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Automated segmentation 
of the fractured vertebrae on CT 
and its applicability in a radiomics 
model to predict fracture 
malignancy
Taeyong Park1, Min A Yoon1*, Young Chul Cho2, Su Jung Ham1, Yousun Ko2, Sehee Kim3, 
Heeryeol Jeong4 & Jeongjin Lee4

Although CT radiomics has shown promising results in the evaluation of vertebral fractures, the 
need for manual segmentation of fractured vertebrae limited the routine clinical implementation 
of radiomics. Therefore, automated segmentation of fractured vertebrae is needed for successful 
clinical use of radiomics. In this study, we aimed to develop and validate an automated algorithm for 
segmentation of fractured vertebral bodies on CT, and to evaluate the applicability of the algorithm in 
a radiomics prediction model to differentiate benign and malignant fractures. A convolutional neural 
network was trained to perform automated segmentation of fractured vertebral bodies using 341 
vertebrae with benign or malignant fractures from 158 patients, and was validated on independent 
test sets (internal test, 86 vertebrae [59 patients]; external test, 102 vertebrae [59 patients]). 
Then, a radiomics model predicting fracture malignancy on CT was constructed, and the prediction 
performance was compared between automated and human expert segmentations. The algorithm 
achieved good agreement with human expert segmentation at testing (Dice similarity coefficient, 
0.93–0.94; cross-sectional area error, 2.66–2.97%; average surface distance, 0.40–0.54 mm). The 
radiomics model demonstrated good performance in the training set (AUC, 0.93). In the test sets, 
automated and human expert segmentations showed comparable prediction performances (AUC, 
internal test, 0.80 vs 0.87, p = 0.044; external test, 0.83 vs 0.80, p = 0.37). In summary, we developed 
and validated an automated segmentation algorithm that showed comparable performance to human 
expert segmentation in a CT radiomics model to predict fracture malignancy, which may enable more 
practical clinical utilization of radiomics.

Radiomics is a multi-step process of converting medical images into meaningful and mineable  data1,2. In the 
hand-crafted radiomics pipeline, the process includes segmentation, feature extraction, feature selection, and 
construction of diagnostic, prognostic or predictive models. Radiomics has shown promising results in oncologic 
imaging as a tool to reflect the tissue heterogeneity and its application to other medical fields, including spine 
imaging, has been  growing1,2.

Segmentation is the most fundamental process of radiomics analysis, as subsequent feature extraction is 
based on segmented volumes and, consequently, affects the performance of the prediction  model2–5. Reliable 
and reproducible segmentation is therefore essential for robust feature extraction and radiomics analysis. Image 
segmentation in radiomics can be performed manually, semi-automatically using methods such as region-grow-
ing or thresholding, or fully automatically using deep learning  algorithms1. Although manual segmentation 
methods have been commonly used for the radiomics analysis of  vertebrae6–9, manual delineation of the VOI is 
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labor-intensive and time-consuming, especially for thin-slice CT of the spine yielding a large number of recon-
structed images, making it prone to intra- and/or inter-observer  variability10. Several automated approaches, 
including statistical shape  models11, atlas-based  methods12, active  contours13, and intensity-based level-sets14, 
have been used for vertebral segmentation. With increasing application of machine learning in imaging pro-
cessing, machine learning algorithms have also been used, mainly for detection of  vertebrae15,16. More recently, 
deep learning has been more widely used for automated vertebral segmentation. A fully automated segmenta-
tion method using convolutional neural network (CNN) was shown to result in more reproducible and time 
efficient segmentation than manual  segmentation17, and several studies have shown favorable results with Dice 
similarity coefficients (DSC) > 90% in the segmentation of intact, non-fractured  vertebrae18–21. In more recent 
studies, deep learning algorithms were benchmarked on more diverse datasets including benign fractured 
 vertebrae22–24. Lessmann et al.23 proposed a single stage vertebral segmentation method based on an iterative 
fully convolutional neural network and showed average DSC of 94.9%, and Payer et al.24 performed a three-step 
fully automatic approach combining SpationalConfig-Net and U-net for spine localization and segmentation and 
achieved overall DSC of 94%. However, literature on three-dimensional automated segmentation of metastatic 
vertebrae is limited. Gordon et al. used atlas-based method for segmentation of metastatic spine and achieved 
87.67–96.22%  concurrency25. More recently, Klein et al. used a three-dimensional U-net CNN to automatically 
segment metastatic trabecular bone on CT with DSC of 90.4%26; however, metastatic spine with malignant 
fractures were excluded from the cohort.

