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Efficient processing of top‑k 
frequent spatial keyword queries
Tao Xu1,2,3,5, Aopeng Xu1,2,6, Joseph Mango3,7, Pengfei Liu4, Xiaqing Ma1,2 & Lei Zhang1,2*

The rapid popularization of high-speed mobile communication technology and the continuous 
development of mobile network devices have given spatial textual big data (STBD) new dimensions 
due to their ability to record geographical objects from multiple sources and with complex attributes. 
Data mining from spatial textual datasets has become a meaningful study. As a popular topic for 
STBD, the top-k spatial keyword query has been developed in various forms to deal with different 
retrievals requirements. However, previous research focused mainly on indexing locational attributes 
and retrievals of few target attributes, and these correlations between large numbers of the textual 
attributes have not been fully studied and demonstrated. To further explore interrelated-knowledge 
in the textual attributes, this paper defines the top-k frequent spatial keyword query (tfSKQ) and 
proposes a novel hybrid index structure, named RCL-tree, based on the concept lattice theory. We 
also develop the tfSKQ algorithms to retrieve the most frequent and nearest spatial objects in STBD. 
One existing method and two baseline algorithms are implemented, and a series of experiments are 
carried out using real datasets to evaluate its performance. Results demonstrated the effectiveness 
and efficiency of the proposed RCL-tree in tfSKQ with the complex spatial multi keyword query 
conditions.

Advancements of mobile networks and intelligent terminal devices have led spatial textual big data (STBD) to 
increase tremendously and cause many challenges of their efficient retrievals. In general, STBD comprises spa-
tial location information, e.g. latitude and longitude, textual keyword information of spatial objects, e.g. name, 
address, etc., and the rich domain of knowledge to integrate spatial texts and the posed locations around the 
querying points. Top-k spatial keyword query (TkSKQ) is currently a common way to STBD retrieval. It takes 
spatial ranges and textual keywords as query parameters to retrieve the STBD set and returns top k eligible 
objects. This type of query is used mainly in business information benefiting from the Location-based Devices 
and Services (LBS). Therefore, on this basis, it’s evident that to ensure and secure good accessibility to the STBD, 
the retrieval quality and efficiency of the TkSKQ algorithms are the keys in this domain.

Most of the existing TkSKQ algorithms1–8 focus on user preferences to match the degree of spatial and textual 
keywords between individual spatial objects and search targets. Since they ignore regional features of the search 
space, some questions about the similarity of spatial objects, e.g. “What are the most frequent items?”, are not 
answered directly. This scenario can be well explained using a query example for restaurants, shown in Fig. 1, 
where dots represent restaurant POIs with some textual features. A query employs "Open" as a textual keyword to 
retrieve the two restaurants closest to the query point p. If considerations are vested only to the spatial proximity 
and textual keyword consistency, "Dumpling" (d1) and "Sushi" (d2) will be provided as retrieval results, while the 
regional feature of search space is "Noodle" determined by d3, d4, d5, d6. That means, the most popular "Open" 
restaurants with “Noodle” aren’t recommended to the user if that user is not in the appropriate spatial location. 
Therefore, in such circumstances, the aggregation of features of the search space should be considered, and 
further analysis of frequent items of TkSKQ results need to be explored.

Several studies for frequent item analysis are done, and their more details are presented in “Related Work” 
section. Most of them are the hybrid index structure, they employ table-based structure9–14 to maintain the textual 
keyword information to achieve top-k frequent spatial keyword queries. Since, in STDB, the textual keywords 
of spatial object are diverse and complex, the number of frequent features of them is often more than data itself, 
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and the retrieval of frequent features by above table-based index structure still needs a high cost. Which makes it 
challenging to retrieve the top-k frequent items from STBD, especially in the scenario of multi textual keywords.

In this paper, we propose a top-k frequent Spatial Keyword Query (tfSKQ) algorithm to explore the similarity 
of spatial textual objects and retrieve the frequent items from STBD. Compared with TkSKQ, tfSKQ gives more 
preferences on textual relevancy than it, and pays more attention to the exploration of the typical or popular tex-
tual keywords from STDB. With the given spatial and textual query conditions, the proposed tfSKQ algorithm can 
find the k frequent items efficiently for STBD. Along to this target, we also develop a novel hybrid index structure, 
R-tree concept lattice (named RCL-tree), to support the proposed tfSKQ algorithm. RCL-tree is a hybrid index 
structure that includes R-tree15 structure and concept lattice16 structures to maintain spatial objects with multi 
textual keywords. Spatial information is maintained by R-tree, and textual keywords information is organized 
by concept lattice. Concept lattice is a partial order set of concepts generalized from data records. The concept 
defines the common keywords of a group of data records, and can directly represent the frequent features of 
data. Therefore, we employ R-tree to store spatial information of spatial objects, and each node of R-tree links 
to a distinct concept lattice that organizes the textual information of spatial objects. In fact, we employ concept 
lattice only when the number of objects in the R-tree node is within a given range. It can effectively reduce the 
time cost of RCL-tree initialization since the construction of concept lattice is time consuming.

The proposed RCL-tree and tfSKQ algorithms are experimented with the real data set from yelp.com to 
verify their performance and usability. And some comparison evaluations are conducted with one existing 
method10 (called δSTLs) and two baseline methods based on Apriori17 algorithm and FP-Growth18 algorithm 
(called A-frequent and F-frequent respectively). Comparison results demonstrate that the proposed RCL-tree 
and tfSKQ algorithms have the strong applicability to STBD and have the best retrieval efficiency than others in 
tfSKQ with multi query keywords.

The main contributions of this research are as follows: (1) We propose a hybrid index structure, R-tree Con-
cept Lattice (named RCL-tree), to index STBD. It can not only be used to index spatial information and support 
TkSKQ but also maintain the correlation of textual information and answer tfSKQ with more efficiency and accu-
racy. (2) We develop a top-k frequent spatial keyword query (tfSKQ) algorithm to retrieve the frequent items in 
search space based on the RCL-tree. It aims to find the top k frequent items in the search space with given query 
conditions about spatial proximity, text consistency and feature frequency. (3) We conduct a series of experi-
ments using two real datasets to evaluate the effectiveness of the proposed RCL-tree and the tfSKQ algorithm.

