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Reliable P wave detection 
in pathological ECG signals
Lucie Saclova1,3*, Andrea Nemcova1, Radovan Smisek1,2, Lukas Smital1, Martin Vitek1 & 
Marina Ronzhina1

Accurate automated detection of P waves in ECG allows to provide fast correct diagnosis of various 
cardiac arrhythmias and select suitable strategy for patients’ treatment. However, P waves detection 
is a still challenging task, especially in long-term ECGs with manifested cardiac pathologies. Software 
tools used in medical practice usually fail to detect P waves under pathological conditions. Most of 
recently published approaches have not been tested on such the signals at all. Here we introduce 
a novel method for accurate and reliable P wave detection, which is success in both normal and 
pathological cases. Our method uses phasor transform of ECG and innovative decision rules in order 
to improve P waves detection in pathological signals. The rules are based on a deep knowledge of 
heart manifestation during various arrhythmias, such as atrial fibrillation, premature ventricular 
contraction, etc. By involving the rules into the decision process, we are able to find the P wave in 
the correct location or, alternatively, not to search for it at all. In contrast to another studies, we 
use three, highly variable annotated ECG databases, which contain both normal and pathological 
records, to objectively validate our algorithm. The results for physiological records are Se = 98.56% 
and PP = 99.82% for MIT-BIH Arrhythmia Database (MITDP, with MITDB P-Wave Annotations) and 
Se = 99.23% and PP = 99.12% for QT database. These results are comparable with other published 
methods. For pathological signals, the proposed method reaches Se = 96.40% and PP = 91.56% for 
MITDB and Se = 93.07% and PP = 88.60% for Brno University of Technology ECG Signal Database with 
Annotations of P wave (BUT PDB). In these signals, the proposed detector greatly outperforms other 
methods and, thus, represents a huge step towards effective use of fully automated ECG analysis in a 
real medical practice.

Among various examination techniques, electrocardiography (ECG) is still a highly valuable tool used for the 
diagnosis of many cardiovascular disorders. Cardiovascular diseases are currently the most common cause of 
death worldwide1. ECG reflects the electrical activity of the heart and provides a huge amount of information 
about heart function2. In order to diagnose a person based on ECG, cardiologists use automatic diagnostic 
algorithms, particularly in the case of long-term monitoring (e.g. several types of ECG holter monitor, event 
monitor, Apple Watch 6, Bittium, Faros etc.)3. In medical practice, there is many commercial software solutions 
used for automatic analysis of long-term ECG4–8. However, none of these software can reliably evaluate ECG 
records with no further cardiologist check-up required. Therefore, there is a strong need to develop new, more 
accurate, and robust methods for processing and analysing ECG records.

The fundamental steps towards identification of pathology in an ECG are automatic detection of the QRS 
complex, P wave and T wave9. The P wave reflects atrial depolarization (activation), QRS complex represents the 
depolarization of ventricles and T wave their repolarization. Detection of the P wave is the most complicated part 
of the process, and it is still not solved problem10. P waves detection is more difficult than the detection of other 
ECG components due to following reasons: (a) P waves have a low voltage, resulting in a low signal-to-noise 
ratio (SNR); (b) P waves have no exclusive time and frequency characteristics; (c) P waves have high interpatient 
variability; (d) in the case of atrioventricular (AV) dissociations, P waves do not respect normal time ordering of 
an ECG sequence and, thus, can be missing or redundant); (e) during tachycardia, P waves can be hidden within 
the T waves3; (f) during atrial fibrillation (AFIB) and atrial flutter (AFL), P waves are missing or replaced by so 
called f-waves or F-waves, respectively; (g) in the case of ventricular ectopy, P waves are usually not present at all.

The information about P waves are important to diagnose many types of arrhythmias. Particularly, the infor-
mation about P waves positions can be used to diagnose AV block of the 1st, 2nd and 3rd degree. It is a key point 
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for differentiation between supraventricular and ventricular tachycardias and for identification of junctional and 
ventricular ectopic beat or rhythm, atrial fibrillation and flutter. Changes in P wave shape (e.g. peaked, notched, 
inverted or enlarged P) may indicate atrial pathologies, such as atrial hypertrophy or enlargement and others. It 
may further correspond with the retrograde conduction from the AV node to the atria during junctional rhythm 
or traveling pacemaker1,2. The results of automatic P waves detection allow to gain more information from the 
ECG record and, consequently, simplify daily cardiologist work. Early detection of P waves and, subsequently, 
an illness can decrease risk of patients’ mortality11.

The most significant drawback of the commonly used detection algorithms (from the literature as well as the 
software used in clinical practice) is in assuming that the P wave is followed by the QRS complex. This is valid for 
normal cardiac rhythm and may not be true for pathological ones. The above algorithms search for the P wave in 
area before the QRS complex and detect the maximum of P wave within this area using different methods, such 
as adaptive thresholding12,13, wavelet transform14,15, specific P wave template and further correlation16, Kalman 
filtering17, moving average13, support vector machine18,19, Prony’s method20, the hidden Markov models21, neural 
network22, phasor transform (PT)23–26, dynamic programming27, combinations of several detection algorithms28, 
differential evolution29, etc. These approaches deliver good results when testing on ECG with normal cardiac 
rhythm and perform poorly in case of ECG with pathological manifestations. For example, when applying on 
ECG with premature ventricular contraction (PVC), the Portet’s’ algorithm3 achieved sensitivity (Se) = 70.37% 
and positive predictivity (PP) = 59.41% and the Laguna’s algorithm30 achieved Se = 76.14% and PP = 55.87%. Most 
of the published methods, however, have not been tested on pathological records at all.