Differentiation of benign and malignant compression fracture is a frequently encountered problem in clini-
cal practice. Accurate diagnosis is important with a considerable difference in management and prognosis. In 
particular, it is increasingly important but challenging to differentiate benign and malignant fractures in elderly 
population with both high prevalence of osteoporosis and high cancer incidence rates. Imaging modalities such 
as CT and MRI play an important role in determining the benignity or malignancy of vertebral fractures. The 
widespread availability, speed and affordability of CT have led to its frequent use in the evaluation of vertebral 
fractures. In several recent studies, CT radiomics has shown promising results in the evaluation of vertebral 
 fractures6,9, including the ability to successfully differentiate malignant from acute benign compression  fractures6. 
These findings suggest that CT radiomics may provide an alternative diagnostic approach to determine the etiol-
ogy of vertebral fractures. In that study, however, the fractured vertebrae were segmented manually, limiting the 
routine clinical implementation of the proposed prediction model. We hypothesized that this limitation could 
be overcome by automated segmentation, potentially leading to more successful implementation of radiomics 
in clinical practice.

Therefore, in this study, we aimed to develop and validate an automated algorithm for segmentation of 
fractured vertebral bodies on CT. Additionally, to evaluate the applicability of automated algorithm for use in 
radiomics, the algorithm was compared with the human expert segmentation for the prediction performance of 
a radiomics model to differentiate between acute benign and malignant compression fractures.

Methods
Patients. This retrospective study was approved by the Institutional Review Board of the Asan Medical 
Center (approval no. 2019-0134), Institutional Review Board of the Seoul National University Bundang Hospital 
(no. B-2008/628-109) and Institutional Review Board of the Inha University Hospital (no. 2020-08-018), and the 
requirement to obtain informed patient consent was waived. All methods were performed in accordance with 
the relevant guidelines and regulations.

This study included patients who (a) underwent spine CT for acute benign or malignant vertebral compres-
sion fractures in the thoracic and lumbar vertebrae between January 2015 and April 2020, and (b) underwent 
MRI within 6 weeks of CT examination. Acute benign compression fractures were defined as traumatic or 
osteoporotic fractures with abrupt onset of back pain of less than 6  weeks27, whereas malignant fractures were 
defined as fractures replaced or infiltrated by tumor  tissue28. In addition, chronic fractures were defined as old, 
healed benign compression fractures without bone marrow edema on MRI. Patient exclusion criteria are shown 
in the flow diagram (Fig. 1).

An automated algorithm to segment fractured vertebral bodies was developed using a training set of consecu-
tive patients who underwent CT scans between January 2015 and December 2018 at one tertiary referral center 
(Institution I: Asan Medical Center). The generalizability of our algorithm was tested on two independent test 
sets: an internal test set of consecutive patients who underwent CT scans between January 2019 and April 2020 
at the same center (Institution I), and an external test set of randomly sampled patients from two other tertiary 
referral centers (Institutions II and III: Seoul National University Bundang Hospital and Inha University Hos-
pital). It has been suggested that, in radiomics, the number of patients in the external test set be 25–40% of the 
number in the training  set29. Therefore, the external test set consisted of about 50% of the number of patients in 
the training set, with consideration of possible further exclusion.

Reference standard. The benignity or malignancy and the acuity or chronicity of fracture was determined 
by a musculoskeletal radiologist with 10 years of experience in spine imaging, based on MRI performed within 
6 weeks of CT examination, and, if available, follow-up imaging or pathologic confirmation of tissue samples 
obtained surgically or on percutaneous biopsies.

