
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports

Learning aerodynamics with neural
network
Wenhui Peng1*, Yao Zhang2, Eric Laurendeau2 & Michel C. Desmarais1

We propose a neural network (NN) architecture, the Element Spatial Convolution Neural Network
(ESCNN), towards the airfoil lift coefficient prediction task. The ESCNN outperforms existing state-of-
the-art NNs in terms of prediction accuracy, with two orders of less parameters. We further investigate
and explain how the ESCNN succeeds in making accurate predictions with standard convolution
layers. We discover that the ESCNN has the ability to extract physical patterns that emerge from
aerodynamics, and such patterns are clearly reflected within a layer of the network. We show that the
ESCNN is capable of learning the physical laws and equation of aerodynamics from simulation data.

In recent years, significant efforts have been conducted to apply NNs to fundamental science research. Two
representative works revolutionized fundamental scientific research. Noe et al. created PauliNet, a deep learning
method that is capable of solving Schrödinger equation1. Scientists from DeepMind designed the AlphaFold, a
type of NN that can generate models of proteins far more accurate than any that have come before2. A diverse
collection of intersections between NNs and physics is presented in the review paper by Carleo et al. These
applications range from statistics and quantum physics to high energy and cosmology3.

The fluid dynamics community is no exception. The potential of using NNs to tackle fluid mechanics problems
has lately been gained increasingly attention4,5. Jin et al. proposed NSFnets that applied NNs to solve the Navier-
Stokes equations6. Kochkov et al. applied NNs to accelerate Computational Fluid Dynamics (CFD) simulations,
and achieved a significant reduction in computation cost7. Li et al. further improved the computational efficiency
by approximating the Navier-Stokes equations with the Fourier neural operator8. Once trained, these NN models
can make inference within seconds and can be extremely efficient compared with traditional CFD approaches9–15.

However, these NN models suffer from generalization problems: their prediction accuracy drops dramatically
once the parameters of the partial differential equations change7. To resolve this issue, Raissi et al. proposed the
Physics-Informed Neural Networks (PINNs). They developed a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations16. In the PINN framework, prior physi-
cal knowledge is introduced as constraint, such that NNs are trained to solve supervised learning tasks while
respecting the given laws of physics described by general nonlinear partial differential equations16. With the
physical constrains, the PINNs manage to achieve state-of-the-art prediction accuracy6,17–21.

Despite these significant improvements towards prediction accuracy, scientists are not fully convinced with
the results of NNs due to the lack of interpretability. How do PINNs solve physical problems? Do they make infer-
ence based on physical principles or just probability? Answering these questions is necessary, since people need
interpretations to understand the logic driving the learned model, and make sure that the predicted results are
trustworthy. However, interpreting the complex interactions between parameters and layer nodes has always been
a challenging task22–25. This is due to the nature of NNs, also known as the ”black-box” issue: instead of solving the
tasks with logical steps, NNs learn by examples and adjust parameters to improve their performance over time26.

Recent progress has been made to interpret how NNs solve scientific problems. In the field of mathematics,
NNs have been shown to be able to aid mathematicians in discovering new conjectures and theorems27. In the
field of chemistry, NNs have been shown to be able to capture the complex pattern of electrons moving around
the nucleus1. In the domain of game theory, evidence has been found that human knowledge is acquired by the
AlphaZero neural network as it trains on the game of chess28.

Is it possible that the NNs are able to develop physical insight in the process of solving physical problems,
just like in other scientific domains?

Motivated by this question, in this work, we pierce the “black box” of a NN and investigate how NN solves a
physical problem in aerodynamics. Our contributions are as follow: (1) we proposed a NN model that adopts a
novel physics-informed structured input, the ESCNN, it outperforms existing state-of-the-art NNs in the airfoil
lift coefficient prediction task. (2) We provide insight explanations as to how the ESCNN succeeds in making
accurate predictions with standard convolution layers.

