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Dominant transcript expression 
profiles of human protein‑coding 
genes interrogated with GTEx 
dataset
Kuo‑Feng Tung1, Chao‑Yu Pan1,2 & Wen‑chang Lin1,2*

The discovery and quantification of mRNA transcripts using short‑read next‑generation sequencing 
(NGS) data is a complicated task. There are far more alternative mRNA transcripts expressed by 
human genes than can be identified from NGS transcriptome data and various bioinformatic pipelines, 
while the numbers of annotated human protein‑coding genes has gradually declined in recent years. 
It is essential to learn more about the thorough tissue expression profiles of alternative transcripts 
in order to obtain their molecular modulations and actual functional significance. In this report, we 
present a bioinformatic database for interrogating the representative tissue of human protein‑coding 
transcripts. The database allows researchers to visually explore the top‑ranked transcript expression 
profiles in particular tissue types. Most transcripts of protein‑coding genes were found to have certain 
tissue expression patterns. This observation demonstrated that many alternative transcripts were 
particularly modulated in different cell types. This user‑friendly tool visually represents transcript 
expression profiles in a tissue‑specific manner. Identification of tissue specific protein‑coding genes 
and transcripts is a substantial advance towards interpreting their biological functions and further 
functional genomics studies.

With the advancement of next-generation sequencing (NGS) platforms, unprecedented progress has been 
achieved in the fields of biology and  medicine1,2. NGS platform is particularly essential in the advancement of 
modern genomic studies that mainly focus on determining genome sequences and deciphering the significant 
genome features of millions of nucleotide sequences. Genome sequence determination is now the simplest part 
of genome researches. However, obtaining the comprehensive annotations on all protein-coding gene loci and 
their gene structures are still  challenging3. With the introduction of deep learning-based artificial intelligence 
(A.I.) machine learning approaches, exon structure prediction accuracy has  improved4,5. Nevertheless, this is 
not enough to fully comprehend the molecular mechanisms in terms of protein-coding gene modulations. 
In humans and other higher organisms, manual interpretation and experimental evidence are yet needed to 
completely decipher transcribed mRNA transcripts of protein-coding  genes6; this often involves the generation 
of alternative transcripts by using complex mRNA transcription maturation  mechanisms7. Currently, precisely 
authenticating all possible alternative transcripts of protein-coding genes is still difficult because of the limita-
tions of NGS platforms. Furthermore, diverse tissue expression modulations of these alternative transcripts 
complicate the authentication process. Protein-coding genes are regulated by developmental temporal programs 
and restricted tissue spatial patterns in addition to their common cellular physiological  functions8,9. Because 
this is a complicated process with variations occurred in different genes, visual informatic tools are desirable to 
carefully investigate alternative transcript expression profiles in different tissues.

Although the sequencing portion of human genome project has been  accomplished10, the exact human 
protein-coding gene structures and their mRNA transcript expression modulations would need to be thoroughly 
investigated in different  tissues11. Therefore, we aim to develop a user-friendly web tool for exploring the tissue 
expression profiles of the alternative transcripts in human protein-coding genes. We used the NGS dataset from 
the Genotype-Tissue Expression (GTEx)  project12; it is a well-known international consortium that provides 
essential research resources on genetic variations and global RNA expression data in multiple normal tissues. 
The GTEx project aims to create datasets for the systematic evaluation of genetic variations and examine their 
relationship with gene expression in multiple  tissues13,14. In the current GTEx data release (V8 version), 54 
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human tissue subtypes are available. We believe this is a helpful gene expression dataset containing informa-
tion on various tissue types and a better unified data resource than earlier datasets for the evaluation of tissue 
expression variations in alternatively transcripts. The use of a single gene expression dataset can help prevent 
complicated mRNA isoform quantification problems in NGS transcriptome analysis pipelines that occur if 
heterogenous sources are used. Besides, few databases provide transcript-level alterations with limited spliced 
transcript information and visualization for  users15.

Therefore, GTEx provides an exceptional resource through the study of transcriptome among various normal 
tissues. Tissue-specific transcript expression profiles could vary among different tissues for certain genes during 
development and oncogenesis. Previous tissue expression profile studies often used expression information at 
the gene  level16, thus, it is desirable to have graphical visualization tools to interactively examine the top-ranked 
transcript expression in diverse tissue types. We hypothesized that such alternative transcript modulations would 
have biological significance in protein product expressions, and biomedical researchers would be benefited from 
visual bioinformatic tools on these data.

Previously, we generated a web tool (TREGT) for visually illustrating the expression information on top-
ranked transcripts of protein-coding genes using the GTEx  dataset17. One can easily inspect modulations about 
expressed transcripts of one human protein-coding gene by their ranks as well as ratios among different tissue 
types. It is useful to observe switch events of top-ranked transcripts in certain protein-coding genes, which 
would implicate particular modulations on selected transcripts. While this web tool also provides visual tissue 
expression profiles on human protein-coding genes, it is lacking tissue expression level comparison information 
to specifically recognize tissue-specific genes or transcripts. There are needs to interrogate the tissue expression 
profiles on particular mRNA transcripts, since tissue-specific gene or transcript modulation would implicate 
distinctive biological functions in selected tissue types. Thus, we would like to provide an improved tool for 
interrogating the representative tissue expression profiles of human protein-coding genes. This new database 
would enable researchers to explore the top-ranked transcript expression profiles in different tissues as well as 
identification of significantly expressed genes or transcripts in selected tissues.

