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Effective mathematical modelling 
of health passes during a pandemic
Stefan Hohenegger1,2, Giacomo Cacciapaglia1,2* & Francesco Sannino3,4,5

We study the impact on the epidemiological dynamics of a class of restrictive measures that are 
aimed at reducing the number of contacts of individuals who have a higher risk of being infected 
with a transmittable disease. Such measures are currently either implemented or at least discussed 
in numerous countries worldwide to ward off a potential new wave of COVID-19. They come in the 
form of Health Passes (HP), which grant full access to public life only to individuals with a certificate 
that proves that they have either been fully vaccinated, have recovered from a previous infection or 
have recently tested negative to SARS-Cov-2. We develop both a compartmental model as well as an 
epidemic Renormalisation Group approach, which is capable of describing the dynamics over a longer 
period of time, notably an entire epidemiological wave. Introducing different versions of HPs in this 
model, we are capable of providing quantitative estimates on the effectiveness of the underlying 
measures as a function of the fraction of the population that is vaccinated and the vaccination rate. We 
apply our models to the latest COVID-19 wave in several European countries, notably Germany and 
Austria, which validate our theoretical findings.

The epidemiological dynamics of SARS-Cov-2  in many countries has been characterised by several waves. These 
are periods of exponential growth in the number of infected individuals, followed by (quasi-)linear growth 
phases. Modelling this dynamics in 2021 is involved due to a number of different factors: (1) the availability of 
several different vaccines, which started being deployed at the end of 2020, and national vaccination campaigns 
around the globe; (2) the appearance of several variants of SARS-Cov-2 , which differ in their infection  rate1–4 
and their ability to avoid antibody responses (recent  theoretical5 and  numerical6 studies explore the impact of 
variants on the pandemic diffusion); (3) non-pharmaceutical interventions (ranging from lockdowns to various 
degrees of social distancing measures) taking into account economical, social and political factors. In particular 
regarding i), roughly 37% of the global population is fully vaccinated as of the end of October 2021, see Ourwo 
rldin data. org, however with only very few countries having reached a rate of > 50% , which is still largely below 
the projected herd-immunity threshold.

With the number of vaccinated adult individuals rising (but still staying below the herd immunity threshold, 
in particular for the more aggressive new Delta-variant) and in an attempt to further allow social life to return to 
levels similar to the ones before the pandemic, many countries have discussed (and in several cases also adopted) 
social distancing measures that are tailored according to the threat an individual poses to infect others. Such 
measures require individuals to present certificates, which prove that they present a low risk of being infectious, 
in order to participate in the public life. The certificates attest that the person is fully vaccinated against COVID-
19 (after having received the required number of doses of an approved vaccine and a certain waiting time), or 
that they have recovered from a not too distant infection or that they have recently tested negative for SARS-
Cov-2. In fact, different combinations of the above are present at national level. The social measure requires to 
present the certificate before entering locations or events where the risk of contagion is  high7, such as public 
places (restaurants, bars, museums, shopping malls etc.), social events (concerts, theatres, cinemas etc.), public 
means of transportation (trains, airplanes,etc.) or universities and schools. Since the specifics and the names 
differ from country to country, in the following we shall collectively refer to these certificates as Health Passes 
(HPs). Examples for concrete implementations in different European countries can be found in Section S6.1 of 
the Supplementary Material.

The objective of our work is to develop a simple and economical mathematical model that allows to analyse 
the impact of different versions of HPs on the epidemiological dynamics of an entire wave of a pandemic. The 
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mathematical modelling of infectious diseases has a long standing history, and several different approaches exist 
in the literature: these range from stochastic  methods8–13 to deterministic compartmental  models14–16 (including 
the effect of  vaccines17–20) to computer- and data driven  approaches21–25 and network  models26–28. The advent of 
SARS-Cov-2  has caused a spike of research activity, with new models exploring key aspects of the pandemic, 
for example its multi-wave  structure29,30 and the evaluation of its impact on society and  economy31–36. Models 
that quantify the impact of non-pharmaceutical interventions have also been  proposed37–40 and validated on the 
COVID-19 available data. Nevertheless, the specific impact of HPs has not been studied in the literature yet, and 
our work aims at covering this gap. In the current work we shall exploit the interplay between two types of mod-
els, namely a compartmental model and the epidemiological Renormalisation Group (eRG) approach. The former 
is among the oldest  approaches14  (see16,41 for further references) and it treats the spread of an infectious disease 
by dividing the population into several compartments containing individuals in different states with respect to 
the disease (e.g. susceptible, exposed, infectious, recovered etc.). The passage of individuals from one compart-
ment to another is described through a set of coupled first order differential equations in time, which can be seen 
as a continuous mean-field approximations of a more microscopic description of the  infections12,13,41. Models 
of this type can be easily adapted and  extended31 by adding  compartments42,43, stratifying them in terms of age 
groups or geographical  location44 and upgrading the parameter to functions of time for a better fit to the data. 
Compartmental models are particularly useful in establishing qualitative relations between microscopic aspects 
of the spread of the disease among individuals and more macroscopic observables, such as the total number of 
individuals who have become infected at the end of an epidemic wave. However, in their simplest incarnation 
with constant transition rates, these models are capable of describing the time evolution accurately only over 
a relatively short period of time. Due to the fact that the epidemiological situation constantly changes (as we 
explained above), the rates need to be adapted as functions of time. The eRG framework has been  introduced29,30 
to capture, more efficiently, the time evolution of the disease diffusion by explicitly taking into account sym-
metry, being inspired by the physical concepts of time-invariance symmetry and fixed points (the concept of 
Renormalisation Group Equations (RGE) has been originally developed in the context of statistical and particle 
 physics45–47). Concretely, the eRG framework takes the form of a set of flow equations (called the β-functions) that 
describe the evolution of a quantity of epidemiological interest (e.g. a smooth monotonic function of the cumula-
tive number of infected individuals Ic ) as the flow between different fixed points. It has been  demonstrated48,49 
that the eRG approach is indeed capable of describing accurately not only a full wave of COVID-19, but is also 
capable of modelling more complex multi-wave  structures50,51 even under changing conditions, like the appear-
ance of new  variants5, vaccination  dynamics52, change in the social  dynamics53, among the ones mentioned above.