In our previous work31, we presented the original method for P wave detection and tested it on the signals 
from MIT-BIH Arrhythmia Database (MITDB) using the P waves annotations from MIT-BIH Arrhythmia 
Database P-Wave Annotations (MIT PDB)24,32. Besides the normal ECG, the database contains three types of 
pathological records, namely ECG with PVC, AV block II degree (AVB II), and junctional rhythm. For this data-
base, our previous algorithm achieved promising results with overall Se = 96.40% and PP = 91.56%. In order to 
validate the algorithm objectively on highly variable data, we created new publicly available ECG database with 
23 types of pathologies and annotated P waves, which was published as Brno University of Technology ECG 
Signal Database with Annotations of P Wave (BUT PDB)33. On this database, our previous detection algorithm 
performed insufficiently (overall Se = 78.13%, PP = 79.67%), which motivated us to create an improved robust 
version of the P wave detector.

In this paper, we introduce an improved method for P wave detection in ECG. According to the results (see 
below), the method significantly reduces the limitations of our previous detectors26,31 and outperforms other 
recent detectors. The proposed detector consists of a phasor transform (PT) of ECG, adaptive area demarcation 
for P wave searching and clear decision rules that improve P wave detection, especially in pathological signals. 
The innovative rules are based on deep knowledge of heart manifestation during both physiological and patho-
logical conditions. The decision process starts with the detection of the relevant pathologies in analyzed segment 
and selection of suitable detection criteria and ends with the acceptance of previously detected P wave candidate 
as true or not. As a result, we search for the P wave in the correct location or, alternatively, do not search for it 
at all. Unique criteria for demarcation of ECG areas used for P wave searching ensure accurate detection in data 
from patients with AFIB, various types of PVC, AVB II, bundle branch blocks, etc. Another benefit of our study 
is in testing the algorithms (newly proposed as well as its previous versions) on three different, highly variable 
ECG databases, which is not common in this field. Our comprehensive study replies on the need of accurate, 
fully automated systems for ECG analysis based on recent knowledge about heart functioning under different 
conditions and respecting the principles of experts’ rule-based decision making. The outputs of the study con-
tribute to early, effective treatment of the patients by increasing the diagnostics profits of routinely used ECG.

Methods
The entire algorithm for P wave detection consists of eight parts: (a) QRS complex detection, (b) T wave detec-
tion, (c) PVC detection, (d) AFIB detection, (e) pathology check, (f) normal P wave detection, (g) dissociated 
P wave detection, and (h) P wave verification. The complete architecture of P wave detection algorithm is dem-
onstrated by the block diagram in Fig. 1. Each block is described in detail below. The integration of methods 
for AFIB and PVC detection and several novel decision rules to P wave detection algorithm is an important 
innovation of the proposed method.

Values and constants used during P wave detection were determined according to the knowledge of cardiac 
activity (definition of the area for searching for P wave, T wave, PVC, check of PVC and AFIB detection, etc.) 
and the properties of PT (value of Rv).

(a)	 QRS complex detection
	   Firstly, QRS complex detection is provided. The raw signal is preprocessed34,35 and filtered by a bandpass 

FIR filter with Hamming window and passband of 12 to 19 Hz36 in order to enhance the QRS complexes 
and suppress P and T waves. After filtration, Phasor transform (PT) is applied on the signal. PT enhances 
variations of the signal’s components (such as P waves, T waves and QRS complexes) and makes the detec-
tion of these components easier23. PT transforms each sample of the signal into a complex value preserving 
the signal information. The constant value RV is considered as a real part of the phasor signal, while the 
value x(n) of the original ECG sample is considered as an imaginary component: y(n) = RV + jx(n) . RV 
is set on the value within the interval 0–1, which indicates the ‘degree’ of the waves enhancement in ECG. 
For QRS detection, RV = 0.001 is used. The phase (phasor) signal PT(n) is then computed as 
PT(n) = tan−1

(

x(n)
RV

)

.
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Figure 1.   The overall process of P wave detection: (a) QRS complex detection using Phasor transform, (b) T 
wave detection based on the QRS complexes positions, (c) detection of PVC using morphological feature and 
correctness check, (d) detection of AFIB using Shannon entropy, (e) check of PVC or AFIB presence in ECG, 
(f) basic detection of P waves in physiological heart beats based on the QRS complexes positions, (g) detection 
of dissociated P waves within special demarcation area, (h) unification of P waves positions, check of P wave 
amplitude and verification of P wave positions correctness.
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	   In signal PT(n) , maxima are detected in sliding window (300 ms long) and compared to an adaptive 
threshold established as a double of standard deviation calculated in 2 s moving window. The positions 
of maxima, which are higher than the threshold, are considered as the positions of QRSs (R waves). If the 
current RR interval RR(i) is 1.75 times longer than the previous one RR(i − 1), backward searching with a 
new threshold established as 30% of the last detected QRS amplitude is additionally applied to add possible 
missing detections. More detailed information about QRS detection via PT can be found in our previous 
work31. The output of this step—QRS positions—is then used for demarcation of areas for P and T waves 
searching and for detection of PVC and AFIB.