Acute benign fractures were diagnosed when patients had (a) unequivocal MRI findings as described in 
previous  literature28,30,31 and/or (b) healing of the fracture with fatty marrow restoration on follow-up imag-
ing. Malignant fractures were diagnosed when patients had (a) unequivocal MRI findings shown in previous 
 studies28,30,31, (b) disease progression on serial MRI, and/or (c) pathologic confirmation of malignancy.
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Ground truth segmentation. Ground truth segmentation was performed manually by two expert image 
analysts with 2–3 years of experience in medial image segmentation and who were blinded to the pathological 
results. For each vertebra with fracture, a three-dimensional VOI was drawn along the outer margins of the ver-
tebral body and at the anterior margin of pedicles on axial CT images of 1 or 1.25 mm thickness. If CT showed 
chronic features in patients with acute benign fracture, these chronic features were also segmented, yielding 529 
ground truth labels. Finally, all segmented images were re-evaluated and approved by a board-certified musculo-
skeletal radiologist. Segmentation was performed using in-house software (AsanJ), a plugin for the open source 
image processing program ImageJ (http:// rsb. info. nih. gov/ ij/).

CT protocol. The details of the CT protocols are presented in Table 1.

Development of automated algorithm for fractured vertebral body segmentation. An over-
view of the development of the CNN and its detailed architecture are presented in Fig. 2. The proposed fractured 
vertebral body segmentation method was composed of two steps: vertebral detection and segmentation.

Vertebral detection. Prior to training the model, pre-processing was performed to generate consistent maxi-
mum intensity projection (MIP) images from CT  images32. In pre-processing, Otsu thresholding, region grow-
ing, morphological filtering and histogram equalization were sequentially performed. MIP images in the coronal 
plane were cropped to 416 × 416 pixels. Cropping included consideration of the scale and rotation transforma-

Figure 1.  Flow diagram of the study.

Table 1.  Details of CT protocols.

Scanner Somatom Sensation 16, Somatom Definition Edge, Flash, Force, AS or 
AS+ (Siemens Healthineers)

LightSpeed VCT, Optima CT660 or Discovery CT750HD (GE Health-
care)

Tube voltage (kVp) 120 120

Time–current product Care Dose 4D with quality reference mAs of 200 auto mA and Smart mA (minimum of 100 and maximum of 400 mA) 
with a noise index set to 21.0 HU

Detector collimation (mm) 0.6 1.25

Rotation time (s) 0.5 0.5

Pitch 1.0 0.97

Reconstruction Axial plane at 1 mm slice thicknesses with 0.7 mm increments using a 
standard kernel (B30 filter)

Axial plane at 1.25 mm slice thicknesses with 0.8 mm increments using 
a standard kernel

Voxel size (mm) 0.293 × 0.293 × 1 (FOV 150 × 150) (most commonly used)
(range, 0.287 × 0.287 × 1 [FOV, 147 × 147] − 0.324 × 0.324 × 1 [FOV, 166 × 166])

Matrix 512 × 512

http://rsb.info.nih.gov/ij/


4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6735  | https://doi.org/10.1038/s41598-022-10807-7

www.nature.com/scientificreports/

Figure 2.  The proposed convolutional neural network (CNN) to segment fractured vertebral bodies on CT. 
(a) Overview of the development of the CNN and its detailed architecture. (b) Overall process of vertebral 
detection. (c) MBConV block used for the encoding path. (d) Attention block used for the decoding path.
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tion to be used as augmentation, together with the  cutout33. The cutout was applied to reflect the lost region of 
vertebrae due to fracture or regions affected by nearby  metals34.

YoloV3 is a one-stage detector that uses multi-scaled feature maps and predefined anchor boxes to rapidly and 
accurately predict localization and class of bounding  boxes35. The baseline consisted of the YoloV3  framework35, 
followed by the modifications that included (a) application of dense connection and separable convolution to 
the yolo block, and (b) effective reduction of the scale layer through data augmentation and optimization of 
the anchor box and grid size for vertebrae. These enabled efficient improvements of accuracy and rapid ROI 
extraction. Each vertebral ROI extracted from the coronal MIP image was used as a limit to generate a sagittal 
MIP image. Vertebral ROIs were extracted from the sagittal MIP images in the same manner as in the coronal 
plane. Vertebral VOIs were generated using the minima and maxima for the x, y, and z coordinates of each ROI 
extracted from the two planes of MIP images.

Fractured vertebral body segmentation. Because severe bone destruction in some cases made it difficult to deter-
mine the total morphology of each vertebra, segmentation was first performed in the sagittal plane, followed by 
the axial plane. Thin-slab MIPs were generated from continuous slices, followed by propagation of reduced seg-
mentation areas to adjacent areas to improve segmentation performance. Thin-slab MIPs compensated for the 
partial loss or broken regions by merging information from the n-th adjacent slice. Propagation maintained the 
topologic characteristics of the overall fractured vertebral body based on the linear characteristics of the adjacent 
regions on CT images. The results of segmentation in the sagittal plane were used to reconstruct images in the 
axial plane. At this time, the CNN segmentation prediction area was reduced using the distance map in order to 
solve the over-segmentation problem caused by thin-slab MIP generation.