In this work we studied the effectiveness of HPs by combining the flexibility of compartmental models in 
capturing microscopic details of the spread of a disease and their relation to more macroscopic quantities within 
an eRG framework. The latter efficiently encapsulates the symmetries and long-term aspects of epidemics. The 
methodology we followed is schematically illustrated in Fig. 1: we first introduce a compartmental model (called 
SIIRV) which contains 5 compartments, namely S (unvaccinated susceptible), I1 (unvaccinated infectious), I2 
(previously vaccinated infectious), R (removed) and V  (vaccinated susceptible). Although vaccines have fairly 
high efficacies in preventing infections in the vaccinated population (around 80–90% for the best cases), here we 
take into account the fact that vaccines neither grant complete immunity against an infection from SARS-Cov-2  
nor prevent the transmission of the virus from an infected vaccinated individuals to others. Assuming constant 
rates at which individuals pass between these compartments, this model is capable of fitting epidemiological data 
only over a short period of time ①. Alas, this class of models is not capable of describing correctly the dynam-
ics of an entire wave of COVID-19. Hence, we ensure a correct description of the epidemiological data via the 
eRG framework ②. Matching the solutions of the SIIRV model with the eRG provides time-dependent infection 
and removal rates ③, which allow to extend the range of validity of the compartmental model to accurately 
reproduce the data. We then implement two different types of HP-models at the level of the SIIRV model (with 
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Figure 1.  Schematic overview of the interplay between a compartmental model (SIIRV) and an eRG approach 
to arrive at quantitive prediction on HP measures from input data.
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time-dependent rates): the net effect is a reduction in the contact rates between certain classes of individuals, thus 
corresponding to a systematic re-scaling of certain terms in the differential equations controlled by an efficacy 
parameter p. Studying the dynamics of the resulting system allows us to implement the HP-models in the eRG 
④ by introducing a p-dependence in its parameters. This provides us with a model that not only allows to make 
long-term predictions ⑤ for HP-models but also to compare ⑥ different types of HP  among each other and the 
current situation in different countries.

We consider two different types of HP-measures putting different emphasis on vaccinated versus unvac-
cinated individuals:

• Vaccine and Test Health Passes (VT-HP): individuals with a certificate of a negative test against SARS-Cov-2  
are granted the same level of access to public life as people who have been vaccinated. We implicitly assume, 
in this scenario, that tests are easily accessible (and free of charge) for the majority of the population. Exam-
ples for models of this type which have actually been implemented are the Austrian ‘3-G-Regel’, the Danish 
‘Corona Pass’ or the French ‘pass sanitaire’ .

• Vaccine Health Passes (V-HP): only individuals who posses a certificate for being completely vaccinated 
against SARS-Cov-2  are granted unrestricted access to public life

In both cases, individuals that have previously contracted the disease are considered as fully immunised. Cur-
rently, there are several examples of VT-HPs implemented in various countries, while (to our knowledge) V-HPs 
are currently only being discussed. We consider the two HP  models as templates of two extremal situations, and 
perform a comparative analysis of their effect on the long-term spread of the disease.

Methods
Compartmental vaccine model and health passes. We first introduce a compartmental model, con-
ceived to describe and quantify the impact of HPs during a single epidemiological wave. For COVID-19, this 
requires a typical time-span of 1–2 months, hence variations in the population due to births, mobility and mor-
tality play a minor role. Hence, the model we design is based on the following main assumptions: 

1. A closed population, comprising of all the individuals that are susceptible of being infected during a single 
epidemic wave.

