 is denoted  as51:

Compared with Wang et al. divergence, the BJS represents the divergence directly from the view of entropy 
without calculating the pl function. As for RB divergence, most assessments in FMEA are regarded as proposi-
tions with a single element, so the RB divergence will be complex and inefficient in FMEA. The BJS is based on 
the JS divergence measure and is the extent of the JS divergence measure. BJS is widely used in belief functions. 
When all the hypothesis of belief functions are assigned to a single element, the BBA will transform into prob-
ability. At this time, the BJS will degenerate into  JS44.

FMEA method based on belief divergence measure
This work proposed a method for calculating RPN value based on the divergence measure, which uses BJS under 
the framework of Dempster-Shafer evidence theory to measure the divergence between evidence. In FMEA, 
the expert’s assessment is regarded as a piece of evidence. The divergence between different assessments will be 

S(m1,m2) =
∑

i

m1(A1) log
m1(Ai)

m2(Ai)

(12)

BJS(m1,m2) = H(
m1 +m2

2
)−

1

2
H(m1)−

1

2
H(m2)

=
1

2

[

∑

i

m1(Ai) log(
2m1(Ai)

m1(Ai)+m2(Ai)
)+

∑

i

m2(Ai) log(
2m2(Ai)

m1(Ai)+m2(Ai)
)

]

(13)H(mj) = −
∑

i

mj(Ai) logmj(Ai)

(14)RB(m1,m2) =

√

|B(m1,m1)+ B(m2,m2)− 2B(m1,m2)|

2

(15)

B(m1,m2) =

2k
∑

i=1

2k
∑

j=1

m1(Ai) log
m1(Ai)

1
2m1(Ai)+

1
2m2(Aj)

∣

∣Ai ∩ Aj

∣

∣

|Aj|

+

2k
∑

i=1

2k
∑

j=1

m2(Ai) log
m2(Ai)

1
2m1(Ai)+

1
2m2(Aj)

∣

∣Ai ∩ Aj

∣
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|Ai|

(16)

D(m1,m2) =
1

2

∑

θi⊂�

PBlm1(θi) log
PBlm1(θi)

1
2PBlm1(θi)+ PBlm2(θi)

+
1

2

∑

θi⊂�

PBlm2(θi) log
PBlm2(θi)

1
2PBlm1(θi)+ PBlm2(θi)

Table 1.  Classification of failure mode occurrence probability.

Level Possibility of failure Probability range of occurrence

10 Extremely high ≥ 1/2

9 Very high 1/3

8 Slightly high 1/8

7 High 1/20

6 Middle high 1/80

5 Middle 1/400

4 Relatively low 1/2000

3 Low 1/15000

2 Slightly low 1/150000

1 Hardly occurs 1/1500000



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6812  | https://doi.org/10.1038/s41598-022-10828-2

www.nature.com/scientificreports/

converted into uncertainty of assessment and relative weight of experts. The specific conversion will be carried 
out according to the following process:

Step 1: Identify potential failure modes in the target system based on past experience.
Step 2: The risk factors of these failure modes are assessed by experts, and the assessments are mod-

eled as BPA. Assume that the ith expert’s assessments of a risk factor are modeled as a mass function mi =
(m(1),m(2), . . . ,m(10) ), the m(θ) represent that the probability of the expert gives the level as θ . m (θ) satisfy 
that 

∑10
θ=1 m(θ) = 1.

Step 3: BJS is used to measure the divergence between each expert’s assessment, and the divergence matrix 
(DMM) is constructed. The DMM is defined as follows:

where BJSij represents the divergence between mi and mj . Obviously, the DMM has the following two 
characteristics: 

1. The values on the main diagonal of DMM are 0, because when the two pieces of evidence are exactly the same, 
i.e., m1 = m2 , BJS ( m1,m2 ) = 0, indicating that there is no divergence between the two pieces of evidence, 
which also conforms to the definition of BJS.