Related work
Top-k spatial keyword query (TkSKQ) is a hot research topic in recent years. Most of the existing research works 
employ specific hybrid index structures to index spatial information and textual information, respectively, and 
design retrieval algorithms to answer TkSKQ. For spatial information indexing, R-tree15 and its variants are the 
most common ones1,2,4,6,19–22. Cary et al.2 propose a hybrid Spatial-Keyword Index (SKI) for spatial textual data; it 
combines R-tree with inverted indices to maintain spatial and textual information of the spatial object. De Felipe 
et al.4 proposed Information Retrieval R-tree (I2R-tree) with R-tree and bitmap structure. Cong et al.1 and Li 
et al.6 combine R-tree with inverted files to develop a hybrid index structure IR-tree for spatial object dataset. And 
Rocha-Junior et al.21 and Attique et al.22 tries to develop the hybrid index structures including R-tree, inverted 
files, and others to answer TkSKQ in Road network. In addition, quadtree23 is also employed for indexing spatial 
textual data. For example, SFC-QUAD3 combines quadtree with inverted files, IL-Quadtree8 use the space-filling 
curve technique to construct quadtree for each keyword to organize, e.g. spatio textual objects effectively. On the 
other hand, grid structure is also used for a spatial keyword query. For example, Khodaei et al.5 and Vaid et al.7 
combined a grid structure with inverted files to index spatial objects. Li et al.19 proposes a Topology‐based Mixed 
Index Structure (TMIS) to index network‐constrained trajectories for connectivity‐based queries. Another study 
by Xu et al.24 employed a cube structure and B-tree structures to answer queries of the spatial–temporal textual 
big data in road networks. These combinations imply that the hybrid model of index structure with spatial index 
and textual index is suitable for retrieving spatial textual data.

Other efforts also develop separate index structure to answer TkSKQ. Chen et al.25 proposes a series of algo-
rithms for spatial data query in geographic search engines. They try to index a large number of web pages by 
the strategies of text-first and location-first respectively, and develop some corresponding TkSKQ algorithms. 

Figure 1.   An example of TkSKQ for “open” restaurants.
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Kwon et al.14 propose an efficient separate index method called Rank-Aware Separate Index Method (RASIM) 
which includes a tree spatial index structure and some individual inverted indexes for each keyword. Due to 
RASIM organizes spatial objects as a rank-aware group according to the spatial proximity, and the text relevancy 
of spatial objects is stored in the rank-aware group, RASIM supports top-k pruning and efficient merging at the 
same time, its retrieval efficiency is obviously better than that of IR-tree1. However, because the RASIM stores 
all of individual inverted indexes into a single file, theoretically, too many keywords will make a “big” index file 
and affect the retrieval efficiency.

With the advent of spatial textual big data, its hugeness and complexity make many difficulties for TkSKQ, not 
only for the efficiency of TkSKQ but also for the quality of retrieval results, requiring more consideration. Some 
efforts11,13,26–30 used the pivot based hierarchical method to explore the relationship between textual keywords of 
spatial objects to answer semantic frequent TkSKQ. Other efforts made so far focused to maintain users’ social 
relationships and respond to social-aware TkSKQ and some typical queries configured for such purposes include: 
the geo-social skyline keyword query (GSSK)12, social TkSKQ31, social-aware top-k spatial keyword (SkSK) 
query9, socio-spatial skyline query (SSSQ)32, and top-k frequent spatiotemporal terms (kFST) query10. In these 
studies, some invert table-based index structures are employed to organize textual keywords of spatial objects, 
and the generalized knowledge, i.e., frequent items, contained in a group of spatial textual data can be presented. 
However, such invert table-based index structure cannot cope well with the significant increase and complexity 
of STBD33, especially in the complex spatial multi keyword query, because there are usually the demands of large 
filtering and traversal operations to extract frequent items from table-based structure. Therefore, it is very neces-
sary to generalize the textual keywords of spatial objects to facilitate the extraction of frequent items in STBD.

Meanwhile, some conceptual inference based methods have been successfully used to further aggregate the 
results of TkSKQ and mine the implicit intentions in textual keywords of spatial data. For example, Xu et al.34 
proposes a conceptual inference-based method (CISK) to generate some concepts by considering typicality, 
granularity and spatial distribution, and link them with the hypernym–hyponym relationships in knowledge 
graphs. And the user-preferred spatial objects are ranked and recommended. In addition, Schwering and Raubal35 
employ geospatial concept model to generalize spatial objects and employ semantic similarity of concepts to 
measure the spatial relations. Moreover, as a suitable model for presenting the hierarchy and relationship of 
concepts, concept lattice, proposed by Wille et al.16, are also employed to deal with spatial data analysis. Such 
as, Kainz et al.36 employs ordered sets and lattice structures to describe the spatial relationship of spatial data, 
Chen et al.37 proposes a concept lattice-based method to mine spatial association rules, Tripathy et al.38 employs 
a lattice structure to achieve data analysis in Spatial Data Warehouse, And Wu et al.39 a fuzzy formal concept 
analysis-based approach to uncovering the spatial hierarchies among vague places, etc.

Concept lattice is an efficient knowledge mining tool. It maintains a poset of concepts and can be represented 
by a Hasse graph, in which each node is a concept, to reveal the relationship between objects and attributes. It has 
been widely used in information retrieval40, software engineering41, recommendation system42, and knowledge 
discovery43, etc. A concept in concept lattice is the explicit results of data aggregation, and can be represented 
as a set of spatial objects with several common keywords. The number of spatial objects in a concept directly 
represents the frequency of keyword combinations of this concept. Clearly, employing concept lattice to maintain 
textual information must facilitate to achieve frequent items retrieval. However, according to our review, no 
research results on frequent item retrieval of spatial data based on concept lattices have been published.