Base architecture. Our network was based on U-Net  framework36. The CNN consisted of encoding and decod-
ing paths, and the performance was improved through  EfficientNet37 in the encoding path and Attention U-Net38 
in the decoding path. Application of the compound scaling method to the encoding path of the proposed CNN 
architecture reduced calculation costs and improved accuracy. In the decoding path, the attention block empha-
sized important features of the vertebrae, progressively suppressing the feature response to the background area. 
The numbers of parameters were effectively reduced in the encoding and decoding paths, improving the perfor-
mance. A total of five resolution steps were used in all experiments.

Loss function. Binary Cross Entropy (BCE) and Dice  Loss39 were performed to minimize background bias in 
vertebral segmentation results. In addition, propagation loss was used to compensate for partially lost or broken 
regions. The overall loss function can be defined as:

where Lbce , Ldice and Lprop represent the BCE, dice, and propagation loss function, respectively, and α, β , γ 
are the balancing coefficients. N represents the number of pixels. xp ∈ [0, 1] represents predicted probabil-
ity, and xg ∈ [0, 1] , yg ∈ [0, 1] , and pg ∈ [0, 1] represent the predicted, ground truth, and propagation labels, 
respectively.

Learning the network. For the training data, CT images of 512 × 512 size were cropped and resized based on 
VOI and axial and sagittal images of 288 × 288 size were used. Augmentation was performed by randomly com-
bining affine transformation, crop, and  cutout33. Xavier uniform  initialization40 and an Adam optimizer were 
used for network weight initialization and optimization, respectively, with the learning rate set at 3e−4. We set 
the scheduler’s patience to 30 and decreased the learning rate by multiplying by 0.1 every 10 epochs. The network 
was trained for 100 epochs using  Intel® Core™ i7-8700 3.20 GHz processor, 32 GB RAM memory, and TITAN 
RTX 24 GB (NVIDIA, Santa Clara, CA, USA).

Quantitative evaluation of automatic segmentation. The accuracy of the algorithm was evaluated 
on the internal and external test sets by using the DSC, cross-sectional area (CSA) error, and average surface 
distance (ASD).

DSC, a measure of spatial overlap between automatic segmentation (A) and ground truth (B) on a pixel-by-
pixel basis,  was calculated  as41:

L = αLbce + βLdice + γLprop
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CSA error, a measure of the percent difference in area between automatic segmentation (A) and ground truth 
(B), was calculated  as32:

ASD, the average minimal distance between points on the surfaces of automatic segmentation (A) and the 
ground truth (B), was calculated  as41:

Statistical analysis. Categorical variables were compared using the Chi-square test or Fisher’s exact test, as 
appropriate, and continuous variables were compared using two-sample t test or the Kruskall–Wallis ANOVA 
test. All statistical analyses were performed using R statistical software, version 3.6.3 (R Foundation for Statisti-
cal Computing, Vienna, Austria), with p-values < 0.05 considered statistically significant.

Evaluation of applicability of the algorithm in radiomics. To evaluate the applicability of the algo-
rithm in radiomics, the prediction performance between the automated and human expert segmentations was 
compared in terms of a radiomics prediction model to differentiate acute benign and malignant compression 
fractures. For radiomics analysis of patients with multiple fractures, one vertebra was randomly selected using 
the RAND function of Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). A total of 280 radiomics 
features were extracted from each vertebra (Supplementary Table S1). To standardize voxel spacing, the images 
were resampled to a voxel size of 0.29 × 0.29 × 0.70 mm, and quantified to a quantization range of mean ± 3 × SD 
and 64 bins. Radiomics features were extracted using in-house software (AsanFEx) implemented in MATLAB 
(MathWorks, Natick, MA, USA). The radiomics features used in this study followed the guidelines of the image 
biomarker standardization initiative (IBSI).

Construction of a radiomics prediction model. A radiomics model predicting malignancy of compression frac-
ture was constructed from the training set.

First, features with zero variation across patients were removed, and each of the remaining features was 
normalized to have zero mean and unit standard deviation.