(b)	 T wave detection
	   The searching area for T wave detection is determined using the position of the corresponding QRS 

complex R(i) as R(i) + 0.12 × RR(i) to R(i) + 0.57 × RR(i) + 60 ms. In this area, the ECG is transformed using 
the PT in the same way as in the case of QRS detection, but with RV = 0.1. The maximum of the phase signal 
PT(n) within the demarcated segment is considered as the position of the T wave. We already used a similar 
method31, but here we introduce different way for demarcating of the searching area. The T waves positions 
are further used to identify the area for P wave searching.

(c)	 PVC detection
	   Recognition of PVC is a very important step for demarcating the area where P wave may occur. If the 

current beat R(i) is marked as PVC, the P wave may not be searched before the QRS complex, because the 
P wave is not present at all. The proposed PVC detection method is effective, with low computational cost. 
It is based on only one simple feature extracted from the QRS, namely the area under the QRS (AUC​(i)) 
calculated from the segment demarcated using current R wave position as R(i) − 150 ms to R(i) + 150 ms. 
Before AUC​ calculation, the signal is filtered using a high-pass Lynn’s filter with a cut-off frequency of 
0.67 Hz to eliminate the baseline wandering. The current beat is then considered as PVC, if its AUC​(i) 
is 1.3 times larger than a median AUC​ calculated from all previous beats. An example of PVC detection 
procedure is shown in Fig. 2. In previous studies, we used multi-feature approach for PVC detection24,37,38, 
where we combined AUC​ with other features. Here, we achieved promising results by using AUC​ only (see 
below).

	   In the next step, the number of beats labelled by algorithm as PVC is calculated. If more than 75% of all 
beats in ECG are labelled as PVCs, the PVC detection results are considered as a mistake. Instead, mor-
phological changes of the beats are considered to be a sign of right or left bundle branch blocks, which are 
known to have similar ECG manifestations as PVC. As a result, each beat is assigned as normal or PVC, 
which is used in further steps.

(d)	 AFIB detection
	   During AFIB, P waves are not present in ECG39 and, thus, common P wave detection algorithms produce 

many false positive detections. To eliminate this problem, we supplemented our algorithm by checking of 
the AFIB presence in current beat R(i). If the beat is marked as AFIB, the algorithm does not search for 
the P wave at all.

	   The pilot version of AFIB detection method was published in40. Here, we introduce the modified 
approach. It is based on the representation of heart rate dynamics via so called symbolic dynamics (sym-
bols and words) and Shannon entropy (SH). First, the heart rate sequence (hr(i)) is calculated from the RR 

Figure 2.   The illustration of PVC detection. The PVC is detected by thresholding the area under QRS complex 
(AUC) calculated in the ECG segment demarcated from R(i) − 150 ms to R(i) + 150 ms, where R(i) is the 
position of current QRS (R wave).
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intervals (RR(i)) and transformed into the symbol sequence (Sy(i))41. The 3-symbol template is then used to 
examine the entropic properties of Sy(i) and another 3-symbol template is used to obtain the transformed 
sequence of words (wv(i)). The template length was set on only 3 samples to ensure low computational 
demand of the sequence analysis. Second, SH(i) is computed from the segment of 59 consecutive word 
elements (beats) selected as wv(i-29) to wv(i + 29). Finally, the beats with SH(i) higher than 0.737 (selected 
empirically) are marked as AFIB, since during AFIB, RR intervals are highly variable resulting in a large 
SH41,42.

	   In Fig. 3, the process of AFIB detection is illustrated. Upper graph shows the lengths of RR intervals 
and lower graph shows the corresponding SH values and the decision threshold for AFIB detection. It is 
obvious from the figure, that the increased SH values (above the threshold) correlate with the presence of 
AFIB in ECG (according to the ground truth annotations available in a database).

	   In ECG with detected AFIB, the PVCs number is then calculated within the segments of the 59 consecu-
tive beats. If more than 30 PVCs (50% of total beats) is present in the segment, than increased SH values 
seem to be due to the PVCs, which are ‘surrounded’ by RR intervals of specific lengths (shortened and 
extended for RR before and after the PVC, respectively) different from the lengths of RR intervals sur-
rounding the normal beats. In this case, the current beat R(i) is not considered as AFIB. As a result, each 
beat is labeled as normal or AFIB and this information is involved into further analysis.

(e)	 Pathology check
	   In this stage, the algorithm checks, whether the pathologies from the steps (c) and (d) were detected 

in the current beat, and decides, whether P wave detection process continues or not. Particularly, if the 
beat is marked as AFIB, the P wave detection in this beat is terminated (see above). In the beats with no 
AFIB, the presence of detected PVC is checked. If the beat is marked as PVC, then the detection process is 
terminated (see above). In the opposite case, the algorithm continues to the step f).