In this paper, we attempt to employ concept lattice for the first time to retrieve the top k frequent items in a 
search space and achieve the tfSKQ for STBD. Different with TkSKQ, tfSKQ attempt to discover the frequency 
of the textual keywords of spatial objects while TkSKQ only retrieve the spatial objects that match the query 
keywords. To achieve tfSKQ, we propose a novel hybrid index structure called RCL-tree by deploying a R-tree 
structure and some concept lattice structures to maintain spatial information and textual keywords information 
of STBD, respectively. And a one-to-one mapping existed between partial R-tree nodes and concept lattices. 
To achieve it, a threshold for R-tree nodes capacity is defined to determine which R-tree nodes need to link 
with concept lattice. In concept lattice, the concept node includes two parts: the extent, i.e. spatial objects, and 
the intent, i.e. the common keywords of these spatial objects, the frequency of concept is the number of extent 
(spatial objects) in the concept, and the frequent items are the intent of concept. Then, the frequent items can 
be retrieved by traversing concept lattices and the tfSKQ for STBD can be answered by the proposed RCL-tree 
and tfSKQ algorithms.

Methodology
The proposed RCL-tree is a hybrid index structure for STBD, it employs R-tree to index the spatial location of 
spatial objects and employs some concept lattice structures linked with R-tree nodes to model frequent patterns of 
spatial objects. Based on RCL-tree, the proposed tfSKQ algorithm is developed to answer the top k most frequent 
spatial objects with the query conditions: location point, textual keywords. The schematic overview of the RCL-
tree and the tfSKQ algorithm are shown in Fig. 2. The RCL-tree consists of a tree structure and a concept lattice 
list, black nodes represent specific tree nodes linked with a concept lattice structure of list. The tfSKQ algorithm, 
with the given query conditions, first retrieves R-tree nodes set D adjacent to the target location from tree struc-
ture in Algorithm 3, and gets the corresponding concept lattice structure set L in Algorithm 4, then traverses L 
to retrieve the k spatial objects with most frequent features in Algorithm 5. The detailed processes are as follows.

Index structure.  RCL-tree is a hybrid index structure designed for answering tfSKQ in STBD. Some formal 
definitions are as follows.
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Spatial textual big data.  Let D = {di|1 ≤ i} be a spatial textual big data (STBD) set, where di =
〈

id, p,K
〉

 
is the ith spatial textual data record, p is the spatial information, i.e. spatial position coordinates, and 
K = {

〈

k1, k2, . . . , kj
〉

|kj ∈ {0, 1}, 1 ≤ j} is the textual keyword set, kj is the jth textual keyword of di and its value 
is 0 or 1.

R‑tree.  Is a popular spatial index structure proposed by Guttman in 1984. It employs the Minimum Bounding 
Rectangle (MBR) of multi spatial granularity hierarchy to organize spatial objects and achieve query in logarith-
mic level efficiency. Let R = {r, θ , �n1, n2, . . . , ni�|1 ≤ i} be a R-tree, where r is the root of R-tree, θ = [θmin, θmax] 
is the range of node entries, ni =

〈

id,mbr, level, pn, cns, dn, ds
〉

 is the ith node and each node contains the node 
identification, id , the extent of MBR, mbr , the level of node, level , the root node has the highest level, the parent 
node, pn , the child nodes, cns , whose size is limited by θ , the number of spatial objects included in MBR, dn , 
and the data set, ds ⊂ D . In R-tree, each di in D can be organized based on spatial position coordinates, i.e. di .p.

Concept Lattice16 is a very important data analysis tool and is good at discovering and extracting from com-
plex datasets. It derives from the structured data set (also called “formal context”), and represents concepts and 
their partial order relationships. Let F = (D,K , I) be a formal context, where D is the object set, K is the attribute 
set, and I ⊆ D × K is the relationship between D and K , (d, k) ∈ I or dIk represents object d has attribute k.

Moreover, two operators f  and g  are defined in Eqs. (1) and (2) to formalize the relationship between D and 
K . The f  operator is to solve the common attributes of an object set in a formal context. In Eq. (1), f (X) = {k} 
represents the common attribute set of the object set X is {k} , i.e. each object in the object set X has the attribute 
set {k}.

Based on f  and g , the common features of objects in formal context can be presented, and the object set can 
be abstracted as concept with some explicit attributes.

Concept.  Let C = �X,Y |X ⊆ D,Y ⊆ K , f (X) = Y , g(Y) = X > be a concept, where X is called the extent of 
the C concept and Y  is called the intent of the C concept, f (X) = Y  and g(Y) = X represent the extent X and 
intent Y  of the C concept satisfy both the f  and g operators.

Let ≤ be a partial order relationship between two concepts, C1 = (X1,Y1) , C2 = (X2,Y2) , then C1 ≤ C2 meet 
Eq. (3). It represents C1 is the sub concept of C2 , and C2 is the super concept of C1.

(1)f (X) = {k|k ∈ K , ∀d ∈ X,X ⊆ D, (d, k) ∈ I}

(2)g(Y) = {d|d ∈ D, ∀k ∈ Y ,Y ⊆ K , (d, k) ∈ I}

(3)C1 ≤ C2 ⇔ X1 ⊆ X2(⇔ Y2 ⊆ Y1)

Figure 2.   Schematic overview of RCL-tree.
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Concept lattice.  Based on ≤ , concepts extracted from F can be related, and the hierarchy order of them can be 
established. Let L = {nid, F, C,≤} be a concept lattice, where nid is the identification of node in R , F is a formal 
context, C is a concept set, and ≤ is a hierarchy order of C . Note that a concept lattice L links to a R-tree node 
where L.F = R.ni .ds , i.e. L.F is the data set of R-tree node.

RCL‑tree.  Let I = �R,L� be a RCL-tree index structure, where R is a R-tree structure, L = {L1, L2, . . . , Li|1 ≤

i, Li .F.size ∈ δ} is a concept lattice set. and δ = [δmin, δmax] is a threshold range of data volume. Concept lattices 
only link to partial R-tree nodes, and δ is a limitation to determine which R-tree nodes need to be linked to 
concept lattices. We choice R-tree nodes whose data volume is in the given range δ , and set their data as a formal 
context to build concept lattice structure. Since the concept lattice is a complete set of a formal context, it con-
tains all the relationships between spatial objects and textual attributes, the initialization complexity of concept 
lattice is directly proportional to the data volume, and the maintenance of multi concept lattices is complex and 
time-consuming. In addition, according to the retrieval mechanism of R-tree, the search of spatial proximity 
objects starts from tree root to leaf nodes, and the number of objects in these searched nodes decreases gradually. 
Then, some intermediate tree nodes must cover the target searching space and enough query candidates can be 
supply by one or more nodes. Therefore, we want to set the δ to limit the creation of concept lattice only for some 
appropriate intermediate tree nodes. It can not only reduce the initialization cost but also improve the efficiency 
of retrieval. In this way, STBD can be maintained, and tfSKQ can be achieved.