2. Negligible reinfection rates, hence all individuals that are unable to infect (deceased, recovered, quarantined, 
hospitalised individuals) are counted in a single compartment.

3. Merged categories when they are not distinguished by the application of the Health Pass: for simplicity, we 
do not consider deaths, hospitalisations, isolation, etc, as separate compartments. This greatly reduces the 
number of free parameters and improves on predictivity.

4. Separated compartments for vaccinated and un-vaccinated individuals.
5. Time-independent parameters (infection, recovery and vaccination rates).

This leads to the 5-compartment model, which we describe in detail below.

Basic SIIRV model. Our starting point is an isolated population of size N ≫ 1 , which we re-group into 5 basic 
compartments, as listed below.

• Susceptible: N S(t) denotes the number individuals at time t who are not infectious and who have not been 
(fully) vaccinated. They can become infectious if they come in contact with the disease via an infectious 
individual.

• Vaccinated: N V(t) denotes the number of individuals who, at time t, are not infectious and who are fully 
vaccinated. We shall, however, assume that these individuals can still get infected if they come in contact 
with the disease, but with a rate suppressed by a factor ζ < 1 compared to S.

• Infectious: N I1(t) denotes the number of infectious individuals at time t who have not been previously vac-
cinated.

• Infectious: N I2(t) denotes the number of infectious individuals at time t who have been previously vaccinated.
• Removed: N R(t) denotes the number of removed individuals at time t, who cannot become infectious. They 

account for previously infectious individuals who fully recovered, or are prevented from infecting due to 
some other removal mechanism (such as quarantine or death).

Individuals can pass from one of these compartments to another through various mechanisms, which we model 
through fixed rates γ1,2 (infection), ε (removal) and ρ (vaccination rate). The processes are mathematically 
described by the following coupled first order differential equations in time:

(1)

dS

dt
(t) = −S(t) [ρ + γ1 I1(t)+ γ2 I2(t)],

dI1

dt
(t) = S(t) [γ1 I1(t)+ γ2 I2(t)]− ε I1(t),

dV

dt
(t) = ρ S(t)− V(t) ζ [γ1 I1(t)+ γ2 I2(t)] ,

dI2

dt
(t) = V(t) ζ [γ1 I1(t)+ γ2 I2(t)]− ε I2(t),

dR

dt
(t) = ε [I1(t)+ I2(t)],
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which need to be supplemented by the initial conditions

Here we assume the outbreak of the disease at t = 0 and we normalise the initial conditions to satisfy 
S0 + I1,0 + I2,0 + V0 = 1 . In (1), γ1, γ2 ∈ R+ are the rates at which infectious individuals with or without prior 
vaccination infect susceptible individuals. These two rates are not considered a priori the same (however, in 
most examples, for simplicity we used γ1 = γ2 ). Furthermore, ε denotes the recovery rate, which is assumed 
to be independent of whether individuals have been previously vaccinated or not. We also define the ratios 
σ1 =

γ1
ε

 and σ2 = γ2
ε

 , which correspond to the reproduction numbers of the two infectious compartments. The 
rate ρ in (1) denotes the vaccination rate, which is chosen to be constant. Studying the examples of Germany 
and Austria, evidence is provided in Sections S6.2 and S6.3 of the Supplementary Material that this indeed leads 
to a reasonable approximation for a single wave of COVID-19. Finally, the efficacy of the vaccine is encoded 
in the reduction factor ζ ∈ [0, 1) for the infection rate of vaccinated individuals, estimated from recent studies 
for different vaccines agains SARS-Cov-254. For later use, we also define the cumulative number of infected 
individuals as a function of time:

Finally, the herd-immunity threshold for the vaccination dynamics encoded in eqs. (1) is hHIT = σ1−1
σ1−ζσ2

 (see 
Section S1.2 of the Supplementary Material for more details).

Implementing health passes. The factor ζ in the SIIRV model (1) mainly takes into account biological effects of 
the various vaccines and a priori is not related to any social distancing measures particularly targeted at unvacci-
nated individuals. HP-measures, instead, are specifically aimed at reducing social contacts of individuals posing 
a higher threat of infecting others by allowing access to public places and social events only to individuals who 
can either prove a certain level of immunisation against SARS-Cov-2  and/or have recently tested negative for the 
virus. To implement these measures into the SIIRV model, we distinguish the two conceptually different types 
of HPs, as described in the introduction:

• VT-HP: this model effectively only restricts the contacts of unvaccinated infectious individuals, i.e. those in 
the compartment I1 . In (1), we can implement such restrictions through a suppression factor pVT ∈ [0, 1] 
that takes into account how much contacts of the unvaccinated infectious individuals I1 with the rest of the 
population are reduced 

 Mathematically, the VT-HPcorresponds to a rescaling of the infection rate for unvaccinated individuals 
γ1 → pVTγ1 . The cumulative number of infected individuals for this model becomes 

• V-HP: in models of this type, the social interactions of any unvaccinated individual (i.e. in the compartments 
S and I1 ) are reduced. In (1), we can implement such restrictions through a suppression factor pV ∈ [0, 1] that 
measures the efficacy of this reduction 

(2)S(t = 0) = S0 , I1(t = 0) = I1,0 ,I2(t = 0) = I2,0 , V(t = 0) = V0 ,R(t = 0) = 0 .