(f)	 Normal P wave detection
	   If the currently analyzed beat is not labeled as PVC nor AFIB, the segment for P wave searching is selected 

from ECG as R(i − 1) + 0.71 × RR(i) to R(i)-0.07 × RR(i)-60 ms and transformed by the PT with RV = 0.05. The 
maximum peak from the calculated phase signal is then considered as a P wave candidate (cP). In Fig. 4, 
an example of P wave searching is shown. For the first beat of signal, the segment for P wave searching is 
set as R(i)-300 ms to R(i)-80 ms.

(g)	 Dissociated P wave detection
	   Dissociated P waves can be usually found in ECG of patients with AVB II. To detect these waves carefully, 

we proposed simple criteria. First, it is checked, whether there is a dissociated P wave in the previous RR 
interval (RR(i − 1)). If not, then three further criteria are checked: (1) RR(i) > 1.6 × RR(i − 1), (2) RR(i) > 1.6 s 
(3) current beat R(i) is not PVC. If the dissociated P wave was found in the previous interval, then one 
criterion is checked: RR(i) > 0.8 × RR(i − 1). In both cases, if the criteria are met, the dissociated P wave may 

Figure 3.   The illustration of AFIB detection. Top: Length of RR intervals. Bottom: Corresponding Shannon 
entropy with decision threshold (blue line) and ground truth AFIB annotations (red block). Shannon entropy 
values higher than the threshold (about 0.9–1 in this particular case) correspond with ECG segment, where 
AFIB manifestations are present (according to the annotations available from the database).
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be present in the current beat and, thus, the position of this wave is further detected. If the above criteria 
are not met, the dissociated P wave is not present in the beat and the detection procedure is terminated. 
The dissociated P wave is localized in the segment demarcated as T(i − 1) + 200 ms to P(i)-400 ms. The 
segment is transformed by the PT in the same way as in step f) and the position of P wave candidate cP is 
found by detecting the maximum peak within the segment. In Fig. 5, the detection of dissociated P waves 
is illustrated.

(h)	 P wave verification
	   In the last step, the P waves candidates are validated. First, the voltage level of the candidate cP(i) is 

assessed by the criterion: UP(i) > 0.05 × UQRS(i). If the criterion is not met, the P wave is probably not present 
in the current beat, which may be in case of nodal origin of the beat/rhythm or idioventricular rhythm. 
Second, the position of the candidate cP(i) is verified to be ensure, that the candidate is not a part of the 
previous T wave, but the true P wave of the current beat. Corresponding criterion is cP(i) > T(i − 1), where 

Figure 4.   Normal P waves detection. Searching areas (green blocks) are demarcated as R(i − 1) + 0.71 × RR(i) to 
R(i)-0.07 × RR(i)-60 ms and the P wave candidates (cP) are found as the maximum peaks in the areas processed 
by a phasor transform (not shown here).

Figure 5.   Demarcation of segments for P wave searching in the case of possible dissociated P waves presence.
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cP(i) is the position of current P wave candidate and T(i − 1) is the position of the previous T wave. If this 
criterion is not met, this P wave candidate is excluded from the analysis, as it likely represents the T wave 
from previous beat instead of P wave of current beat. Consequently, the true P wave is most probably absent 
in the current beat or is hidden in the previous QRS complex or previous T wave, such it happens in case 
of supraventricular tachyarrhythmia, sinus tachyarrhythmia or atrial premature beat. If the above criterion 
is met, the candidate position cP(i) is considered as the position of P wave.

Testing databases.  For testing the proposed algorithm, physiological as well as pathological ECG records 
with P waves annotated by the experts were needed. There are only three publicly available databases, which 
contain correct manual annotations of P waves. All the databases can be found on Physionet32. In all databases, 
the first lead was used for algorithm testing.

The first database is a part of MIT-BIH Arrhythmia Database (MITDB)32,43 with the P wave annotations 
published by our team for selected ECGs under the name MIT-BIH Arrhythmia Database P-Wave Annotations 
(MIT PDB)24. For this database, the P wave annotations were also published by Elgendi et al.44. However, these 
annotations contain many mistakes and, thus, they are not suitable for reliable testing of detection algorithms. 
The MITDB dataset is widely used database for evaluation of QRS detectors and is the most cited ECG database 
at all45. It contains both physiological and pathological ECG records sampled with frequency 360 Hz. For our 
study, we selected 12 physiological and pathological signals with P wave annotations available. Particularly, 
selected records no. 106, 119, 214, and 223 include PVCs (various types of ventricular arrhythmias—ventricular 
bigeminy (B), ventricular trigeminy (T), and idioventricular rhythm (IVR). Records no. 207 and 222 include 
nodal rhythm (NOD) and record no. 231 includes AVB II. Records no. 100, 101, 103, 117, and 122 do not include 
any significant pathology. Therefore, these records represent normal signals, which will be used to verify the 
performance of the algorithm under physiological conditions. Altogether, the database contains 2281 P waves.