Figure 3 shows an example of RCL-tree structure with δ = [5, 13] , We highlight three R-tree nodes, n1 and 
n2 and n3 , met δ and built concept lattice for each one. n2 includes a formal context with 5 data records and 4 
keyword attributes, and the linked concept lattice consists of 8 concepts. In this concept lattice, it is easy to see 
that the extent of each concept is a frequent item for its intent keywords group, and with given spatial and textual 
keywords query conditions, the tfSKQ can be achieved by traversing all concept lattice at once.

Initialization algorithm.  The initialization algorithm of the proposed RCL-tree is given in Algorithm 1. Its 
inputs are a STBD set, D , the threshold of R-tree node entries, θ , and the threshold of the data volume of concept 
lattice δ . Its output is an RCL-tree index structure.

As shown in Algorithm 1, R-tree is built based on the spatial information of spatial objects di .p by traversing 
D in lines 1 to 3; then, every node of R-tree is checked by δ , formal context and concept lattice structure are built 
with the textual keywords of spatial objects di .K , and concept lattice set L is generated in lines 4 to 12; finally, 
RCL-tree index structure I is finished by combining R and L.

Figure 3.   An example of RCL-tree.
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The top‑k frequent spatial keyword query (tfSKQ) algorithm.  The target of the tfSKQ is to find 
out the k most frequent items that meet the spatial and keyword query conditions. Different from the TkSKQ 
(Top-k Spatial Keyword Query) method which outputs the query objects sorting by the spatial distance between 
object and query point, the tfSKQ method takes the frequency of objects as the primary criterion for filtering and 
sorting query results. With the support of RCL-Tree, the main idea of tfSKQ is to traverse the R-tree structure 
in RCL-tree to find out the tree nodes that contain spatial objects that are close to the given spatial query point, 
and then, based on the keyword frequency and spatial proximity of spatial objects, the top k most frequent and 
nearest spatial objects are retrieval from the concept lattices linked with tree nodes.

tfSKQ can be defined as Qf  and let D = Qf

(

p ,K, k, I
)

 be the processing of tfSKQ, where p  is the query 
point, K is a query keyword set, k is the number of expected query results, I is the RCL-tree index structure, and 
D = {d 1, d 2, . . . , d k } is the query results with the highest scores τ( d ) , τ(d 1 ) ≥ τ(d 2 ) ≥ · · · ≥ τ(d k ) . Sup-
ported by I , Qf  firstly finds out R-tree nodes and corresponding concept lattices that meet the query conditions, 
p  , and K , then retrieves and scores the spatial objects from concept lattices based on their frequency and spatial 

proximity, and finally returns k highest score spatial textual objects set D.
The score of query result is defined by Eqs. (4)– (6).

The score of frequency, freq(d i ) , of d i  , defined in Eq. (4), is the size of extents of the concept that includes 
the extent d i  and is the sub concept of the concept with the intent K in queried concept lattice. Since the concept 
in concept lattice presents the aggregation features (intent) of spatial objects (extent), spatial objects that meet 
query conditions K must be in the concept Concept(K) , and their frequency is the number of spatial objects 
with the most typical feature. It can be considered that the most typical feature is the intent of the concept with 
the most objects. And low-level concept has less extent and more intent than high-level concept. Therefore, the 
most typical feature is the intent of the sub concept of Concept(K) , and the frequency is the number of extents 
of the sub concept of Concept(K).

The score of the spatial proximity dist(d i ) defined in Eq. (5) is a normalized index with [0,1] value range 
and is inversely proportional to the Euclidean distance between the query point p  and query result d i  . Then the 
score of query results τ(d i ) defined in Eq. (6) is the sum of freq(d i ) and dist(d i ).

Note that the frequency score freq(d i ) is an integer greater than 0, and the distance score dist(d i ) is a decimal 
from 0 to 1. In this way, the frequency has the higher priority than the distance. When the frequencies of spatial 
objects are the same, the distance score will be considered, and thus, the most frequent items are retrieved first 
and then sorted by the spatial proximity.

The implementation algorithm of Qf  is shown in Algorithm 2 and its inputs are a query point p  , a query 
keywords set K , the number of expected results k , and the RCL-tree I . Its output is a query results set D with k 
highest scoring objects. The process of node_query , i.e. Algorithm 3, is executed first and a tree node set N  that 
include p  and link to concept lattice are retrieved from R . Then, the concept lattice structure set L linked to N  

(4)freq(d i ) = size
(

Concept(K).SubContect(d i ).extent
)

(5)dist(d i ) = 1− dist
(

p , d i
)

/max (dist)

(6)τ(d i ) = freq(d i )+ dist(d i)



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7352  | https://doi.org/10.1038/s41598-022-10648-4

www.nature.com/scientificreports/

is obtained by the lattice_query process, i.e. Algorithm 4. In the frequent_score process, i.e. Algorithm 5, spatial 
textual objects are extracted from L and scored with Eq. (4). According to their score, the set D of top k frequent 
spatial textual objects are retrieved, and tfSKQ is answered.

Because of the connectivity between R-tree node and concept lattice structure, we must first find out tree 
nodes that meet spatial query condition p  and link with concept lattices. In Algorithm 3, a rough spatial query 
is executed, and several tree nodes linked to concept lattice with minimum R-tree level are retrieved. Its inputs 
are the query point p  , the proposed RCL-tree index structure I . And its output is a R-tree node set N .