Second, to select robust features with respect to segmentation, 35 randomly chosen vertebral bodies (20 with 
acute benign and 15 with malignant fractures) were re-segmented by one of the three board-certified musculo-
skeletal radiologists, who were not involved in the creation of ground truth data. Intra-individual repeatability 
test using concordance correlation coefficient (CCC) is one of the recommended strategies to build more repro-
ducible radiomics features and to reduce data  dimensionality17. Therefore, highly stable features, defined as those 
with CCC > 0.90 between the ground truth labels and segmentation by three musculoskeletal radiologists, were 
retained for subsequent analysis.

Third, to prevent multicollinearity, univariable association with the fracture malignancy was examined for 
any highly-correlated (> 0.90) two features, and the feature with a larger p-value was excluded from subsequent 
analysis.

Then, fivefold cross-validation was performed using least absolute shrinkage and selection operator (LASSO) 
regression with penalty parameter tuning to select significant radiomics features with non-zero coefficients that 
can predict malignancy of vertebral fracture. Finally, a radiomics model was constructed from linear combina-
tions of features weighted by LASSO coefficients.

Comparison of prediction performance. The diagnostic performance of the radiomics prediction model was 
compared between the automated and human expert segmentations on the internal and external test sets. The 
performance of the model was evaluated using the area under the receiver operating characteristics curve (AUC) 
and compared using the Delong method.

The diagnostic accuracy of the model for predicting malignant fracture at the optimal cutoff value derived 
by maximizing the Youden index (sensitivity + specificity − 1) was assessed. Accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV) were calculated, and the exact McMemar’s 
test was used to compare them.

Results
Patient characteristics. The algorithm was developed using a training set of 158 patients (mean ± stand-
ard deviation [SD] age, 66 ± 15 years; 92 women) with 341 vertebrae (one vertebra [n = 75 patients], two [n = 31], 
three [n = 29], four [n = 12], five [n = 5], six [n = 3], eight [n = 2], and ten [n = 1]). The algorithm was tested on a 
temporally independent internal test set of 59 patients (mean ± SD age, 63 ± 16 years; 31 women) with 86 verte-
brae (one vertebra [n = 42 patients], two [n = 11], three [n = 3], four [n = 2], and five [n = 1]) and on a geographi-
cally independent external test set of 59 patients (mean ± SD age, 63 ± 16 years; 31 women) with 102 vertebrae 
(one vertebra [n = 35 patients], two [n = 15], three [n = 2], four [n = 4], and five [n = 3]) (Fig. 1).

The demographic and clinical characteristics of these three sets of patients are summarized in Table 2. The 
mean interval between CT and MRI was 5.9 days (range, 0–39 days).

DSC (A, B) = 2|A ∩ B|/(|A| + |B|)

CSA error (%) = ([BCSA− ACSA]/ BCSA)× 100

ASD =
1

|A|

∑

sY∈SY

d(sA, SB)



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6735  | https://doi.org/10.1038/s41598-022-10807-7

www.nature.com/scientificreports/

Performance of the automated algorithm for segmentation of fractured vertebrae. The accu-
racy of the deep-leaning based automated segmentation algorithm is summarized in Table 3. The algorithm 
achieved high agreement with the ground truth by human experts for segmentation of fractured vertebral bodies 
on the two independent test sets, with overall median DSCs of 0.94 and 0.93, CSA errors of 2.66% and 2.97%, 
and ASDs of 0.40 mm and 0.54 mm, on the internal test and the external test, respectively. Representative images 
of automated segmentation of fractured vertebral bodies are shown in Fig. 3. The median runtime for automated 
segmentation of a vertebral body with fracture 1.18 s (range, 0.87–1.51 s).

Subgroup analysis showed that the algorithm achieved the highest performance for chronic benign fractures, 
followed by acute benign fractures and malignant fractures, with statistically significant differences, except for 
the CSA error of the internal test set.

Evaluation of applicability in radiomics. Construction of radiomics prediction model. Of the 280 ra-
diomics features, 38 zero variance features and 175 unstable features with CCC > 0.90 from multiple observer 
segmentation were excluded, leaving 67 features for the subsequent analysis. Excluding one of the highly cor-
related features further reduced these 67 features to 39 features. Finally, the LASSO regression model selected 
12 features, and their non-zero coefficients were used to construct a radiomics model to predict the fracture 
malignancy (Table 4).