The second database is the QT database (QTDB)32,46. It consists of 105 15-min-long two-channel ECG records 
sampled at 250 Hz. In this study, the first channel was used. For all records and beats, the automatically found 
reference positions of QRS complexes are available. For some beats, the QTDB includes manual annotations of 
P wave peak, P wave onset, P wave offset, QRS complex onset, QRS complex offset, T wave peak and the T wave 
offset. All annotations are available for at least 30 beats per record in 79 out of the 105 recordings46. The perfor-
mance of the proposed algorithms for P waves and T waves detection was tested against the manually annotated 
part of the QTDB (altogether 3622 beats), which mainly represents the physiological signals.

The third database is Brno University of Technology ECG Signal Database with Annotations of P Wave (BUT 
PDB) recently published by our team33. It consists of 50 2-min long, two-channel ECG records with 23 different 
types of pathologies and manually annotated P waves. The ECGs were selected from 3 existing databases of ECG 
signals—MITDB, MIT-BIH Supraventricular Arrhythmia Database (MITSVA) and Long Term AF Database 
(LTAF)46. The sampling frequency is 360 Hz for signals from MITDB and MITSVA and 128 Hz for signals from 
LTAF. Each record from BUT PDB contains annotation of dominant diagnosis (pathology) and types of QRS 
complexes (taken over from the original databases). Available information about pathologies was manually 
checked. Since the original annotations were found correct, the labels were taken over from the original databases. 
The missing annotations (all signals from MITSVA) were further supplemented by ECG experts. The BUT PDB 
consists of 7638 QRS complexes. For 2209 QRSs, there are not P wave presented (the case of atrial fibrillation, 
ventricular beats or nodal rhythm). On the contrary, 141 P waves are not corresponded with QRS complexes 
(mainly the case of the 2nd or 3nd degree atrioventricular block and paced rhythm). Altogether, the BUT PDB 
includes 5429 P waves. Types of pathologies, their abbreviations and the number of signals in particular patho-
logical groups are listed in Table 1. It should be noted, that the BUT PDB contains all known pathologies that 
affect P waves presence and/or positions.

Results and discussion
Proposed detection algorithm was tested on physiological as well as pathological signals. Physiological signals 
are represented by the whole manually annotated part of QTDB46 and the records no. 100, 101, 103, 117, and 122 
from MITDB32,43 with annotations MIT PDB24,32. Pathological signals include the records no. 106, 119, 207, 214, 
222, 223, and 231 from the MITDB with annotations MIT PDB and all signals from our new database BUT PDB33.

Besides the results obtained by using of the proposed improved P wave detector, we also present the results 
of our previous algorithms. All the methods were tested on the same dataset. The first previously published 
algorithm is the basic P wave detector based on using the phasor transformation with no extra decision rules 
for pathological cases26. The second algorithm was specially designed for using under normal conditions (physi-
ological cardiac rhythm) and during PVC or AVB II31. Here, we will compare the results of all three detectors in 
order to objectively evaluate the impact of the procedures we proposed for improvement of the previous outputs. 
As was mentioned above, these procedures are preliminary focused on eliminating of false positive P wave detec-
tions, which are common in case of many cardiac arrhythmias. From our results (see below), the number of false 
positives could be effectively reduced by involving the decision rules for accurate demarcation of the search area 
and information about presence of arrhythmia, such as AFIB and PVC.

Detection of P waves in physiological conditions.  First of all, we validated the efficiency of the pro-
posed P wave detector under normal conditions by testing it on the ECGs with no pathology (see above). The 
results obtained by the proposed method as well as our two previously published detectors are summarized in 
Tables 2 and 3. For both test databases, the results of other teams are available. We included this data in the tables 
for comparison. In these studies, various methods were used to detect the P waves, such as PP rhythm tracking3, 
phasor transform23, wavelet transform15, correlation analysis16, parametric mixture Gaussian and dynamic 
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Table 1.   List of pathologies present in BUT PDB, their abbreviations (Abb.), number of heartbeats and the 
number and IDs of signals with the given pathology.

Abb. Type of pathology Number of heartbeats Number of records IDs of the records with the pathology

A Atrial premature beat 142 21 01,04,05,09,16,17,18,26,28,31,32,35,38,39,40
,41,42,43,46,49,50

SVTA Supraventricular tachyarrhythmia Included in A 3 09,11,43

AFIB Atrial fibrillation 1079 9 07,08,44,45,46,47,48,49, 50

AFL Atrial flutter 86 1 38

BI 1st degree atrioventricular block Included in L(140) 1 22

BII 2nd degree atrioventricular block Extra 80 P wave 2 1,13

BIII 3rd degree atrioventricular block Extra 61 P wave 1 3

E Ventricular escape beat 99 1 9

F Fusion beat 76 7 06,10,14,19,32,35,36

J Nodal beat 26 2 7,38

L Left bundle branch block beat 448 4 21,22,36,41

NA Sinus arrhythmia 129 1 24

NOD Nodal premature beat 76 2 6,15

P Paced rhythm 236 2 3,19

PREX Pre-excitation 130 1 12

R Right bundle branch block beat 717 6 01,06,13,26,33,34

V Ventricular premature beat 547 27
02,03,05,08,10,14,20,21,22,25,26,27,28,29,

30,31,32,33,35,36,37,39,40,41,42,45,47,50

B Ventricular bigeminy included in V 3 02,14,27

T Ventricular trigeminy included inV 2 27,29

IVR Idioventricular rhythm included in V 1 30

VP Ventricular pair included in V 1 25

VFL Ventricular flutter 66 1 33

a Aberrated atrial premature beat 9 1 23

N Normal beat 3772

Table 2.   The performance of the P wave detection algorithms on physiological signals from MITDB with 
annotations MIT PDB (Se—sensitivity; PP—positive predictivity; N/A—not available).