2. DMM is a symmetric square matrix because BJS satisfies symmetry.

Step 4: Calculate the average divergence among assessments, which is defined as follows:

It means that summing all data in column i of DMM and dividing it by n-1. The result is the average diver-
gence between mi and other mass functions.

Step 5: The weight of experts is defined as follows:

where the Sup(mi) represents the support degree,and Sup(mi) is defined as:

When the ˜BJSi = 0 . It means that all of assessments are same, there is no divergence among them, so the the 
weights will be equally distributed. When the ˜BJSi �= 0 . The average divergence is converted into the degree of 
support, and the weight of experts is obtained by support degree weighting.

Step 6: Since the risk assessments by experts are divided into multiple levels (i.e., mi = (m(1),m(2), . . . ,m(10) ), 
the comprehensive value of risk factors needs to be calculated before calculating the RPN value. The comprehen-
sive value of risk factors is defined as follows:

In tradition, the expert divides his or her assessments into 10 levels, and each level corresponds to a risk value 
(represented by θj and θj ∈ [1, 10] ). For example, an expert’s assessment of the severity (s) of a failure mode is 
(m(1) = 0.8,m(2) = 0.1,m(3) = 0.1) , which means that 80% of people think that the failure is not serious, 10% 
think that the failure is moderately serious, and 10% think that the failure is very serious. Then the comprehensive 
value of the risk factor S is: S=0.8×1+0.1×2+0.1×3=1.3.

Step 7: The new RPN value is calculated according to the comprehensive value of risk factors and the weighted 
results of expert evaluation, which is defined as follows:

Finally, all failure modes are ranked according to RPN values. We will know which failure modes have a 
higher priority and focus on them. The specific execution flow of the new method is shown in Fig. 1. It is worth 

(17)DMM =







BJS11 BJS12 . . . BJS1n
BJS21 BJS22 . . . BJS2n
. . . . . . . . . . . .

BJSn1 BJSn2 . . . BJSnn







(18)˜BJSi =

∑n
j=1 BJSij

n− 1
1 ≤ i ≤ n, 1 ≤ j ≤ n

(19)Weii =

{

1
n ,

˜BJSi = 0.
Supi

∑n
s=1 Sup(ms)

, ˜BJSi �= 0.

(20)Sup(mi) =
1

˜BJSi
.

(21)

O =

10
∑

j=1

θj ×m(θj)

S =

10
∑

j=1

θj ×m(θj)

D =

10
∑

j=1

θj ×m(θj)

(22)BJSRPN =

∑n
i=1 Oi ×Wei(Oi)× Si ×Wei(Si)× Di ×Wei(Di)

n
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noting that the weight of experts is considered in the calculation of the new RPN, and the weight is obtained by 
combining all assessments, not obtained independently from one piece of evidence. In other words, when the 
assessment of one expert changes, the weight of other experts will also be affected.

Applications and discussion
Application 1. Experiment process. To verify the feasibility of the new method in this work, the application 
example  in52 was referenced to conduct an experiment in this work, and the experimental results are compared 
with the other four methods. In the end, the effectiveness of this method has been verified. The experimental 
steps are as follows: 

1. Find all the failure modes in the target system. As shown in Table 2, this is an application example of a steel 
plate production process with 10 failure modes.

2. Collect those assessments of the risk factor from experts. Taking the first failure mode as an example, the 
assessment results are shown in Table 3 (the rest of the assessment results can be found  in52). Three experts 
assessed the risk factors, and these assessments were divided into 3 levels, from which the comprehensive 
value of risk factors can be calculated by formula 21, and the result is shown in Table 4.

3. Calculate the divergence between two assessments using formula 12, and structure the divergence matrix 
using formula 17. In FM1 , the divergence matrix was structured as follows according to the values in Table 3. 

Step1:Identify failure modes and their 

causes

Step2:Risk factors for failure modes 

are assessed by experts, and the 

assessments are modeled as BPA

Step3:Calculate the divergence 

between assessments using divergence 

measure

Step4:Calculate the average divergence 

between assessments

Step5:Convert the average divergence

into reliability

Step6:Assign weight to experts based 

on reliability

Step7:The new RPN value is calculated 

by considering the weight of experts. 