OPEN

1Department of Computer Engineering, Polytechnique Montreal, Montreal, QC, Canada. 2Department of
Mechanical Engineering, Polytechnique Montreal, Montreal, QC, Canada. *email: wenhui.peng@polymtl.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10737-4&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

Predicting lift coefficient with neural networks
Calculating the airfoil lift coefficient is one of the most critical tasks in aerodynamics. It is generally achieved
by using traditional Computational Fluid Dynamics (CFD) methods, which are often known for being compu-
tational expensive. We propose a neural network based model: Element Spatial Convolution Neural Network
(ESCNN), to efficiently predict the airfoil lift coefficient29.

ESCNN is an end-to-end neural network that takes the airfoil coordinates xj , yj and angle of attack α as
input, and gives the lift coefficient Cl as output. The ESCNN architecture is straightforward. As shown in Fig. 1,
it consists of two standard convolution layers followed by non-linear activation function, and a fully connected
layer before the prediction29. The two convolution layers use 200 convolution filters, where the filter size of first
layer is 5× 1 and the second layer is 1× 1 respectively. The last layer, fully connected layer, contains 159 neurons.
Note that since the ESCNN takes sequential airfoil coordinates as input, and only convolutions and activations
are involved in the architecture, therefore all the hidden layers are not permutation invariant.

The airfoil data samples are taken from the database of UIUC Applied Aerodynamic Group30, which covers
a wide range of airfoil types from real-world designs. Each airfoil is represented by 160 points in x, y format. For
the flow conditions, the Mach number Mach and Reynolds number Re are fixed to 0.3 and 1.3× 107 respectively,
and the angle of attack α varies from −2 to 10◦ to avoid flow separation (laminar flow). The ground truth of Cl
is computed with the CFD solver Xfoil31, for each angle of attack at the specified flow condition for each airfoil
geometry. In total 15678 samples are generated to create the final dataset. The whole dataset is divided into
training set and validation set at the ratio of 8:2. Note that in laminar flow where the dataset is generated, the
lift coefficient Cl varies linearly with the angle of attack α , however the relationship between Cl and the airfoil
coordinates is highly-nonlinear32.

Table 1 shows the performance benchmarks of different models, where the regression models are provided as
baselines, and three types of NNs are compared. Experiments are implemented on the Pytorch and MindSpore
open-source deep learning frameworks. The Multilayer Perceptron (MLP) network model has three hidden
layers, where each layer contains 256,128,128 neurons respectively. The AeroCNN is a recent NN model that
achieves state-of-the-art prediction accuracy33. In the AeroCNN framework, the airfoils are processed as images,
such that AeroCNN can adopt the typical convolution neural network architecture for image recognition33. The
error ε is the relative error defined by Eq. (1), where Ĉl denotes the predicted lift coefficient and Cl denotes the
ground truth lift coefficient.

It is noted that even the baseline regression models can bring the error down below 10%. However, further
reducing the prediction error is a difficult task: the model’s learning capacity must be large enough to accurately
approximate the non-linear relationship between Cl and airfoil coordinates. Generally, the error can be further

(1)ε =
�Ĉl − Cl�2

�Cl�2
.

Figure 1. ESCNN architecture.

Table 1. Performance benchmarks of different models.

Model Parameters Error

Linear regression 322 9.82%

MLP 961 8.43%

Multilayer perceptron 131,969 5.58%

AeroCNN33 266,145 3.46%

ESCNN 1561 0.97%

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

reduced at the cost of adding more parameters to increase the model’s complexity34, provided sufficient training
data. However, the cost becomes more significant as the error gets smaller: the parameters are doubled to reduce
the error from 5.58% (Multilayer Perceptron) to 3.46% (AeroCNN).

In contrast, the ESCNN achieves 0.97% error with two orders of parameters less than AeroCNN. Figure 2
shows examples of the ESCNN prediction performance on the validation set, where the predictions are accu-
rate and the Cl − α linearity is well captured. With such few parameters and limited capacity, how can ESCNN
perform so well in a high-dimensional and highly-nonlinear aerodynamic system?

Learning the Kutta condition
While investigating how ESCNN learns to make prediction, the fully connected layer, as shown in Fig. 1, draws
our attention, since it is the last hidden layer before prediction.