Sig. no

PP rhythm 
tracking3 Basic method26

Previous 
method31 Proposed method

Se [%] PP [%] Se [%] PP [%] Se [%] PP [%] Se [%] PP [%]

100 N/A N/A 100.0 99.3 99.69 99.25 95.13 99.31

101 N/A N/A 99.84 99.79 98.93 99.39 98.45 99.95

103 N/A N/A 46.76 41.84 98.8 100 99.81 100.00

117 N/A N/A 100 99.93 96.48 99.93 99.93 99.93

122 N/A N/A 52.35 34.25 98.18 100 100.00 99.96

Mean 99.57 99.83 79.79 75.02 98.42 99.71 98.59 99.82

Table 3.   The performance of the P wave detection algorithms on physiological signals from the manually 
annotated part of QTDB (Se—sensitivity; PP—positive predictivity).

Method Se [%] PP [%]

Proposed method 99.23 99.12

Previous method31 99.84 99.84

Basic method26 99.85 99.83

Phasor transform23 99.28 99.75

Wavelet transform15 98.87 91.03

Correlation of template16 99.63 98.00

Parametric mixture Gaussian and dynamic programming27 96.13 97.70

Differential evolution29 98.90 98.50



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6589  | https://doi.org/10.1038/s41598-022-10656-4

www.nature.com/scientificreports/

programming27, and differential evolution29. From Tables 2 and 3, the results of newly proposed detector are 
comparable with our previous methods as well as methods published by other authors. High Se and PP values 
(about 98.5–99.8%) indicate that the proposed approach perform well under physiological conditions and does 
not bring many false detections of the P waves (false positives nor false negatives).

Detection of P waves in pathological conditions.  In Tables 4 and 5, the results of detectors testing 
on signals with pathologies (see above) are shown. As can be seen in the tables, Se and PP were calculated for 
each signal separately and then averaged over the database. In the second columns of the tables, the pathologies 
prevailing in the particular record are noted. According to the detection results, the newly proposed method 
performs notably better than both previous approaches. In case of MITDB, however, this predominance is not 
as prominent as for BUT PDB (compare averaged Se and PP from Tables 4, 5). It is due to the fact that MITDB 
contains only a few types of pathologies, whereas BUT PDB includes highly variable data and, thus, allows to 
reveal the limitations of the previous algorithm31 on one side and to highlight the benefits of the novel method 
on the other side.

Particularly, the proposed improved algorithm achieved higher performance in most signals with all types 
of PVC (i.e. single PVC, bigeminy, trigeminy, ventricular pair, ventricular flutter, and fusion of normal and ven-
tricular beat) as compared to the previous versions. The examples of P waves detection in ECG with a single PVC 
(record no. 35), ventricular flutter (record no. 33) and ventricular trigemini (record no. 14) are shown in Fig. 6. 
In all the signals, the proposed method was able to deal with a given pathology and to detect all P waves cor-
rectly. On the contrary, the basic detector failed in all cases (see false positive/negative detections in the figures).

The next significant improvement was indicated when detecting P waves by new detector in ECGs with 
AFIB, which is due to special unique criteria added to the algorithm (see above). On the contrary, two previ-
ous versions are not “equipped” by the mechanisms for AFIB identification and, thus, are not able to adjust 
the detection process to this pathological condition. As a result, many false positive detections can be seen in 
output of these algorithms, as shown in Fig. 7. The ECG from the figure is entirely burdened by AFIB, which 
manifests in absent P waves (as was correctly recognized by the proposed detector). In a few cases, however, Se 
of the proposed detector was lower than that of the previous approaches (see Table 5). It can be explained by 
false positive detections of AFIB at the beginning or the end of the segments due to delay caused by computing 
SH from 59 consecutive beats.

P waves were successfully detected in ECGs with right bundle branch block (RBBB) as well. This pathol-
ogy is manifested in ECG by changed QRS complexes (wide, of higher amplitude and aberrant morphology as 
compared to the normal, narrow QRS). The correct detection under this condition is possible due to improved 
criteria for searching area. Particularly, the area was shortened by shifting its right boundary to the left on 60 ms 
(see section Normal P wave detection). Use of this narrow search area instead of the previously proposed wide 
area31 allows us to avoid the situations, where the QRS complexes were detected instead of the P waves (see Fig. 8).