Step8:Rank the failure modes 

according to the RPN values.

Figure 1.  Flow chart of calculating RPN value with the proposed method.

Table 2.  The FMEA of the sheet steel production process in Guilan steel factory.

NO. Failure mode(FM) Cause of failure(CF)

A1 Non-acceptable formation Non-conductive scrap

A2 Nipple thread pitted Proper coverage not obtained

A3 Arc formation loss Leakage of water, proper gripping loss

A4 Burn-out electrode Cooler not working properly

A5 Breaking of house of pipe Wearing of pipe due to use

A6 Problem in movement of arm Severe leakage

A7 Refractory damage Due to slag

A8 Formation of steam Roof leak

A9 Refractory line damage By hot gas

A10 Movement of roof stop Jam of plunger in un loader valve
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4. Using formulas 18 and 20 to calculate the average divergence and the support degree between assessments, 
the results are shown in Tables 5 and 6.

5. Using formula 19 to calculate the weight of experts, as shown in Table 7.
6. Using formula 22 to calculate the RPN value of FM1 in combination with the data in Table  4 and 

Table 7, the result is 0.2735. Repeat all the above steps to calculate the RPN value of other FMs. RPN 
values and the ranking result according to RPN values are shown in Table  8. The ranking result is 
FM4 > FM7 > FM3 > FM8 > FM1 > FM10 > FM2 > FM5 > FM6 > FM9 . Because FM4 is ranked first, 
in practice, the managers should pay more attention to the monitoring and management of FM4 , followed 
by FM7 . FM9 has the lowest RPN value, ranks last, and will be given the least attention. In addition, it should 
be noted that for the two groups of failure modes with very close or even the same RPN values, such as FM5 
and FM6 , although they have the sequence based on RPN, they should be given the same attention as much 
as possible.

DMM(O) =

[

0 0.0773 0.0366
0.0773 0 0.0533
0.0366 0.0533 0

]

DMM(S) =

[

0 0.0902 0.0623
0.0902 0 0.2524
0.0623 0.2524 0

]

DMM(D) =

[

0 0.0113 0
0.0113 0 0.0113

0 0.0113 0

]

Table 3.  The belief structure of the first failure mode.

Experts Occurrence(O) Severity (S) Detection(D)

Expert1
m(1)=0.1
m(2)=0.2
m(3)=0.7

m(1)=0.8
m(2)=0.1
m(3)=0.1

m(1)=0.2
m(2)=0.5
m(3)=0.3

Expert2 m(2)=0.4
m(3)=0.6

m(1)=0.7
m(3)=0.3

m(1)=0.3
m(2)=0.4
m(3)=0.3

Expert3
m(1)=0.1
m(2)=0.4
m(3)=0.5

m(1)=0.8
m(2)=0.2

m(1)=0.2
m(2)=0.5
m(3)=0.3

Table 4.  The comprehensive value of risk factors of FM1.

FM1 O S D

Expert1 O1=2.6 S1=1.3 D1=2.1

Expert2 O2=2.6 S2=1.6 D2=2.0

Expert3 O3=2.4 S3=1.2 D3=2.1

Table 5.  The average divergence of risk factors in FM1.

FM1 O S D

Expert1 BJS(O1)=0.0569 BJS(S1)=0.0762 BJS(D1)=0.0056

Expert2 BJS(O2)=0.0653 BJS(S2)=0.1713 BJS(D2)=0.0113

Expert3 BJS(O3)=0.0449 BJS(S3)=0.1573 BJS(D3)=0.0056

Table 6.  The support degree of risk factors in FM1.