We track the neuron values of the fully connected layer with a test airfoil at 3◦ angle of attack during the train-
ing. The test airfoil NACA 2412 contains 160 coordinates. Variations of the neuron values [f1, f2, . . . , fn] at the end
of different training stages are shown in Fig. 4, where the x-axis denote the sequential index number [1, 2, . . . , n]
of the neurons, and the y-axis denote corresponding neuron values [f1, f2, . . . , fn] . Since the ESCNN model takes
airfoil coordinates that are sequentially formatted as input, the order of coordinates is reflected in the neurons of
learned hidden layers. The epoch numbers represent different training iterations, the network learns and evolves
with the increasing of training epoch numbers. From the figure, it is obvious that as the training progresses, the
fully connected layer is converging to a sine-shaped pattern, and this pattern begins to stabilize at around 400
epochs as shown in Fig. 4d. This result is also consistent with the learning curve that is shown in Fig. 3, as in this
figure, after 400 epochs, the fitted Mean Squarer Error (MSE) converges towards a constant.

We notice an interesting phenomena, as shown in Fig. 4, the first and the last neurons values are always the
same (f1 = fn) even at the very beginning of training. It seems like the ESCNN has learned, early in the training
process, of the condition f1 = fn , and followed this rule strictly during the training progress. This f1 = fn pattern
reminds us the fundamental principle in aerodynamics: Kutta condition.

Recall the Kutta condition32: in fluid flow around a body with a sharp corner, the flow pattern in which fluid
approaches the corner from both directions meets at the corner before flows smoothly go away from the body,

Figure 2. Prediction performance on validation airfoils.

Figure 3. ESCNN training learning curve.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

as shown in Fig. 5. Equation (2) describes the Kutta condition mathematically, where γ1 and γn represents the
vortex strength at the upper and lower surface of the airfoil trailing edge respectively.

Apparently, ESCNN manages to figure out the importance of the Kutta condition by itself—it prioritizes to
keep the value of the first neuron and the last neuron the same during the entire learning process.

Learning the vortex strength distribution pattern
To further investigate the meaning of the sine-shaped pattern, we compute the vortex strength distribution over
airfoil using Vortex Panel Method (VPM). VPM is an engineering numerical method to compute the vortex
strength distribution over airfoil. It replaces the airfoil surface with a series of vortex panels.

Figure 6 shows the scaled vortex strength distribution calculated by VPM over the test case NACA 2412 airfoil
at 3◦ angle of attack. As shown in this figure, when fewer panels are used in the calculation, the distributions
of vortex strength , γ , are not smooth. The oscillations from one panel to another is a well-known flaw of VPM
which is triggered by the numerical inaccuracy32. With the larger number of panels used during the calculation,
the oscillations fades away, the results get more accurate, and the sine-shaped pattern of vortex distribution
gradually emerges.

Figure 7 compares the computed 160 panels vortex strength distribution with the converged layer pattern
at the same scale, both curves show a similar sine-shaped pattern, except they are symmetric in relation to the
horizontal axis. Furthermore, if we down-sample the number of input airfoil coordinates to fewer dimensions,
the converged sine-shaped pattern are still kept by the trained network, as shown in Fig. 8, not subject to the
numerical inaccuracy of VPM.

Both the converged layer pattern and the computed VPM vortex strength distribution exhibit a similar sine-
shaped wave. One possible hypothesis is that the network has learned another physical concept that is a function
of the vortex strength. Although there is no aerodynamics law at the moment that theoretically addresses this

(2)γ1 = γn.

Figure 4. Fully connected layer evolution in training.

Figure 5. Airfoil vortex panels in free stream.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

sine-shaped pattern, we surmise that the distribution of vortex strength over airfoil follows a certain underlying
pattern.

Learning with ReLU activation
The initial activation function we use to train the ESCNN model is the LeakyReLU, a common choice for neural
 networks35. More importantly, the output domain of LeakyReLU activation can be both positive and negative
values, so is the value of vortex strength. This feature enables ESCNN to learn the vortex related physical quantity.

Figure 6. Computed vortex distribution as a function of the number of panels.

Figure 7. Comparison of the converged layer pattern with 160 panels vortex strength distribution.