(3)Ic(t) = N (I1,0 + I2,0)+ N

∫ t

0
dt′

[

S(t′)+ ζ V(t ′)
] [

γ1 I1(t
′)+ γ2 I2(t

′)
]

.

(4)

dS

dt
= −S

[

ρ + pVT γ1 I1(t)+ γ2 I2
]

,

dI1

dt
= S

[

pVT γ1 I1 + γ2 I2
]

− ε I1 ,

dV

dt
= ρ S − V ζ

[

pVT γ1 I1 + γ2 I2
]

,

dI2

dt
= V ζ

[

pVT γ1 I1 + γ2 I2
]

− ε I2 ,

dR

dt
= ε [I1 + I2] .

(5)I(VT)c (t, pVT) = N (I1,0 + I2,0)+ N

∫ t

0
dt′

[

S(t′)+ ζ V(t ′)
] [

pVT γ1 I1(t
′)+ γ2 I2(t

′)
]

.

(6)

dS

dt
= −S

[

ρ + p2V γ1 I1 + pV γ2 I2
]

,

dI1

dt
= S

[

p2V γ1 I1 + pV γ2 I2
]

− ε I1 ,

dV

dt
= ρ S − V ζ

[

pV γ1 I1 + γ2 I2
]

,

dI2

dt
= V ζ

[

pV γ1 I1 + γ2 I2
]

− ε I2 ,

dR

dt
= ε [I1 + I2] .
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 The cumulative number of infected individuals is given by 

Epidemiological renormalisation group. Here we use the simplest eRG  approach29, which follows the 
time-evolution of the number of infections in a closed and isolated population over the time-span of a single 
wave. This formulation is enough to study the effect of HPs. In the literature, extensions of the eRG are available, 
which include the multi-wave  pattern50,51, people’s mobility between different  regions48,49,52 and the presence of 
multiple virus  variants5.

Time dependent rates and relation to SIIRV. The eRG  approach29,30 describes the spread of a disease through 
flow equations (the so called β-functions) and characterises a wave as the flow between fixed  points5,29,49,50. Con-
cretely, for α = φ(Ic) , with φ a continuous, differentiable and monotonic function, the β-function for a single 
wave (and a single variant of a disease) can be written as

with (A0, �0, d) constants. Here, �0 is related to the infection rate of the disease, while A0 is the asymptotic number 
of individuals who get infected during the wave. For simplicity, we shall consider d = 1

2 and α = φ(Ic) = Ic in 
the following. In this case, the solution of the flow equation (8) is a logistic function

where t0 ∈ R is an integration constant that gives the timing of the maximum of infectious individuals during 
the wave. As demonstrated in the  literature5,29,30,48,49, and shown in more examples in Section S6 of the Sup-
plementary Material, for suitable values of the parameters (A0, �0, t0) , the function (9) describes accurately the 
time evolution of infected individuals during a single wave of COVID-19 even for populations that differ greatly 
geographically as well as socio-culturally and under very different circumstances regarding non-pharmaceutical 
interventions, vaccines and variants of SARS-Cov-2 .

As the eRG only describes the cumulative number of infected individuals Ic , in order to match the solutions 
to those of the SIIRV compartmental model introduced in the previous subsection, we need to make a further 
assumption on how the cumulative number of infected individuals is distributed among removed and infectious 
individuals. To this end we assume that

represents the total number of infectious individuals (either vaccinated or unvaccinated) at time t, where τ is 
the average amount of time an infectious individual remains infectious. We have verified that this assumption 
does not play any crucial role in the following analysis, and that it is compatible with the epidemiological data 
in Germany and Austria (see Supplementary Material for more details). Furthermore, in order to reproduce the 
cumulative number of infected (9) along with I(t) = N(I1 + I2)(t) in (10) with the SIIRV model (1) and (2), it 
is generally required that the infection and recovery rates of the compartmental model are functions of  time30. 
We first validated the matching in a simple scenario, with fixed ratio σ2/σ1 and in absence of vaccinations (i.e. 
ρ = 0 and V0 = 0) . An typical example of time-dependent (σ1, ε) matching to the eRG solution is shown in 
Fig. 2. Functions of this form were previously  found30 when matching the eRG approach to a time-dependent 
SIR model. More precisely, as is showcased by the black interpolating lines in Fig. 2, the time dependence of 
(σ1(t), ε(t)) can be approximated by logistic functions of the form

where �σ ∼ �ε ∼ �0 and tσ ∼ tε ∼ t0 while (Aσ , δσ ,Aε , �ε) show a more complicated dependence on (A0, �0, t0).