Model performance. The radiomics model showed good discriminatory performance in the training set (AUC, 
0.93 [95% CI, 0.90–0.97]). Using the cutoff threshold of 0.328, the model showed accuracy of 85% (134/158), 
sensitivity of 93% (69/74), specificity of 77% (65/84), PPV of 78% (69/88), and NPV of 93% (65/70).

Comparison of automated and human expert segmentations. The diagnostic performances of the radiomics 
model in the test sets are shown in Table 5. Both the automated segmentation and the human expert segmenta-
tion yielded good AUCs of 0.80–0.87 in the test sets. In the internal test set, human expert segmentation showed 
slightly higher AUC than the automated segmentation, although the difference was statistically significant 
(AUC, 0.87 [95% CI, 0.78–0.96] vs. 0.80 [95% CI, 0.69–0.91]; p = 0.044). In the external test set, human expert 

Table 2.  Baseline demographic and clinical characteristics of patients in the training and test sets. Data for age 
are means ± standard deviation.

Training set (n = 158) Test set (n = 118)

Benign (n = 84) Malignant (n = 74) p-value

Internal (n = 59) External (n = 59)

Benign (n = 27) Malignant (n = 32) p-value Benign (n = 29) Malignant (n = 30) p-value

Fractured bodies
188 153 37 49 56 46

(acute: chronic = 116:72) (acute: chronic = 30:7) (acute: chronic = 39:17)

Vertebral levels 
(thoracic:lumbar) Acute: 35:81, chronic: 31:41, malignant: 100:53 Acute: 9:21, chronic: 2:5, malignant: 28:21 Acute: 9:30, chronic: 6:11, malignant: 27:19

Age (years) 72 ± 14 59 ± 12 < 0.001 67 ± 17 59 ± 14 0.08 66 ± 17 60 ± 15 0.15

Sex (men:women) 25:59 41:33 < 0.001 9:18 19:13 0.05 9:20 19:11 0.01

Origins of malig-
nant fractures

Lung (n = 16), hepatobiliary (n = 13), multiple 
myeloma (n = 7), kidney (n = 6), colorectal (n = 6), 
breast (n = 5), stomach (n = 4), thyroid cancer 
(n = 3), neuroendocrine (n = 2), urothelial (n = 2), 
and others (n = 10)

Lung (n = 8), hepatobiliary (n = 6), breast (n = 5), 
prostate (n = 3), and others (n = 10)

Lung (n = 12), breast (n = 3), prostate (n = 3), hepa-
tobiliary (n = 3), pancreas (n = 2), multiple myeloma 
(n = 2), and others (n = 5)

Table 3.  Accuracy of automated segmentation algorithm for fractured vertebral body segmentation. All 
results are shown as median and interquartile ranges in brackets. DSC indicates dice similarity coefficient; 
CSA, cross-sectional area; ASD, average surface distance. ap-value for comparison between chronic benign, 
acute benign and malignant fractures.

Internal test set External test set

Overall
Chronic 
Benign Acute Benign Malignant

p-valuea

Overall
Chronic 
Benign Acute Benign Malignant

p-valuea(n = 86) (n = 7) (n = 30) (n = 49) (n = 102) (n = 17) (n = 39) (n = 46)

DSC 0.94 [0.92, 
0.95] 0.95 [0.94, 0.95] 0.94 [0.93, 

0.95]
0.93 [0.90, 
0.95] 0.02 0.93 [0.92, 

0.95] 0.94 [0.92, 0.95] 0.94 [0.93, 
0.95]

0.93 [0.88, 
0.94] < 0.001

CSA error (%) 2.66 [1.32, 
4.43] 3.24 [0.15, 3.41] 3.14 [1.62, 

4.23]
2.63 [1.19, 
5.02] 0.40 2.97 [1.09, 

4.96] 2.05 [0.64, 3.97] 2.51 [0.93, 
4.01]

3.92 [1.91, 
7.68] 0.01

ASD (mm) 0.40 [0.32, 
0.55] 0.38 [0.32, 0.40] 0.35 [0.31, 

0.39]
0.48 [0.38, 
0.62] < 0.001 0.54 [0.42, 

0.72] 0.48 [0.38, 0.63] 0.47 [0.36, 
0.55]