Figure 8. Neuron values of the fully connected layer with different number of airfoil coordinates.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

However, what if the network is trained with a ReLU activation function, can it still learn the vortex related
physical quantity? In this section, we intentionally limit the value range of the fully connected layer by implement-
ing another activation—ReLU function35. Equations (3) and (4) describes the LeakyReLU and ReLU activation
function respectively, where k = 0.5 is the negative slope coefficient. For any real-valued input, the LeakyReLU
outputs both positive and negative values, whereas ReLU outputs non-negative values only35.

Figure 9 shows that the ESCNN still learns the Kutta condition and vortex distribution pattern, although
the pattern is constrained within the non-negative range. More interestingly, the fully connected layer is forcing
itself to evolve into a symmetric pattern as the training goes on, as marked in the dotted rectangular in Fig. 9.
Despite that there is no constraint placed in the positive domain, the evolution to such symmetric pattern is
quite clear in both Figs. 4 and 9.

Learning the lift coefficient equation
The ESCNN contains standard convolution layers, how can it outperform existing neural networks with sig-
nificantly less parameters? The key reason of success is that the ESCNN makes prediction by learning the lift
coefficient equation of aerodynamics at the last layer. For an airfoil at a fixed angle of attack, the lift coefficient Cl
is given by Eq. (5), where c is a constant32, γi is the vortex strength at the panel i, and li is the length of the panel
i. Meanwhile, the prediction target Ĉl is obtained at the last layer of ESCNN (fully connected layer), as described
by Eq. (6), where fi represents the neuron values and wi represents the learned weight parameters.

We show that the ESCNN model learns Eq. (5) by matching the neuron values [f1, f2, . . . , fn] with the vortex
strength over airfoil [γ1, γ2, . . . , γn] , and matching the learned weights [w1,w2, . . . ,wn] with the length of each
panels [l1, l2, . . . , ln].

We calculate the correlation coefficient between the neuron values [f1, f2, . . . , fn] and the vortex strength over
airfoil [γ1, γ2, . . . , γn] , for each sample in the testing dataset. The correlation coefficient cov is defined by Eq. (7),
where x and y are both vectors. Results show that the neuron values and vortex strength of all testing samples
are highly correlated: the average of correlation coefficient is −0.975 , with a standard deviation of 6.4× 10−3 ,
an example is shown in Fig. 7.

(3)LeakyReLU (x) =max(0, x)+ k ∗min(0, x).

(4)ReLU(x) =(x)+ = max(0, x).

(5)Cl =c

n
∑

i=1

γi li .

(6)Ĉl =

n
∑

i=1

fiwi .

Figure 9. Fully connected layer under constrained activation.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

We also calculate the correlation coefficient between the length of each panels [l1, l2, . . . , ln] and the learned
weights [w1,w2, . . . ,wn] . Note that the learned weights are fixed after training, however, the length of each panels
[l1, l2, . . . , ln] varies across different airfoils. The panels of an airfoil refer to the segments between two sequential
points, as shown in Fig. 10. The panels are serially numbered from 1 to n according to their locations on the
airfoil surface (starting from the trailing edge, along the upper surface to the leading edge and back around the
lower surface to trailing edge). The length of each panel li is the spatial distance between two sequential coor-
dinates as defined by Eq. (8). Figure 11 shows the randomly sampled airfoils, and their corresponding panel
length distribution.

Figure 12 compares the learned weights and the panel length distribution of example airfoils at the same scale.
Despite that panel length distributions are different across airfoils, they are close to symmetric. This symmetric
pattern explains why the fully connected layer evolves for symmetry during training as shown in Figs. 4 and 9.
The learned weights are not as highly correlated with the panel length distribution, as compared with the cor-
relation between neuron values and vortex strength. However, the symmetric pattern of panel length distribution
has been captured by the learned weights. Moreover, we notice from Table 2 that the correlation between the
panel length and learned weights affects the prediction performance: higher correlation leads to lower prediction
error. Different airfoils have different panel length distributions, whereas the learned weights are fixed, failing to
match the weights for corresponding airfoil leads to the increase of prediction error.

How does ESCNN manages to learn the physical quantity of vortex strength and the panel length? The reason
is that ESCNN adopts a structured input that incorporates prior physical knowledge.