Vaccinations. Next we consider a non-vanishing number of (fully) vaccinated individuals at the outbreak of 
the wave, V0  = 0 , and a non-trivial vaccination rate ρ . We first study the impact of V0 on the eRG model ( ρ = 0 ) 
when it remains below the herd immunity threshold. We find convenient to match the solutions of the SIIRV 
model to a logistic function in the form

where κ is a numerical parameter close in value to hHIT . As explained in the Supplementary material, this is still 
accomplished by a functional dependence of the form (11) for (σ1(t), ε(t)) with a roughly linear dependence 
of Aσ on V0.

(7)I(V)c (t, pV) = N (I1,0 + I2,0)+ N

∫ t

0
dt′

[

pV S(t′)+ ζ V(t ′)
] [

pV γ1 I1(t
′)+ γ2 I2(t

′)
]

.

(8)−βα(t) =
dα

dt
=

dφ

dIc

dIc

dt
= �0 α

(

1−
α

A0

)2d

,

(9)Ic(t) =
A0

1+ e−�0(t−t0)
,

(10)I(t) =

∫ t

t−τ

dt
dIc(t

′)

dt′
dt′ = Ic(t)− Ic(t − τ) ,

(11)σ1(t) = Aσ

(

1−
1

1+ e−�σ (t−tσ )

)

+ δσ , ε(t) =
Aε

1+ e−�ε(t−tε)
+ δε ,

(12)Ic(t) =
A0(1− κV0)

1+ e−�0(t−t0)
,
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Finally we turn on the vaccination rate ρ . For the eRG framework, the dependence of Ic on the vaccination 
rate has been  discussed52, and it has been proposed to promote �0 and A0 to dynamical functions of time that 
follow the additional first-order differential equations

in supplement to the β-function (8). This implies �0(t) = �0(t = 0)[1− t ρ] , while the second equation in (13) 
for w = 1 derives from the fact that, at any given time t, the reduction of the asymptotic cumulative number of 
infected individuals can only depend on remaining number of susceptible A0(t)− Ic(t)

52. As further explained 
in Section S4 of the Supplementary Material, here we find that a better match with the solutions of the SIIRV 
model can be obtained with w ∈ [0, 1).

Health pass models. Having established a correspondence between the eRG approach and the SIIRV model 
(1) and (2) with non-constant rates, we next assume that the time dependence of (σ1, ε) remains valid also after 
implementing either of the two HP  models (4) or (6) and the only modification is due to the (constant) param-
eter pVT and pV respectively. In this case, numerical solutions indicate that the cumulative number of infected 
individuals can still be well approximated by a logistic function (9) (see the left panel of Fig. 4), albeit with 
p-dependent parameters (A0, �0, t0) as shown in the right panel of Fig. 4.

Ethical approval. The methods employed in this work are in accordance with all the relevant guidelines 
and regulations.

Results
General results. Numerical solutions of the SIIRV model (1) and (2) as well as the two HP-modifications 
(4) and (6) are shown in Fig. 3. The right panel of this figure demonstrates the potential of a HP  to ‘flatten the 
curve’, i.e. to reduce the local maximum of the number of infectious individuals as a function of time, or even 

(13)
d�0

dt
= −ρ�0(t = 0) , and

dA0

dt
= −ρ (A0(t)− Ic(t))

w .

Figure 2.  Time dependence of the infection rate σ1 (left panel) and the removal rate ε (right panel) needed to 
reproduce and Ic(t) of the form (9) with the compartmental model (1) (red dots). Both plots use A0 = 0.025 , 
�0 = 0.06 , t0 = 100 , τ = 14 , ρ = 0 , ζ = 0 , σ2/σ1 = 1 and V0 = 0 . The interpolating black lines correspond 
to approximations with logistic functions following (11) with notably Aσ = 1.87 , δσ = 0.44 , Aε = 0.055 and 
δε = 0.047.