FM1 O S D

Expert1 Sup(O1)=17.5626 Sup(S1)=13.1228 Sup(D1)=177.3345

Expert2 Sup(O2)=15.3172 Sup(S2)=5.8384 Sup(D2)=88.6672

Expert3 Sup(O3)=22.2535 Sup(S3)=6.3560 Sup(D3)=177.33451
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Experimental result of application 1. In order to verify the correctness of the method proposed in this work, the 
experimental results are compared with the results in  papers27,28,52,53.  In52, Li and Chen used the grey correlation 
projection method to deal with the uncertainty between expert assessments.  In53, Vahdani et al. combined the 
fuzzy belief TOPSIS method with FMEA to improve the traditional FMEA model. The correctness of the other 
methods has been well verified in their articles. The comparison results between the method proposed in this 
work and the other methods are shown in Fig. 2.

It shows that the ranking result obtained by this method has the same trend as those obtained by the other 
methods (that is, the relative position of ranking between failure modes does not change much), especially the 
FM4 ranked first, which is completely consistent with the results of other three methods, which ensure that in 
the practical application, focus is on the failure mode with the highest risk initially. The results indicate there is 
a certain amount of distinction through different methods. We considered that this distinction may be caused 
by the RPN value, so we compared the RPN values with Li and Chen’s method. The results are shown in Fig. 3. 
It indicates that the RPN values produced by Li and Chen’s method and the proposed method are very close.

Application 2. Experiment process. In order to better verify the application of this method in FMEA, we 
used another example  in54 to verify it. There are 17 failure modes in this example, and the data was processed 
more accurately  in48. Some of the assessments are shown in Table 9.

The calculation is similar to the application one, due to space, the calculation process will not be described 
here.  Table  10 shows the RPN values and the ranking result.  The ranking result is 

FM9 > FM2 > FM14 > FM6 > FM10 > FM12 > FM11 > FM13 > FM1 > FM15 >

FM17 > FM3 > FM7 > FM16 > FM4 > FM8 > FM5

 . The result is 

consistent with the preliminary assessment.

Experimental result of application 2. The comparison of the ranking result with other methods(  MVRPN54, 
Improved  MVRPN48,  GERPN55, Zhou et al.’s  method56) is shown in Fig. 4. The ranking result is very close to 

Table 7.  The support degree of risk factors in FM1.

FM1 O S D

Expert1 Wei(O1)=0.3185 Wei(S1)=0.5183 Wei(D1)=0.4000

Expert2 Wei(O2)=0.2778 Wei(S2)=0.2306 Wei(D2)=0.2000

Expert3 Wei(O3)=0.4036 Wei(S3)=0.2511 Wei(D3)=0.4000

Table 8.  RPN values and the ranking result.

Item FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10

RPN 0.2735 0.2094 0.2948 0.4895 0.1969 0.1969 0.3642 0.2948 0.1969 0.2503

Rank 5 7 3 1 8 9 2 4 10 6

Figure 2.  Ranking of failure modes with different methods.
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the other methods, especially exactly the same as Zhou et al.’s method, which makes the usability of the method 
further verified. As for the comparison of the RPN values, it is shown in Table 11. The RPN values of this method 
are generally smaller than other RPN values. In case where all the assessments are different, other methods pro-
duces 5 same RPN values ( FM6 and FM10 , FM11 , FM12 and FM13 ), and this method produces only 2 same RPN 
values(FM6 and FM10 ). The reason for this gap is the way experts are assigned weight.

Discussion. In general, the feasibility of the new method is verified by the above cases. One characteristic 
of this method is that the RPN value generated is small, but it does not affect the final sorting result. Compared 
with other methods, the new method is less likely to produce the same RPN values, which can better overcome 
the defects of the traditional FMEA and make the evaluation more accurate. In addition, this method also has 
some issues that need to be improved. The uncertainty between assessments of the same risk factor can represent 
the weights of the experts, but the uncertainty between assessments of different risk factors cannot represent the 
weights of different risk factors. Other uncertainty measures can be introduced into this method to measure the 
weight between different risk factors.