Because these mbr s of R-tree nodes are allowed to overlap, there may be multiple nodes meeting the spatial 
query condition p  . We employ stack structure to achieve top-down traverse of nodes in I.R , and satisfied nodes 
are filtered by two criteria. Criteria 1 (line 5): the spatial proximity criteria, which is employed to retrieve the 
tree nodes in I.R  that include the query point p  . Criteria 2 (line 6): the minimum concept lattice criteria, on 
the basis of Criteria 1, which is employed to search the minimum level tree nodes linked with concept lattice 
structure, in other word, the selected tree nodes are the nodes that include the query point  p  and link to a 
concept lattice with the minimum tree level . Then the selected nodes and their sibling nodes are inserted into the 
result set N  . Theoretically, the result quality of Algorithm 3, i.e., the query quality of spatial proximity, is related 
to the parameter δ which determines the level of tree nodes linking concept lattice, and then affects the degree 
of spatial proximity. To fully mine the textual keyword features in subsequent algorithms, a moderate number 
of spatial objects need to be retrieved and the value range of δ need to be tuned and optimized (some results of 
two real datasets are shown in “RCL-tree evaluation” section).

The relationship between concept lattice and R-tree node in RCL-tree is not one-to-one, only partial R-tree 
nodes (the size of their formal context is within [δmin, δmax] , see in “Methodology” section) link to concept lattices. 
Therefore, Algorithm 4 is to find suitable concept lattices for the R-tree node set N  returned from Algorithm 3 
and containing k results meeting K . The inputs of Algorithm 4 are the R-tree node set N  , a query keywords set 
K , the number of expected results k , and RCL-tree I . Its output is a set of concept lattice L.

For each node n in N  , add the concept lattice linked with n to L (line 3 to 4) and use ki represent the extent 
number of satisfied concepts that meet K in a concept lattice, and use kn represent the total number of the extents 
in all concept lattice (line 2 to 6). If kn doesn’t meet the number of expected results k , i.e. kn < k , reverse L and 
search ℓp that contains more eligible extends, i.e. ℓ.nid = n.id and l p.nid = n.pn.id (line 8 to 16), until k results 
satisfying K are found out. At last, the concept lattice set L containing k results satisfying K is output.
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The inputs of Algorithm 5 are a concept lattice set L from Algorithm 4, a query point p  , a query keywords 
set K , the number of expected results k , the RCL-tree I . Its output is the top k frequent spatial textual objects, 
i.e. the query results of tfSKQ.

Based on Eq. (6), Algorithm 5 traverses each concept C of concept lattice in L to search satisfying concepts, 
then extracts spatial textual objects to D′ and measures their scores (line 2 to 12). Next, sort these objects by 
their scores and take the first k objects (line 13 to 14). Finally, measures the spatial proximity score of them and 
sort D′ to D (line 15 to 20), outputs D (line 21), finishes tfSKQ.
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To the aspect of time complexity, the tfSKQ algorithm has the logarithmic retrieval efficiency because the tree 
structure and the lattice structure in RCL-tree are such retrieval efficiency15,16. To retrieve the tree nodes around 
the target point, Algorithm 3 traverses the tree structure of RCL-tree and checks the sibling nodes of the nodes 
containing the query point and returns the tree node set N  with O

(

nlogn
)

 . Algorithm 4 traverses N  to get the 
corresponding concept lattice set L with O(n) . Algorithm 5 extracts the most frequent objects from each concept 
lattice with O

(

nlogn
)

 , scores them based on Eqs. (4)–(6) and return the k most frequent spatial objects with O
(

n2
)

.

Data and experiment
To evaluate the performance of the proposed RCL-tree and tfSKQ algorithm, we conduct a series of comparative 
experiments with some existing methods using the actual STBD set. Later, after processing, we evaluated their 
effectiveness and efficiency, accordingly using tables and figures as presented below.

Data preparation and preprocessing.  This paper employs two spatial textual datasets to evaluate the 
proposed RCL-tree and tfSKQ algorithm. One is a real business dataset from “Yelp Open Dataset” (yelp.com/
dataset), named “Yelp”, which contains about 192,609 businesses, including 8 fields such as “business_id”, “lati-
tude”, “longitude”, “starts”, “review_count”, “is_open”, “attributes”, “categories”, etc. The other is a POI dataset from 
AutoNavi (www.​amap.​com), named “Amap”, which contains 483,991 business POIs in Shanghai, China. Because 
the concept lattice structure in the RCL-tree accepts the binary fields only, the above two raw dataset need to be 
preprocessed as the binary formal context with multi textual keywords.

For Yelp, we select some important fields from the business dataset and design a binary formal context with 
41 columns divided into five categories, as shown in Table 1. The first 26 columns are from the “categories” field 

Table 1.   The column structure of binary formal context from the Yelp business dataset.

Columns Number Column Name Raw field

1–26 26
Beauty & Spas, Education, Health & Medical, Automotive, Bars, Mass Media, Event Planning & Services, Financial Services, Local Services, 
Local Flavor, Gyms, Parks, Home Services, Fitness & Instruction, Pets, Shopping, Religious Organizations, Active Life, Landscape Archi-
tects, Public Services & Government, Restaurants, Hotels & Travel, Professional Services, Arts & Entertainment, Nightlife, Food

Categories

27–29 3 Rc_low, Rc_middle, Rc_high review_count

30–32 3 S_low, S_middle, S_high stars

33 1 Is_open is_open

34–41 8 Alcohol, DogsAllowed, GoodForDancing, HasTV, Music, Open24Hours, Smoking, WIFI attributes

http://www.amap.com
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and cover the business dataset completely. In other words, every record of the business dataset satisfies one or 
more of them. Columns 27–29 from “review_count” discretize the number of reviews into three grades: Rc_low, 
Rc_middle, Rc_high based on the tri-sectional quantiles of “review_count”. Columns 30–32 discretize the “stars” 
into three grades: S_low, S_middle, S_high in [0,2], [2.5,3.5] [4, 5]. Columns 33 is from “is_open” and represents 
the operation status of object. Columns 34–41 selected from “attributes” include 8 common features of business 
that covered about 85% of total data records with one or more than 1 value, while other 15% records are all of 
0 value in these 8 columns.

T h e n ,  DYelp = {di|1 ≤ i ≤ 192, 609}   ,  t h e  t e x t u a l  k e y w o r d s  s e t 
K = {

〈

k1, k2, . . . , kj , . . . , k41
〉

|kj ∈ {0, 1}, 1 ≤ j ≤ 41} , and the average keywords coverage is about 11% that 
means each spatial object has about 4.5 keywords on average.