Figure 3.  Numerical solutions of the SIIRV model with different variants of a HP: solutions of Eq. (1) are 
represented by blue points, those of Eq. (4) by orange points and those of (6) by green points. The left panel 
shows the cumulative number of infected individuals (large points stand for the total numbers, while small 
points represent only the unvaccinated individuals) and the right panel the infectious individuals as functions of 
time. Both plots use σ1 = σ2 = 1.6 , ε = 0.1 , ζ = 0.15 , ρ = 0.0005 and V0 = 0.3.
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completely eliminate it. To further study this point, the left panel of Fig. 4 shows the cumulative number of 
infected individuals for the two compartmental HP-models (4) and (6). The right panel of this figure shows a 
comparison of their asymptotics (i.e. at the end of the wave) as a function of p (and normalised to p = 1 ). For a 
certain range of p < 1 , the numerical solutions can be interpolated by exponential functions of the form

with the two models mainly differing by the constant fitting parameters θ(VT) and θ(V) . In fact, approximations 
of this type are already viable within the framework of a SIR  model14 without any vaccination dynamics. More 
details, including a comparison of (14) with the first and second order of a Taylor series expansion around 
p = 1 can be found in the Supplementary Material. Assuming all remaining parameters to be the same (notably 
the recovery rate ε ), the same efficacy of the HP-models (4) and (6), pVT and pV respectively, lead to different 
asymptotic cumulative numbers of infected individuals. We can turn this relation around by determining which 
values of pVT and pV (for all other parameters being held fixed), lead to the same number of infected individuals 
at the end of the epidemic wave. The red line in the left panel of Fig. 5 shows the relation between pV and pVT that 
needs to be satisfied in order to obtain the same asymptotic behaviour: for the parameters chosen, 1− pVT in a 
HP  that accepts both test and vaccination certificates needs to be roughly a factor 2 larger than 1− pV in a HP , 

(14)I(VT,T)c (∞, p) ∼ I(VT,T)c (∞, p = 1) exp

(

θ(VT,T)
p− 1

p

)

, with θ(VT,T) ∈ R+ ,

Figure 4.  Left panel: cumulative number of infected in the two compartmental HP-models with time 
dependent parameters (σ1, ε) as a function of pVT and pV : orange curves represent the model (4) and green 
curves the model (6). The blue curve (with pVT = pV = 1 ) is identical in both models (and corresponds to the 
case of no HP  in (1)). Right panel: comparison of the asymptotic cumulative number of infected individuals 
as a function of p (and normalised to p = 1 ) for (4) and (6). The dots represent the numerical solutions, while 
the dashed lines stand for the leading (linear) approximation at p = 1 and the solid lines for interpolations 
with exponential functions of the form (14). The plot uses σ1 = σ2 = 1.6 , ε = 0.1 , ζ = 0.15 , ρ = 0.0005 and 
V0 = 0.3 and leads to the interpolation parameters θ(VT) = 9.326 and θ(V) = 20.364.

Figure 5.  Left panel: using the same numerical parameters as in Fig. 4, the red curve represents the relation 
between the p-parameters of (4) and (6) that lead to the same asymptotic cumulative number of infected 
individuals. The dashed black line represents for comparison the relation pV = pVT . Right panel: p-dependence 
of the parameters (A0, �0) relative to the case p = 1 in the eRG approach equivalent to the SIIRV model with 
time dependent rates: circles represent numerical values of A0(p)

A0(p=1)
 while triangles represent numerical values of 

�0(p)
�0(p=1)

 , with orange symbols computed using the model (4) and green symbols correspond to the model (4). The 
solid lines represent interpolations of the numerical solutions with an exponential function of the form (16) for 
A0(p)

A0(p=1)
 and a linear function for �0(p)

�0(p=1)
 . The plots use A0 = 0.025 , �0 = 0.06 (at t = 0 ), t0 = 100 , V0 = 0.3 and 

ζ = 0.15.
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which only allows vaccinated individuals full access to public life. The relation in the left panel of Fig. 5 can be 
studied using the approximation (14), which implies equivalent asymptotic numbers of infected individuals for

The linear approximation around pVT = 1 with the coefficient θ
(VT)

θV
∼ 0.458 indeed very well agrees with the 

left panel of Fig. 5. We stress, however, that this comparison assumes that all remaining parameters of the sys-
tem remain the same for both models. In particular, we assumed the same removal rate ε in both cases, which 
(among other things) depends on the efficiency of the contact-tracing, i.e. identifying and quarantining infected 
individuals and therefore also crucially depends on the number of tests that are being performed per time unit. 
Since a V-HP-model offers less incentive for individuals to get tested (unless they present clear symptoms), they 
likely also entail a lower test rate, leading ultimately to a smaller value of ε . A numerical equivalence taking into 
account a possible change in ε is discussed in Section S5 of the Supplementary Material.

From the perspective of the eRG, which is equivalent to the SIIRV models (4) and (6) with time dependent 
infection and removal rates of the form (11), relation (14) implies that a HP can be implemented by allowing for 
a p-dependence of A0 and �0 in the β-function (8), concretely

The constant θ implicitly depends on the remaining parameters of the problem (notably the vaccination dynam-
ics and A0(p = 1) ). The p dependence of �0 for small 1− p can be approximated to be linear, as is shown in the 
right panel of Fig. 5.