Conclusion
The uncertainty of expert assessment has always been an inevitable problem in risk management. Due to the 
effectiveness of FMEA in risk assessment, managers pay more and more attention to the accuracy of FMEA in 
failure mode assessment to ensure the safe operation of the target system. Therefore, the traditional FMEA has 

Figure 3.  RPN values of Li and Chen’s method and the proposed method.

Table 9.  belief structure of the first failure mode in application two.

Risk Expert1 Expert2 Expert3

O m(3)=0.4
m(4)=0.6

m(3)=0.9
m(4)=0.1

m(3)=0.8
m(4)=0.2

S
m(6)=0.1
m(7)=0.8
m(8)=0.1

m(6)=0.1
m(7)=0.8
m(8)=0.1

m(6)=0.1
m(7)=0.8
m(8)=0.1

D
m(1)=0.1
m(2)=0.8
m(3)=0.1

m(1)=0.1
m(2)=0.8
m(3)=0.1

m(1)=0.1
m(2)=0.8
m(3)=0.1

Table 10.  The RPN values and ranking result.

Item FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9

RPN values 1.6858 2.3881 1.1111 0.6293 0.1554 2.2222 0.7778 0.5896 2.8293

ranking 9 2 12 15 17 4 13 16 1

Item FM10 FM11 FM12 FM13 FM14 FM15 FM16 FM17

RPN values 2.2222 1.8519 2.0279 1.8370 2.2370 1.5280 0.6983 1.2224

ranking 5 7 6 8 3 10 14 11
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great limitations. At the same time, effective methods are also needed to improve the problems of the traditional 
FMEA.

This work proposed a method based on the divergence measure to deal with the uncertainty of expert assess-
ment. This method transforms the uncertainty of experts’ subjective assessment into experts’ weight, and attempts 
to improve the accuracy of assessment from the perspective of experts’ weight. At the same time, the divergence 
measure highlights the correlation between assessments, so that the assessments are no longer isolated. Finally, 
a case of a steel plate production process is used to verify the practicability of this method, and excellent results 
are obtained.

The core idea in this work is that by using the divergence measure to obtain the divergence between assess-
ments and converting this divergence into the support degree of assessments, the support degree will repre-
sent the weight of experts. In the following research, we can apply this method to other fields to deal with the 
uncertainty of subjective assessments and consider introducing information entropy to measure the quantity of 
information in assessments to improve this method from the perspective of the weighted risk factor. In addition, 
the fusion of different pieces of evidence with potential conflict has always been an open issue in the Dempster-
Shafer evidence theory. Thus, we can improve this method and apply it to the fusion of conflicting assessments.

Data availability
All data generated or analysed during this study are included in this published article.

Figure 4.  Ranking of failure modes with different methods.

Table 11.  A comparison of RPN values.

Item Zhou et al.’s RPN MVRPN Improved MVRPN GERPN Proposed method

FM1 46.4875 42.56 42.56 3.4910 1.6858

FM2 64.7921 64.00 64.05 3.9994 2.3881

FM3 30.0000 30.00 30.00 3.1069 1.1111

FM4 17.5822 18.00 17.97 2.6205 0.6293

FM5 3.6671 4.17 3.14 1.6095 0.1554

FM6 60.0000 60.00 60.00 3.9143 2.2222

FM7 21.0000 21.00 21.00 2.7586 0.7778

FM8 16.2000 15.00 15.00 2.4660 0.5896

FM9 70.5947 78.92 79.57 4.2881 2.8293

FM10 60.0000 60.00 60.00 3.9143 2.2222

FM11 50.0000 50.00 50.00 3.6836 1.8519

FM12 53.8039 50.00 50.00 3.6836 2.0279

FM13 49.3333 50.00 50.00 3.6836 1.8370

FM14 60.6337 60.00 60.04 3.9143 2.2370

FM15 41.9161 42.00 42.09 3.4756 1.5280

FM16 21.2967 23.88 23.86 2.8794 0.6983

FM17 31.2810 30.05 30.05 3.1089 1.2224
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