In the vortex panel method, the vortex strength γ1 to γn are obtained by solving a linear system of n equations,
and solving each equation requires the angle of attack α and the coordinates of corresponding panel32. Inspired
by the vortex panel method, we combine the panel coordinates xi , yi , xi+1, yi+1 and the angle of attack α as an
element unit, and then concatenate all the element units into a single vector, as shown in Fig. 1. The first layer,
CONV1, performs 1D convolution over each element unit, and each element unit contains sufficient information
to solve the vortex strength and panel length.

The physics-informed structured input allows the convolution layer to pick up the vortex strength γi and panel
length li , and further allows the fully connected layer to learn the lift coefficient equation.

Conclusions
In this work, we propose a neural network model that outperforms existing state-of-the-art NNs in the airfoil
lift coefficient prediction task, with two orders of less parameters. We further investigate how the ESCNN makes
accurate predictions.

The ESCNN network learns to constrain the first and last neurons to be equal, during the entire learning
process. This is the evidence that it self-learns the fundamental aerodynamics principle, the Kutta condition.
Moreover, the fully connected layer converges to a sine-shaped wave pattern that is highly correlated to the
vortex strength distribution over airfoil, which demonstrates that the network learns the vortex related physical
quantity. In addition, we explore ESCNN’s learning ability with constrained activation by replacing LeakyReLU
to ReLU function. The results show that even with a limited value range of the neurons, ESCNN can still learn
the critical physics of Kutta condition and the vortex distribution pattern. In the end, we show that the network
learns lift coefficient equation at the last layer.

(7)cov =
x · y

�x��y�
.

(8)li =

√

(xi+1 − xi)2 + (yi+1 − yi)2.

Figure 10. Panel distribution over the airfoil surface.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

Figure 11. Randomly sampled airfoils and their panel length distribution.

Figure 12. Comparison of learned weights and panel length distribution at the same scale.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

Received: 5 September 2021; Accepted: 31 March 2022

References
 1. Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897

(2020).
 2. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).
 3. Carleo, G. et al. Machine learning and the physical sciences. Rev. Modern Phys. 91, 045002 (2019).
 4. Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2020).
 5. Duraisamy, K., Iaccarino, G. & Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357–377 (2019).
 6. Jin, X., Cai, S., Li, H. & Karniadakis, G. E. Nsfnets (Navier–Stokes flow nets): Physics-informed neural networks for the incom-

pressible Navier–Stokes equations. J. Comput. Phys. 426, 109951 (2021).
 7. Kochkov, D. et al. Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci.. 118, e2101784118 (2021).
 8. Li, Z. et al. Fourier neural operator for parametric partial differential equations. arXiv preprint. arXiv: 2010. 08895 (2020).
 9. Li, Z. et al. Neural operator: Graph kernel network for partial differential equations. arXiv preprint. arXiv: 2003. 03485 (2020).
 10. Erichson, N. B., Muehlebach, M. & Mahoney, M. W. Physics-informed autoencoders for lyapunov-stable fluid flow prediction.

arXiv preprint. arXiv: 1905. 10866 (2019).
 11. Wang, R., Kashinath, K., Mustafa, M., Albert, A. & Yu, R. Towards physics-informed deep learning for turbulent flow prediction.

in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1457–1466 (2020).
 12. Lusch, B., Kutz, J. N. & Brunton, S. L. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9,

1–10 (2018).
 13. Sirignano, J. & Spiliopoulos, K. Dgm: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375,

1339–1364 (2018).
 14. Sun, Y., Zhang, L. & Schaeffer, H. Neupde: Neural network based ordinary and partial differential equations for modeling time-

dependent data. in Mathematical and Scientific Machine Learning, 352–372 (PMLR, 2020).
 15. Tang, H. et al. An exploratory study on machine learning to couple numerical solutions of partial differential equations. Commun.

Nonlinear Sci. Numer. Simulat. 97, 105729 (2021).
 16. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Computat. Phys. 378, 686–707 (2019).
 17. Pang, G., Lu, L. & Karniadakis, G. E. fpinns: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 41, A2603–A2626

(2019).
 18. Yang, X., Zafar, S., Wang, J.-X. & Xiao, H. Predictive large-eddy-simulation wall modeling via physics-informed neural networks.

Phys. Rev. Fluids 4, 034602 (2019).
 19. Wang, S., Teng, Y. & Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks.