Examples. We next apply the theoretical results developed above to the epidemiological situation of Ger-
many and Austria in the late summer/early fall of 2021. Further examples of France, Italy and Denmark are 
discussed in Section S6 of the Supplementary Material.

Germany. The epidemiological situation in Germany since the beginning of the COVID-19 pandemic and the 
summer of 2021 is shown in Section S6.2 of the Supplementary Material. The available data for an impending 
wave from 07/July/2021 to 17/August/2021 can be fitted with a logistic function of the form

which however shows a large uncertainty when extrapolated until the middle of September. We therefore consider 
as two extremal cases logistic functions parametrised by (for more information see the Supplementary Material)

Based on these values, we can develop a time-dependent SIIRV model, with time dependent parameters 
(σ1, ε) , which are shown in Fig. 6. These curves follow the general form of Eq. (11) with the parameters 

A
+
σ ,ε A

−
σ ,ε �

+
σ ,ε �

−
σ ,ε t

+
σ ,ε t

−
σ ,ε δ

+
σ ,ε δ

−
σ ,ε

σ1 2.024 3.047 0.131 0.119 81.1 30.4 1.529 0.838

ε 0.065 0.085 0.072 0.094 88.5 42.3 0.062 0.054

 

(15)

pV =
pV θ(V)

pVT(θ(V) − θ(VT))+ θ(VT)
= 1+

θ (VT)

θV
(pVT − 1)+

θ(VT)(θ(VT) − θ(V))

(θ(V))2
(pVT − 1)2 + O ((pVT − 1)3) .

(16)A0(p) ∼ A0(p = 1) exp

(

θ
p− 1

p

)

, with θ ∈ R+.

(17)Iwavec (t) = Ic,0 +
A0

1+ e−�0(t−t0)
,

(18)
A+
0 = 2.5 · 106 , �

+
0 = 0.072 , t+0 = 594.5 , δ+0 = 3.74 · 106 ,

A−
0 = 174533 , �

−
0 = 0.094 , t−0 = 548.3 , δ−0 = 3.74 · 106 .

Figure 6.  Time dependent parameters σ1 (left panel) and ε (right panel) for the extremal cases of wave 4. The 
blue and orange colours are correlated with the curves in the right panel of Fig. F10 in the Supplementary 
Material.
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Finally, implementing the Green pass model based on these extremal cases is shown in Fig. 7. Starting from 
the band of cumulative number of infected individuals (for p = 1 ), we obtain a similar band for each p < 1 . The 
plots for a VT-HP  and V-HP  respectively are shown for σ2/σ1 = 1 in Fig. 7, assuming that the HP  has been 
introduced on 07/July/2021. Figure 8 shows the same analysis assuming that the HP  had been introduced on 01/
August/2021.The plots in Fig. 7 suggest that a new wave in Germany could be stopped by reducing the contacts 
among non-vaccinated individuals by roughly 20–40%. Finally, we have compared the efficacy of the VT-HP  
and V-HP  in the case of Germany in Fig. 9: the left panel shows the (normalised) cumulative number of infected 
individuals at tf = 15/September/2021 , along with an approximation of the form (16). Notice, rather than the 
asymptotic number of infected individuals at the end of the wave, we have chosen a date roughly a months after 
the last available data for the comparison. The right panel shows which values of pV and pVT lead to the same 
cumulative number of infected individuals at tf  : the red band corresponds to the uncertainty related to the two 
extremal cases we have developed to extrapolate the data. In fact, the extrema of this band arise when comparing 
the most optimistic extrapolation for the V-HP  with the worst case approximation of VT-HP  (and vice versa). 
The blue line corresponds to a comparison of equivalent extrapolations and suggests roughly

This means, assuming that all other parameters remain roughly the same, the reduction in the contacts in the 
VT-HP  needs to be roughly twice as large as in the V-HP-model to achieve the same cumulative number of 
infected.