For Amap, except for location and category information, it has no keywords suitable for the binary 
formal context. To ensure the comparability of experimental results, we also want to design 41 simula-
tion textual keywords similar to Yelp to modify Amap. In addition, to present the effect of data complex-
ity on retrieval performance, we set the average keywords coverage to 17%, about 7 keywords of per spa-
tial object, to construct the Amap dataset. Then, DAmap = {di|1 ≤ i ≤ 483, 991} , the textual keywords set 
K = {

〈

k1, k2, . . . , kj , . . . , k41
〉

|kj ∈ {0, 1}, 1 ≤ j ≤ 41} , and the average keywords coverage of Amap is 17%, about 
7 keywords per spatial object.

All of experiments are performed on Python 3.7 with a computer equipped with Intel i5, 3.0 GHz CPU, 24 GB 
RAM, and 64bit Windows 10 operation system.

RCL‑tree evaluation.  To initialize the RCL-tree index structure, Algorithm  1 (see in “Initialization 
algorithm” section) need to be conducted, and two thresholds, θ and δ , need to be determined in advance. 
θ is the range of R-tree node entries, and δ is the range of data volume of R-tree node linked to concept lat-
tice. In general, θ is designed to have a similar number of entries for nodes to balance the retrieval time. In 
addition, for RCL-tree, few node entries make simple node structure and is helpful to link to concept lat-
tice efficiently. Therefore, let θYelp = [2, 4] be the range of R-tree node entries in Yelp. The R-tree struc-
ture of RCL-tree in Yelp can be built, and 291,678 tree nodes are generated, including 192, 609 leaf nodes, 
RYelp = {n1, [2, 4],

〈

n1, n2, . . . , ni , . . . , n291,678
〉

|1 ≤ i ≤ 291, 678} , RYelp.root = n1.
δ is an important factor to determine how many concept lattices should be built. Since tfSKQ is to retrieve 

the k objects by traversing concept lattices, we expect that the k query results can be obtained by traversing 
as few concept lattice structures as possible, in other word, we expect the k and the data volume of concept 
lattice have a similar value range. To achieve it, we explore the detailed statistical features of R-tree nodes in 
RYelp in Yelp, and the results are shown in Fig. 4 and Table 2. In Fig. 4, the box diagrams of data volume of 
R-tree nodes in level 1–8 (the maximum level R is 11) of are drawn based on the level of R-tree nodes. And the 
nodes of level 2–5 are in the range of [5, 500] of k, which is a widely recognized query range and often used 
in a variety of related literatures. We can create concept lattice structures linked with these R-tree nodes in 
level 2–5 one by one to meet the efficient tfSKQ. However, as you can see from Table 2, the number of nodes 
in level 2, 22,149, is too large to the initialization of RCL-tree, and the minimum value of nodes in level 2 is 
4, which means that a considerable number of nodes in level 2 do not meet the query number k. Therefore, 
for the yelp business datasets, we employ these level 3–5 R-tree nodes to build concept lattices one by one 
and set δYelp = [9, 413] , covering all 11,142 tree nodes in levels 3–5. Then, 11,142 concept lattices are built, 
and LYelp = {L1, L2, . . . , Li , . . . , L11142|1 ≤ i ≤ 11, 142, Li .F.size ∈ [9, 413] }, the RCL-tree of Yelp is initialized, 
IYelp =

〈

RYelp,LYelp

〉

.
We also conduct similar experiments on Amap, based on these same principles, the RCL-

tree of Amap is created. Specifically, θAmap = [2, 4] , 732,342 R-tree nodes are generated, and 

Figure 4.   The statistical features of data volume of R-tree nodes in RYelp.
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RAmap = {n1, [2, 4],
〈

n1, n2, . . . , ni , . . . , n732,342
〉

|1 ≤ i ≤ 732, 342} . Concept lattices are created on 27,930 R-tree 
nodes in level 3–5, δAmap = [8, 458] , and LAmap = {L1, L2, . . . , Li , . . . , L27930|1 ≤ i ≤ 27930, Li .F.size ∈ [8, 458] , 
IAmap =

〈

RAmap,LAmap

〉

.
Table 3 shows the details of the initialized RCL-tree on DYelp and DAmap . Only 3.8% R-tree nodes need to 

link to concept lattice, thus saving storage space and improving initiation efficiency. In addition, the number 
of concepts in concept lattice is greater than the number of objects, which represents the complexity of textual 
keywords. The more the complexity in the textual keywords of objects, the more the concepts in concept lattices.

To evaluate the efficiency of RCL-tree initialization process (Algorithm 1), the influences of data volume on 
DYelp are demonstrated by Fig. 5. As shown in Fig. 5a, dark colour rectangles represent the initialization time 
of RYelp in IYelp , and light colour rectangles represent the initialization time of LYelp , and the initialization time 
of IYelp is the sum of them. Obviously, RYelp time is always less than LYelp time. And with the increase of data 
volume, the initialization time of IYelp increases linearly. For DYelp , included 192,609 spatial textual objects, the 
time of IYelp , RYelp , and LYelp is about 175 s, 69 s, and 106 s.

In addit ion,  we analyse the quantitat ive relat ionship between LYelp and RYelp .  Let 
ρYelp = 100× LYelp.size/RYelp.size be the ratio of the number of concept lattices in LYelp to the number of nodes 
in RYelp . Figure 5b shows the trends of ρYelp with different data volumes. As you can see, ρYelp always fluctuates 
around 3.8. Therefore, we can think that the setting of δYelp is reasonable and adequate. Similar conclusions, 
ρAmap ≈ 3.8 , can also be obtained on Amap and will not be repeated here, since the same setting of δYelp and 
δAmap that they all build concept lattices at level 3 to 5.

The evaluation and comparison of tfSKQ.  Based on the RCL-tree, the proposed tfSKQ algorithm takes 
spatial point p  and textual keywords K as the query conditions to retrieve the k most frequent and nearest items 
on DYelp and DAmap . Different with the common top-k spatial keyword query (TkSKQ), tfSKQ can not only 
express spatial proximity but also reveal the textual keyword aggregation features of spatial objects to present the 
frequent items and its frequency.