0.63 [0.48, 
0.99] < 0.001
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Figure 3.  Representative images of automated segmentation of fractured vertebral bodies from the internal test 
set. (a) a 76-year-old woman with an acute benign fracture (voxel size, 0.287 × 0.287 × 1 mm), (b) a 19-year-
old man with a malignant fracture from metastatic Ewing sarcoma/PNET (voxel size, 0.293 × 0.293 × 1 mm), 
and (c) a 68-year-old man with a malignant fracture from metastatic renal cell carcinoma (voxel size, 
0.309 × 309 × 1 mm). When the osseous margin of the vertebral body could not be fully traced because of bone 
destruction, an imaginary line was drawn based on the contralateral normal appearing cortex or the most 
adjacent intact vertebral body as shown in (c). The green shaded area denotes segmentation by the human 
experts and the red shaded area denotes automated segmentation. The last two columns show three-dimensional 
volume meshes by the human experts (green) and the automated algorithm (red).

Table 4.  List of 12 radiomics features used to develop a radiomics model to predict malignancy of fracture. 
LoG indicates Laplacian of Gaussian Filtered features.

Feature family Feature name LASSO coefficient (β)

Intercept − 0.176

Morphological features
Approximate volume − 0.483

Major axis length − 0.544

Local intensity features Global intensity peak 0.837

Intensity-based statistical features Minimum gray level 0.745

Intensity histogram features
Intensity histogram mean 0.730

Intensity histogram robust mean absolute deviation 0.104

Gray level co-occurrence matrix Joint entropy − 0.088

Gray level size zone matrix Small zone low gray level emphasis − 0.994

Neighboring gray level dependence matrix High dependence emphasis 0.329

LoG local intensity features Local intensity peak − 0.444

LoG intensity-based statistical features 75th percentile − 0.105

LoG filtered intensity histogram features Maximum histogram gradient − 0.051
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segmentation and automated segmentation showed comparable performances (AUC, 0.80 [95% CI, 0.69–0.92] 
vs. 0.83 [95% CI, 0.72–0.94]; p = 0.37).

At the optimal cutoff thresholds, the classification performances of the automated and human expert seg-
mentations were found to be comparable in accuracy (71–76% vs 76–78%), sensitivity (72–80% vs 77–78%), and 
specificity (70–72% vs 76–78%) (all p > 0.05 for comparison between segmentation methods).

Discussion
In this study, we developed and validated an automated algorithm for segmentation of fractured vertebral bodies 
on CT. The algorithm achieved high agreement with the human expert segmentation on two independent test 
sets. In addition, the automated and the human expert segmentation methods were compared for the predic-
tion performance of a radiomics model to differentiate acute benign and malignant compression fractures, and 
the two segmentation methods showed comparable discrimination performance and accuracy, indicating the 
applicability of the proposed algorithm for use in radiomics.

Automated segmentation is considered superior to manual or semi-automated segmentations for radiomics, 
with optimal reproducibility and time  efficiency17. Several deep learning algorithms were found to be highly 
accurate in segmentation of intact and non-fractured vertebrae on CT with DSCs > 0.9018–21. However, segmen-
tation of fractured vertebrae on CT is more challenging due to variations and complexity in morphology, low 
contrast in soft tissue, and more variable fields-of-view among patients. To date, few studies have attempted to 
segment fractured vertebrae on  CT41,42. In one study, an algorithm trained on ten normal individuals achieved 
DSCs of 0.88–0.92 in five patients with a total of 16 osteoporotic compression  fractures42. More recently, an 
algorithm trained on patients with benign fractures in two CT datasets showed a DSC of 0.93 and an ASD of 
0.41  mm41. These studies, however, did not provide specific results on the segmentation of fractured vertebrae 
alone or detailed information on acuity or chronicity of fractures. To our knowledge, automated algorithm for 
segmentation of fractured vertebral bodies of various etiologies and stages, including malignant fractures, using 
relatively large training sets has not previously been well established in the literature. Moreover, the accuracy of 
our algorithm in segmentation of fractured bodies reached that previously reported for segmentation of normal, 
non-fractured vertebral bodies (DSC, 0.94)42.