In general, the novel algorithm reached more promising results than the previously published detectors in 
all pathological cases addressed in the study, including AVB II, nodal rhythm, all types of atrial and ventricular 
arrhythmias, bundle branch blocks, and pre-excitation.

Relatively poor results were obtained in ECGs with multiple concurrent pathologies (such as in records no. 9, 
19, 33, 37 and 38 from BUT PDB). It is caused by false positive AFIB detections (and, consequently, false nega-
tive detections of P waves in corresponding ECG segments) or missed PVC detections due to highly irregular 
rhythm originated in overlapped manifestations of multiple arrhythmias in the same segment. Our detector was 
not success when testing on ECG with AVB III (record no. 3 from BUT PDB), where P waves and QRS complexes 
appear in ECG independently from each other.

There are only few published studies reporting the performance of P wave detectors on the available databases. 
Therefore, the comparison of our results with the results of other teams is rather limited and can be provided only 
on the manually annotated signals from MITDB. On this database, Laguna et al.30 achieved averaged (over all the 
signals with PVC, NOD and AFIB) Se = 71.13% and PP = 59.08% using the multilead detector. The PP rhythm 
tracking method proposed by Portet et al.3 reached averaged Se = 61.89% and PP = 59.00% on the same ECGs. 
Vitek et al.47 applied wavelet transformation and decision rules and detected P waves with averaged Se = 90.79% 

Table 4.   The performance of the P wave detection algorithms on pathological signals from the MITDB with 
annotations MIT PDB (Se—sensitivity; PP—positive predictivity).

Sig. no Type of pathology

Basic method26
Previous 
method31 Proposed method

Se [%] PP [%] Se [%] PP [%] Se [%] PP [%]

106 PVC 90.98 91.83 92.77 81.09 99.37 94.75

119 PVC 99.38 99.69 97.41 98.20 98.15 97.80

207 NOD 81.54 56.58 96.18 78.49 97.47 78.85

214 PVC 98.55 99.5 99.75 95.32 99.90 94.45

222 NOD 82.28 54.17 62.13 89.87 81.96 84.32

223 PVC 94.62 83.72 98.00 83.86 99.48 92.27

231 AVB II 78.39 99.68 100.00 98.66 98.50 98.45

Mean 89.39 83.59 93.88 89.31 96.40 91.56
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Signal no Type of pathology

Basic method26 Previous method31 Proposed method

Se [%] PP[%] Se [%] PP [%] Se [%] PP [%]