SIAM J. Sci. Comput. 43, A3055–A3081 (2021).
 20. Mao, Z., Jagtap, A. D. & Karniadakis, G. E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech.

Eng. 360, 112789 (2020).
 21. Ding, M., Chen, Z., Du, T., Luo, P., Tenenbaum, J. & Gan, C. Dynamic visual reasoning by learning differentiable physics models

from video and language. Adv. Neural Inf. Process. Syst. 34, (2021).
 22. Zhang, Y., Tiňo, P., Leonardis, A. & Tang, K. A survey on neural network interpretability. in IEEE Transactions on Emerging Topics

in Computational Intelligence (2021).
 23. Zhang, Q. & Zhu, S.-C. Visual interpretability for deep learning: A survey. arXiv preprintarXiv: 1802. 00614 (2018).
 24. Zhang, Q., Wu, Y. N. & Zhu, S.-C. Interpretable convolutional neural networks. in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition 8827–8836, (2018).
 25. Chakraborty, S. et al. Interpretability of deep learning models: A survey of results. in 2017 IEEE smartworld, ubiquitous intelligence

& computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, Internet of people
and smart city innovation (smartworld/SCALCOM/UIC/ATC/CBDcom/IOP/SCI), 1–6 (IEEE, 2017).

 26. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
 27. Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021).
 28. McGrath, T. et al. Acquisition of chess knowledge in alphazero. arXiv preprint. arXiv: 2111. 09259 (2021).
 29. Peng, W., Zhang, Y. & Desmarais, M. Spatial convolution neural network for efficient prediction of aerodynamic coefficients. in

AIAA Scitech 2021 Forum, 0277 (2021).
 30. Selig, M. UIUC airfoil data site (Department of Aeronautical and Astronautical Engineering University of Illinois at Urbana-

Champaign, 1996).
 31. Drela, M. Xfoil: An analysis and design system for low Reynolds number airfoils. in Low Reynolds Number Aerodynamics, (ed.

Thomas J. Mueller.) 1–12 (Springer, 1989). https:// link. sprin ger. com/ book/ 10. 1007/ 978-3- 642- 84010-4# edito rsand affil iatio ns
 32. Anderson, J. D. Jr. Fundamentals of Aerodynamics (Tata McGraw-Hill Education, 2010).
 33. Zhang, Y., Sung, W. J. & Mavris, D. N. Application of convolutional neural network to predict airfoil lift coefficient. in 2018 AIAA/

ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1903 (2018).
 34. Franklin, J. The elements of statistical learning: Data mining, inference and prediction. Math. Intell. 27, 83–85 (2005).
 35. Xu, B., Wang, N., Chen, T. & Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv preprint. arXiv:

1505. 00853 (2015).

Table 2. Correlation (between the learned weights and the panel length) of different airfoils and prediction
error.

Airfoil Correlation Error (%)

GOE298 0.16 1.22

GOE419 0.43 0.71

EH2012 0.32 0.93

HQ259B 0.30 0.97

NACA632615 0.27 1.03

http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/1905.10866
http://arxiv.org/abs/1802.00614
http://arxiv.org/abs/2111.09259
https://link.springer.com/book/10.1007/978-3-642-84010-4#editorsandaffiliations
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:6779 | https://doi.org/10.1038/s41598-022-10737-4

www.nature.com/scientificreports/

Acknowledgements
We acknowledge the computing resources powered by Google Colab, and by the CAAI-Huawei MindSpore
Open Fund.

Author contributions
W.P. developed the idea for this study, conceived the code, designed experiments, and analyzed the data. Y.Z.
and M.D. contributed to proof-of the-concept and refining the ideas, and discussion of results. W.P., Y.Z., E.L.,
M.D. interpreted the results. Y.Z. made conclusions, and organized the paper. M.D. and E.L. reviewed and edited
the manuscript. All authors contributed to manuscript revision. All authors commented and approved the final
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Learning aerodynamics with neural network
	Predicting lift coefficient with neural networks
	Learning the Kutta condition
	Learning the vortex strength distribution pattern
	Learning with ReLU activation
	Learning the lift coefficient equation
	Conclusions
	References
	Acknowledgements