To evaluate the performance of the proposed tfSKQ algorithm shown in Algorithm 2–5, a similar algorithm 
proposed by Ahmed et al.10 is employed. Ahmed proposes a hybrid index structure with a R-tree and some top-k 
sorted term lists (STLs), and develops algorithms to efficiently answer the top-k frequent spatiotemporal terms 
(kFST) query. Similar with IR-tree1, STLs index structure employ inverted structure to store sorted keyword lists 
in tree nodes and leaf nodes of the R-tree structure, but the difference is that STLs maintain the frequency of 
each keyword in nodes. To make the STLs index and RCL-tree comparable, we use the parameter δ of RCL-tree 
to limit tree nodes linked to sorted term lists in STLs index, that is to say, in STLs index, only the level 3 to 5 

Table 2.   The statistics of data volume of node by tree level.

Data volume of nodes

Tree level

1 2 3 4 5 6 7 8 9 10 11

Count 65,293 22,149 7591 2636 915 322 110 35 12 4 1

Mean 3.0 8.7 25.3 73.1 210.5 598.2 1751.0 5503.1 16,050.8 48,152.3 192,609

std 0.8 2.5 7.5 22.4 65.1 192.3 478.5 1595.2 5421.9 5985.1

Min 2 4 9 27 83 245 685 2778 7554 43,728 192,609

25% 2 7 20 56 161 452 1450.3 4397.5 13,259 44,190.8 192,609

50% 3 9 25 72 209 583 1749.5 5418 15,731.5 46,084 192,609

75% 4 10 31 88 253 740 2079 6774.5 18,845 50,045.5 192,609

Max 4 16 49 145 413 1146 2925 8547 27,846 56,713 192,609

Table 3.   The details of RCL-tree index structure.

Description Yelp Amap

Dataset size (MB) 131 209

Total of spatial textual objects 192,609 483,991

The size of I (MB) 345 3726

The size of I.R (MB) 41 130

The size of I.L (MB) 304 3596

The number of tree nodes in I.R 291,678 732,342

The number of concept lattices in I.L 11,142 27,930

The percentage of R-tree nodes linked with concept lattices 3.8% 3.8%

Average number of concepts in concept lattice 75 261

Average number of objects in concept lattice 52 52
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R-tree nodes connect with sorted term lists. We call this variant of the SLTs index as δSTLs. Note that, since δSTLs 
only stores single keyword’s frequency in STLs, it can only answer the frequency with the 0 textual keyword, i.e. 
K = {} , and cannot analyse the frequency of complex multiple keywords combinations.

We also compare tfSKQ with two classical frequent items algorithms Apriori17 and FP-Growth18. Apriori 
algorithm employs the support degree as the criterion of judging frequent items to find the largest multiple fre-
quent items. FP-Growth algorithm constructs a frequent pattern tree (FP-tree), maps data to the tree, and finds 
all frequent FP-tree items. Based on them, we develop two baseline index schemas to compare with RCL-tree 
and tfSKQ algorithm.

One is the combination of a R-tree structure and some frequent item tables generated by Apriori algorithm, 
named A-frequent. It employs a R-tree structure to index the spatial information and employs some frequent 
item tables generated by Apriori algorithm to store the frequent items of the textual keyword information of 
each R-tree node. Each record in the frequent item table includes two columns 

〈

frequentitem, frequency
〉

 , i.e. the 
frequent item and its frequency. A-frequent method can retrieve the k most frequent items to answer tfSKQ by 
the query conditions and the minimum support degree parameter. The second is the hybrid of R-tree and FP-
tree, named F-frequent. It employs a R-tree structure and some FP-tree structures to index spatial information 
and textual keywords of each R-tree node respectively. The tfSKQ can be solved by the given query conditions 
and the minimum support parameter.

Like RCL-tree, A-frequent and F-frequent are both limited by δ , i.e. frequent item tables in A-frequent and FP-
tree structures in F-frequent are both built in level 3 to5 R-tree nodes. In addition, in A-frequent and F-frequent 
methods, the minimum support degree for querying frequent items is set to 0.1%.

Then, the RCL-tree is compared with the above three methods, δSTLs, A-frequent, and F-frequent, in Yelp 
and Amap dataset, and the results are as follows.

Figure 6 shows the comparisons of initialization time. In Fig. 6a,b, since δSTLs only stores single keyword’s 
frequency, it has the shortest total initialization time 129 s in Yelp and 395 s in Amap, while the other three 
methods need longer time to maintain all frequent information including the frequency information of single 
keyword and multiple keywords. Except for δSTLs, others increase dramatically from Yelp to Amap, A-frequent 
increases by about 76 times, F-frequent 19 times, and RCL-tree 25 times, while the increase of data volume is 
about 2,5 times. It means that the maintenance cost of frequent items is affected by data volume, and is more 
related to the complexity of data itself. These differences are also shown in Fig. 6c,d, with the increase of data 
volume, the initialization time gaps between them remain unchanged. In addition, since A-frequent employ table 
structure to maintain frequent information, there are many table-based traversal operations and a large number 
of data insertions and update in the initialization of A-frequent method, A-frequent always has the much longer 
initialization time in IYelp and IAmap than others. Compared with A-frequent, F-frequent uses tree structure to do 
it and RCL-tree uses lattice structure. Among the three methods that store multiple keywords frequent informa-
tion, as shown in Fig. 6a–d, RCL-tree always has the shortest initialization time.

Comparative results of storage space are given in Fig. 6e,f. In Yelp, with a R-tree structure 41 MB and some 
frequent item tables 1177 MB, A-frequent has the maximum storage space, 1218 MB. δSTLs has the minimum 
storage space of 72 MB with a R-tree structure 41 MB and some STLs 31 MB, because only the frequent informa-
tion about single keyword is stored in it. And F-frequent, RCL-tree are 797 MB, 345 MB with FP-tree set 756 MB 
and concept lattices 304 MB respectively. Similar differences of them are also show in Fig. 6f, with the same R-tree 
130 MB, the other component of A-frequent has the maximum 26237 MB, followed by F-frequent 18081 MB 
and RCL-tree 3596 MB, and δSTLs 97 MB at least. It indicates that these four index structures have the same 
R-tree component, and when multi keyword frequent information is stored, the concept lattices component in 
RCL-tree is the most compact and efficient storage structure than FP-tree of F-frequent, and the frequent item 
tables of A-frequent.