Austria. The epidemiological situation in Austria since the beginning of the COVID-19 pandemic and the 
summer of 2021 is shown in Section S6.3 of the Supplementary Material. As in Germany, the available data 
from 01/July/2021 to 17/August/2021 show a great uncertainty when extrapolated until middle of September. 
We therefore again fit two extremal logistic functions of the form (17), with the exact numerical data given in 
Section S6.3 of the Supplementary Material. These data suggest the onset of a new wave, just as in the case of 
Germany. However, unlike Germany, a VT-HP   (3-G-rule: ‘geimpft, getestet, genesen’) was enforced on 01/
July/2021, with earlier measures dating as far back as 19/May/2021 (the rule was slightly modified on 22/07 
and 15/08 specifying stricter rules to discotheques and nightclubs and imposing restrictions to only partially 
vaccinated individuals respectively, see the Supplementary Material for further details) allowing individuals full 
access to the public life only with a certificate of either being (fully) vaccinated, having recovered from a previous 
infection or having tested negative for SARS-Cov-2 . Therefore, in order to derive time-dependent parameters 
(σ1(t), ε(t)) for the above mentioned extremal cases, we need to take the presence of the V-HP  into account. 
Since the exact efficacy of the HP  are difficult to quantify, we have used p = 0.8 and p = 0.9 as reference values 
to fit the data. The corresponding time-dependent functions (σ1(t), ε(t)) for wave 4 are shown in Fig. 10. As 
is evident, the main difference lies in the function σ1 , while the curve for ε is relatively unchanged. Indeed, as 
remarked before, mathematically the parameter pVT can be absorbed in the γ1 . Since we assumed for the latter 
anyway a certain range, the main effect of pVT can also be absorbed in the quotient σ2/σ1 , i.e. the reduction in the 
rate at which vaccinated infectious individuals infect others. We next apply these time-dependent (σ1, ε) param-
eters to the stronger V-HP  model (6). The results are shown in Fig. 11. The results again support an equivalence 
of the type (19) between the parameters pV of the V-HP  and pVT of the VT-HP model.

Conclusions
In this paper we have analysed the impact of Health Passes on the epidemiological dynamics of infectious 
diseases. These HPs correspond to measures that restrict the access of individuals with a higher risk of being 
infectious to public life. Concretely, we have distinguished two different classes that grant access to individu-
als with a vaccination certificate or a recent negative test (VT-HP) and only to vaccinated individuals (V-HP).

We have first discussed these HPs in the context of a simple compartmental SIIRV model (1) and have gen-
eralised them in the context of the eRG framework, which is better suited for describing the dynamics over a 

(19)2(1− pV) ∼ 1− pVT .

Figure 7.  Time evolution of the cumulative number of infected individuals for different values of the efficacy of 
a V-HP  (right panel) or a VT-HP (right panel). We assume that the model has been introduced on 07/07/2021. 
Both cases use ζ = 0.15 (based on an average of the efficacy of each vaccine weighted by the distribution among 
the population), ρ = 0.008 and σ2/σ1 = 1.
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longer period of time, in particular an entire epidemiological wave. Analysing in particular the dependence of 
the asymptotic cumulative number of infected individuals (which is a crucial parameter in the description of the 
eRG), we have found the approximative exponential dependence (16) on the parameter describing the efficacy 
of the HP . Furthermore, comparing the efficacy of a VT-HP-model to a V-HP  model reduces to comparing the 
corresponding θ-parameters appearing in this approximation.

We have furthermore validated our models by discussing the diffusion of COVID-19 in several European 
countries. We have analysed in detail Germany (who, to this date, has not implemented any HP) and Austria 
(who currently has implemented a VT-HP  and considers the partial introduction of a V-HP) and have presented 
a briefer analysis for France, Denmark and Italy. In all cases we have established that a V-HP  is much more 
efficient in reducing the number of infected. Our model in fact allows for a quantitative comparison, leading 
to the relation (19): if all remaining parameters remain the same, the efficacy of a VT-HP  needs to roughly be 
twice as high to produce the same reduction of infections as a V-HP . Furthermore in most cases, an efficiency 
of a V-HP  of roughly 20-40% is strong enough to completely suppress a potential fourth wave.

We have undertaken preliminary studies that also include a potential reduction in the number of tests (related 
to a reduction in the removal rate due to a reduced capacity of identifying and isolating infected individuals). 
It would be important to further extend these studies, in particular to establish a quantitative relation between 
these two rates.

Figure 8.  Time evolution of the cumulative number of infected individuals for different values of the efficacy of 
a V-HP  (right panel) or a VT-HP (right panel). We assume that the model has been introduced on 01/08/2021. 
Both cases use ζ = 0.15 (based on an average of the efficacy of each vaccine weighted by the distribution among 
the population), ρ = 0.008 and σ2/σ1 = 1.

Figure 9.  Comparison of the V-HP  model (6) and the VT-HP  model (4): the left panel shows the cumulative 
number of infected individuals at tf = 15/09/2021 as a function of p (normalised to the value of p = 1 ). The 
orange curve corresponds to the model (6) and the green curve to the one in (4). The right panel shows the 
equivalence for the parameters pVT and pV of these two models, taking into account the incertitude inherent in 
the approximations: the red band indicates equivalent values of these parameters that lead to the same value of 
Ic(tf ) with the blue line corresponding to equivalence obtained comparing equivalent extrapolations of the data 
in each case.
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Data availability
The epidemiological data are extracted from the open-source repository on Worldometer. Data about the vac-
cination rates and progression have been downloaded from the Robert Koch Institute for  Germany55, and from 
the Austrian Ministry webpage for  Austria56.
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