Automated vertebral segmentation is needed for many purposes, including diagnosis and treatment plan-
ning. However, as Rizzo et al. mentioned, there is no universal segmentation algorithm for all applications and 
 purposes43. We sought to develop an algorithm for subsequent use in radiomics analysis to differentiate acute 
benign and malignant compression fractures. While several previous works on automated segmentation only 
evaluated the reproducibility of radiomics features (i.e., correlations between automated and manual segmenta-
tion) as one measure of segmentation  performance5,44, the extent of feature reproducibility may not directly trans-
late into the performance of a radiomics model. Therefore, automated segmentation was compared with human 
expert segmentation in the performance of a radiomics model, which was constructed with features robust 
against segmentation variability, and the algorithm and the human experts showed comparable performances. 
These results suggest the applicability of the automated algorithm for use in a radiomics prediction model.

This study had several limitations. First, its retrospective design suggests a possibility of selection and referral 
bias. The study included only those patients who were evaluated by both CT and MRI within a short period of 
time. Patients who could be diagnosed by either modality alone often did not undergo further imaging evalu-
ation and were therefore not included in the study population. Moreover, as all the patients enrolled in this 
study were from tertiary referral centers, the prevalence of malignant fractures was high. Second, although a 
previous study showed that the diagnostic performance of CT-based radiomics model for predicting fracture 
malignancy improved by integrating clinical parameters such as patient age and history of malignancy with 
radiomics  features6, we developed the model using only the radiomics features, as the purpose of this study was 
to evaluate the applicability of the automated segmentation algorithm for use in radiomics. We believe that our 
radiomics model’s diagnostic accuracy measures can be improved by incorporating clinical parameters with radi-
omics features in the prediction model. Furthermore, in recent studies, machine learning algorithms have been 
applied in both feature selection and classification steps, and deep learning algorithms have been used for fully 
automated feature extraction and modeling steps without the need for further human  intervention45. We believe 
that more automated approach using deep learning can be used for radiomics analysis to differentiate benign and 

Table 5.  Diagnostic performance of the radiomics prediction model. Numbers in brackets indicate 95% 
confidence interval.

Internal test set (n = 59) External test set. (n = 59)

Human expert 
segmentation

Automated 
segmentation p-value

Human expert 
segmentation

Automated 
segmentation p-value

AUC 0.87 [0.78, 0.96] 0.80 [0.69, 0.91] 0.044 0.80 [0.69, 0.92] 0.83 [0.72, 0.94] 0.37

Accuracy (%) 78 (46/59) [67, 89] 71 (42/59) [60, 83] 0.22 76 (45/59) [65, 87] 76 (45/59) [65, 87] > 0.999

Sensitivity (%) 78 (25/32) [64, 92] 72 (23/32) [56, 88] 0.63 77 (23/30) [62, 92] 80 (24/30) [66, 94] > 0.999

Specificity (%) 78 (21/27) [62, 94] 70 (19/27) [53, 88] 0.50 76 (22/29) [60, 91] 72 (21/29) [56, 89] > 0.999

Positive predictive 
value (%) 81 (25/31) [67, 95] 74 (23/31) [59, 90] N/A 77 (23/30) [62, 92] 75 (24/32) [60, 90] N/A

Negative predictive 
value (%) 75 (21/28) [59, 91] 68 (19/28) [51, 85] N/A 76 (22/29) [60, 91] 78 (21/27) [62, 94] N/A
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malignant fractures. Finally, patients with failed computation during radiomics analysis were excluded from the 
cohort. One possible reason for computation failure would be a technical limitation of the software used in this 
study. As there were variations in image acquisition techniques and reconstruction parameters between institu-
tions, some of the CTs from the institution II and III had a large axial fields-of-view and/or a large scan coverage 
in the cranio-caudal axis (whole spine CT scan). We experienced errors while uploading or standardizing voxel 
spacing of large thin-slice CT datasets. Moreover, for some features, there were errors during the feature extrac-
tion step. One previous study that examined the properties of failed radiomics feature extraction suggested that 
several factors such as the size of the ROI and high skewness of intensities may result in computational  errors46. 
We suspect that certain physical properties of the fractured vertebrae and size of the ROIs could have caused 
feature extraction errors.

In conclusion, we developed and validated an automated algorithm for segmentation of fractured vertebral 
bodies on CT. The automated algorithm showed comparable performance to the human expert segmentation 
in a CT radiomics model to predict fracture malignancy, which may enable more practical clinical utilization 
of radiomics.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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