Next, the comparison of retrieval time of tfSKQ are conducted by three aspects: data volume, the number 
of query results, and the number of query keywords, are as below. Note that, because of the uneven distribu-
tion of spatial objects, random query points of tfSKQ often bring different query results, which gives difficult to 

Figure 5.   The influences of data volume on LYelp . (a) The initialization time of LYelp with different data volume, 
(b) The size ratio of ρYelp with different data volumes.
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objectively present the algorithm performance. To avoid it, the results of each query experiments are the average 
of 100 experiments under the same query conditions.

Firstly, the effects of data volume on retrieval time are given in Fig. 7. Under the different number of query 
keywords and k = 10, the tfSKQ results of these four methods are significantly different. Because δSTLs can only 
be applied to tfSKQ with empty keyword query condition, i.e. K.size = 0 or K = {} , δSTLs only participates in the 
comparative experiments of K.size = 0 . Shown in Fig. 7a,b, STLs has the best performance than others, RCL-tree 
has the worse retrieval time in some cases, and the retrieval time of A-frequent and F-frequent dose not grow 
steadily with the increase of data volume. In Fig. 7c–f, the query keyword set K is not an empty set, the results 
are reversed, the retrieval time of RCL-tree is significantly better than that of A-frequent and F-frequent in both 

Figure 6.   The comparison of initialization. (a) IYelp initialization time, (b) IAmap initialization time, (c) Effect of 
varying data volume for IYelp , (d) Effect of varying data volume for IAmap , (e) the comparison of storage space in 
Yelp, (f) the comparison of storage space in Amap.



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7352  | https://doi.org/10.1038/s41598-022-10648-4

www.nature.com/scientificreports/

of  IYelp and IAmap . And these gaps are more pronounced in IAmap . That is because the frequent items stored by 
δSTLs, A-frequent, and F-frequent are ordered and the frequency of single keyword is easier to retrieve, while 
the frequent items stored by RCL-tree are generalized as concepts, and the frequency of keyword need to be 
deduced from concept lattice. In addition, it can be seen that the retrieval time of A-frequent and F-frequent are 
unstable in all three cases, and they grow leaps and bounds with the increase of data volume, while the retrieval 
time of RCL-tree always increases linearly with the increase of data volume. It indicates that RCL-tree has better 
robustness and adaptability than other methods in complex tfSKQ.

Figure 8 shows the effect of k and the number of query keywords on retrieval time with the full data set. In 
Fig. 8a–d, we still employ the number of query keywords as a factor to observe the performance of these four 

Figure 7.   Effect of data volume and the number of query keywords on retrieval time. (a) IYelp with K.size = 0 , 
(b) IAmap with K.size = 0 , (c) IYelp with K.size = 1 , (d) IAmap with K.size = 1 , (e) IYelp with K.size = 2 , (f) IAmap 
with K.size = 2.
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methods. Figure 8a,b show the effect of k with K.size = 0 in IYelp and IAmap . We can see that δSTLs is still the 
best method, and RCL-tree is the worst one in most cases. This situation is changed when K.size = 1 . As shown 
in Fig. 8c,d, A-frequent and F-frequent have the same trends with the increase of k, the performance of RCL-tree 
is great better than that of A-frequent and F-frequent, and the gap between them grows with the increase of k. 
When k = 500, the retrieval time of IYelp is 35.6 ms, which is about 1/5 of A-frequent 173.7 ms and F-frequent 
181.1 ms, and IAmap is 35.0 ms, which is about 1/15 of A-frequent 517.0 ms and 1/12 of F-frequent 400.0 ms.

Obviously, RCL-tree has more advantages than other methods when K is not an empty set. The detailed 
analysis about the effect of K on retrieval time with k = 10 and the full data set are shown in Fig. 8e,f. We can see 
that as the number of query keywords increases, the process of tfSKQ becomes more complex, and the advantages 
of RCL-tree is more obvious. When the number of query keywords is 5, the retrieval time of IYelp is 98.8 ms, 

Figure 8.   Effect of k and the number of query keywords on retrieval time. (a) IYelp with K.size = 0 , (b) IAmap 
with K.size = 0 , (c) IYelp with K.size = 1 , (d) IAmap with K.size = 1 , (e) IYelp with k = 10 , (f) IAmap with k = 10.
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which is about 1/5 of F-frequent 452.0 ms and A-frequent 466.9 ms. Similarly,  IAmap is 148 ms, and F-frequent 
550.0 ms, A-frequent 524.0 ms.

In this section, we employ two datasets, Yelp and Amap, to compare the performance of RCL-tree with other 
three methods, δSTLs, A-frequent, and F-frequent, in initialization and tfSKQ. Although δSTLs performs well 
in keyword free query, it cannot directly achieve tfSKQ of multi keyword query due to its own structure. There 
is no doubt that in the case of multi keyword query, RCL-tree has the best efficiency in initialization and tfSKQ, 
its retrieval performance is at least 5 times of A-frequent and F-frequent, and its storage occupy is at least 2/5 of 
F-frequent and 1/4 of A-frequent. It is worth mentioning that, on two dataset Yelp and Amap, the RCL-tree has 
the stable performance and its retrieval efficiency is always better than other baseline methods.

Conclusion
The complexity of textual keywords of STBD and their existing table-based index schemas make obstacles to 
efficient the tfSKQ, especially in the case of multi query keywords. This paper employs concept lattice structure 
to solve it for the first time. A novel hybrid index structure RCL-tree composed of R-tree and concept lattices 
and a tfSKQ algorithm are proposed to achieve efficient tfSKQ for STBD. The results of empirical researches 
demonstrate that RCL-tree outperforms some existing methods in terms of initialization and frequent items 
retrieval in the case of multi query keywords. The proposed solution for tfSKQ aims at not only filling the gap in 
the spatial frequent multi keywords query, but also promoting the application of spatial textual big data indexing.

Future research will focus on the following three directions. Firstly, to examine the applicability of tfSKQ with 
other more STBD sets. Secondly, to explore the scalability of the RCL-tree and develop a multi granularity index 
structure to support spatial–temporal frequent items. Lastly is to investigate and examine fundamental structures 
of the RCL-tree that can be revisited to explore the possibility of improving its performance.

Data availability
The data and code that support the findings of this study are available in “figshare.com” with the identifier: https://​
doi.​org/​10.​6084/​m9.​figsh​are.​15052​236.
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