1 BII, R, A 73.48 97.00 99.24 98.50 99.24 99.24

2 V, B 98.77 58.82 98.77 97.56 91.36 91.16

3 BIII, V, P 53.57 25.21 80.36 33.83 92.86 36.88

4 A,V 99.13 98.28 92.17 67.09 99.13 99.13

5 A, V 100.00 99.29 85.61 90.84 99.28 98.57

6 NOD, F, R 96.92 62.38 93.85 68.54 100.00 69.15

7 AFIB, J 92.59 54.35 98.15 51.46 98.15 77.94

8 AFIB, V NaN NaN NaN NaN NaN NaN

9 E, A, SVTA 40.00 7.81 52.00 13.27 60.00 11.36

10 V, T, F 80.87 84.09 34.97 82.05 81.42 97.39

11 SVTA 35.36 86.49 88.40 99.38 100.00 97.84

12 PR 65.15 100.00 98.48 98.48 99.24 99.24

13 BII, R 57.86 98.78 63.57 100.00 78.57 100.00

14 V, B, F 100.00 73.10 54.17 86.67 100.00 95.36

15 J 100.00 97.26 91.55 91.55 100.00 79.78

16 A 99.19 99.19 97.58 100.00 100.00 100.00

17 A 100.00 99.42 98.25 100.00 100.00 99.42

18 A 76.12 99.03 86.57 100.00 79.85 100.00

19 P, F 90.00 32.14 97.50 28.26 85.00 26.15

20 V 98.13 89.71 95.63 95.03 85.63 99.28

21 L, V 51.88 64.84 76.88 91.79 100.00 98.77

22 BI, V 56.83 94.05 72.66 98.06 99.28 98.57

23 a 99.17 97.56 100.00 78.57 100.00 98.37

24 NA 35.66 100.00 99.22 100.00 100.00 100.00

25 V, VP 93.67 96.10 93.04 100.00 93.04 100.00

26 R, A, V 100.00 100.00 82.14 88.46 100.00 100.00

27 V, B, T 88.30 66.40 59.57 58.95 97.87 96.84

28 A, V 28.45 91.67 100.00 99.15 100.00 98.31

29 V 100.00 99.00 98.99 100.00 100.00 99.00

30 IVR, T, V 94.44 90.43 100.00 91.84 100.00 88.24

31 V, VT,A 49.30 76.09 98.59 92.72 97.18 94.52

32 V, F, VT,A 71.18 87.05 98.82 95.45 99.41 99.41

33 V, VFL,R 83.33 32.79 89.58 64.18 87.50 79.25

34 R 93.42 98.84 88.95 93.87 100.00 99.42

35 V, a, F 96.14 97.55 14.98 96.88 98.07 99.02

36 V, L, F 62.77 87.76 87.59 100.00 100.00 95.80

37 V, FIB 100.00 52.80 89.55 48.00 98.51 66.00

38 J, AFL, A 94.25 56.16 78.16 68.00 3.45 60.00

39 V, A 97.50 59.39 49.17 100.00 59.17 97.26

40 V, A 100.00 78.49 76.71 98.25 100.00 98.65

41 L, A, V 93.02 96.00 18.60 85.71 98.45 96.95

42 V, A 85.84 65.99 64.60 86.90 100.00 83.70

43 A, SVTA 76.19 97.56 66.67 98.59 98.10 97.17

44 AFIB 100.00 63.64 74.03 65.52 98.70 79.17

45 AFIB, V 81.48 70.51 64.44 86.14 97.04 92.25

46 AFIB, A 93.22 27.36 88.14 54.17 98.31 84.06

47 AFIB, A, V 97.30 19.67 45.95 24.64 0.00 100.00

48 AFIB NaN NaN NaN NaN NaN NaN

49 AFIB, A 37.08 31.73 17.98 11.43 98.88 70.40

50 AFIB, A, V 100.00 3.33 50.00 3.80 0.00 100.00

Mean 80.79 72.04 78.13 79.67 93.07 88.60
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and PP = 84.56%. It is obvious, that our detector with averaged Se = 96.4% and PP = 91.56% significantly out-
performs above approaches. Taking into account the results on all three databases, the proposed detector is a 
promising tool for analysis of ECG recorded in patients with many different arrhythmias.

Table 5.   The performance of the P wave detection algorithms on pathological signals from BUT PDB 
(Se—sensitivity, PP—positive predictivity, NaN—the whole signal is AFIB, no P waves are present, A—atrial 
premature beat, AFIB—atrial fibrillation, AFL—atrial flutter, B—ventricular bigeminy, BI—atrioventricular 
block 1st degree, BII—atrioventricular block 2nd degree, BIII—atrioventricular block 3rd degree, E—
ventricular escape beat, F—fusion of ventricular and normal beat, IVR—idioventricular rhythm, J—nodal beat, 
L—left bundle branch block beat, NA—sinus arrhythmia, NOD—nodal rhythm, P—paced rhythm, PREX—
pre-excitation, R—right bundle branch block beat, SVTA—supraventricular tachyarrhythmia, T—ventricular 
trigeminy, V—ventricular premature beat, VFL—ventricular flutter, VP—ventricular pair, a—aberrated atrial 
premature beat).

Figure 6.   Example of P waves detection in ECGs with various pathologies. Top: Record no. 35 with single PVC. 
Middle: Record no. 33 with ventricular flutter episode. Bottom: Record no. 14 with ventricular trigeminy. All 
ECGs are from BUT PDB.
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Limitations of the study
The main limitation of this study is that the proposed algorithm was not tested on ECGs with extensive noise 
and artefacts. In these situations, therefore, successful P wave detection cannot be guaranteed. The algorithm 
seems to be inaccurate when detecting P waves in ECGs with junctional rhythm and AVB III. To provide more 
comprehensive evaluation of detector performance, it should be tested on more ECGs. However, to the best of 
our knowledge, there are no other databases suitable for reliable testing of P waves detectors.

Conclusion
This work introduces a new advanced method for P wave detection in ECGs based on a combination of simple 
phasor transform of the signal and innovative set of decision rules. Involving of unique criteria into the algorithm 
significantly improved P wave detection during pathological events, which is still a challenging task. The criteria 
are based on deep knowledge of heart manifestations during both normal and pathological conditions, such 
as AFIB, PVC, RBBB, etc. The main benefit of the criteria is in accurate definition of searching areas based on 
information about pathologies present in the current segment. As a result, the algorithm adjusts its parameters 
in order to eliminate false positive and false negative P waves detections.

Under normal conditions, the algorithm achieves similar results as previously published methods with 
Se = 98.56% and PP = 99.82% for ECGs from MIT PDB, and Se = 99.23% and PP = 99.12% for ECGs from QTDB. 
In ECGs with pathological manifestations our algorithm prominently outperforms other approaches, as follows 
from the comprehensive testing on highly variable datasets from MIT PDB (Se = 96.40%, PP = 91.56%) and BUT 
PDB (Se = 93.07%, PP = 88.60%). It should be noted, that the latter contains all the known pathologies affecting 
P waves presence and positions in ECG.

By accurate automatic detection of P waves in ECGs, our method has a potential to improve the diagnostic 
yield of routine ECG examination and to simplify the daily work of the cardiologists. The method may also 
improve accuracy of cardiac pathology detection by wearable devices48. The proposed P wave detector represents 
a huge step towards fully automated systems for ECG analysis and diagnosis of cardiac arrhythmias.

Received: 17 October 2021; Accepted: 21 March 2022

Figure 7.   Example of P waves detection during AFIB (signal no. 48 from BUT PDB).

Figure 8.   Example of P waves detection in ECG with RBBB (signal no. 34 from BUT PDB) using the search 
areas defined based on the previous (grey lines, basic method) and improved (green lines, the proposed method) 
criteria.
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