Results
Protein‑coding transcripts in normal tissues. Studies have used the GTEx dataset for the analysis of 
alternative transcripts to systematically determine their expression profiles in human noncancer  tissues8,14. The 
GTEx dataset was mainly used to avoid dysregulated expression information regarding cancer cells, and GTEx 
can provide outstanding tissue expression information from many different human tissue  subtypes13. Version 
8 of the GTEx dataset was mapped to the 199,324 transcripts and 58,219 genes in the GENCODE 26 human 
reference set. Within this dataset, there are 150,749 mRNA transcripts belonging to 19,591 protein-coding genes 
and we mainly interrogate protein-coding genes in this study. Among the 150,749 transcripts of protein-coding 
genes, there are various transcript types, including protein-coding, processed_transcripts, nonsense_mediated_
decay, retained_intron etc. Only 80,354 transcripts are defined as actual protein-coding transcripts by the GEN-
CODE transcript type feature. Herein, we started with 145,571 transcripts of protein-coding genes after remov-
ing further 5178 transcript records without expression values as described in the Methods section. A previous 
study indicated that approximately seven alternative spliced transcripts exist for human protein-coding  genes17. 
Among all the alternative transcripts within a given protein-coding gene, only few transcripts are dominantly 
expressed. In most cases, the top five transcripts could occupy more than 90% of protein-coding gene expres-
sion levels. Subsequently, examination of the expression profiles of alternative transcripts in each protein-coding 
gene would reveal restricted expression patterns in dominantly expressed transcripts in selected tissue subtypes. 
Because transcripts could have different coding potential or regulatory significance (such as microRNA target 
sites)18,19, the tissue expression profiles of each highly expressed transcripts must be carefully examined. There-
fore, we would like to develop a new bioinformatic tool to specifically examine the distinct expression profiles of 
dominant transcripts in protein-coding genes. We believe these dominant tissue specific transcripts, if translated 
into protein isoforms, could represent significant biological functions in particular tissues. We designated these 
tissue specific transcripts as representative tissue transcripts in this database.

Representative tissue transcripts of protein‑coding genes. To evaluate specifically expressed tran-
scripts as representative tissue transcripts in various human tissues, we applied the standard score (Z-score) 
criteria to examine the expression data of 145,571 transcripts. The standard score is frequently used for outlier 
identification and calculated as the original raw data value minus the mean value divided by the standard devia-
tion. Thus, the standard score illustrates the difference in the TPM value between a particular tissue expression 
amount and the mean average of all tissue types for any given transcript isoform. We applied the Z-score value 
of ≥ 3 as the cutoff to obtain specifically expressed transcripts in diverse normal tissues. The Z-score value of ≥ 3 
indicated that the difference in expression is more than 3 standard deviations in that observed tissue type.

We then calculated the respective Z-score value for each transcript of protein-coding genes among different 
tissue types. Interestingly, we found that over 80% of the 145,571 transcripts had a Z-score value of ≥ 3 (117,114 
records) in at least one of the 54 tissue types. Only 28,457 transcripts were commonly expressed transcripts in 
all tissue types, with their Z-score being < 3. This finding indicated that most of the human genes had distinctive 
tissue expression profiles. Among them, dominantly expressed transcripts found in a single tissue type were the 
major category, accounting for approximately 50% of tissue-dominant transcripts. In total, 77,606 transcripts 
had a Z-score of ≥ 3 in a single tissue class (Table 1). Furthermore, 35,865 transcripts were mutually represented 
in two tissue types. In addition, 3615 transcripts were present in three tissues and 28 respective transcripts were 
present in the maximum four tissues. Thus, most of the transcripts in protein-coding genes exhibited significant 
expression profiles in a selected tissue type or few tissue types. Furthermore, in the 54 GTEx tissue subtypes, 
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some tissues were divided into diverse subregions or collected from distinctive body locations. Reasonably, some 
genes were found to be represented in multiple tissue subtypes, for example, adipose tissues (subcutaneous and 
visceral), brain tissues (cerebellar hemisphere and cerebellum), and skin tissues (suprapubic and lower leg).

Tissue representative transcripts among top‑ranked transcripts. For most protein-coding 
genes with alternative spliced transcripts, the majority of expression abundance are from the top five ranked 
 transcripts17. Therefore, we further examined top-ranked transcripts in terms of their tissue expression pro-
files. In Supplementary Table 1, the coverage percentage of tissue-representative transcripts (Z-score of ≥ 3) was 
around 80% throughout Rank1 to Rank10 transcript classes. For instance, Rank1 transcripts has 15,197 tissue 
representative transcripts out of total 19,591 Rank1 transcripts. In general, different expressed ranked transcripts 
within the same gene (e.g., Rank1, Rank2, and Rank3 transcripts) had the same or closely related tissue expres-
sion profiles. These findings indicated that the tissue-specific transcript expression modulation is generally regu-
lated at the gene locus level; therefore, similar tissue expression profiles were largely observed in most of the 
transcripts in the same gene loci. However, we did observe distinct tissue representation profiles among diverse 
transcripts in certain protein-coding genes. A demonstrative example is the Purkinje cell protein-2 (PCP2) gene, 
which has two alternative transcripts (Fig. 1). One transcript is ENST00000598935 with a strong expression 
profile in the brain (cerebellum and cerebellar hemisphere), whereas the other alternatively expressed transcript 
is ENST00000311069 and is mostly expressed in the testis tissue. This is an example of a typical altered tissue-
specific expression between alternative transcripts in a gene.

In Supplementary Table 2, the average TPM expression value of Rank1 transcripts was 23.23 in one tissue 
category, whereas the TPM value of Rank2 transcripts was 6.14. On the contrary, the average expression value of 
universally expressed transcripts (Z-score < 3, zero tissue category) was 91.05 for Rank1 transcripts (Supplemen-
tary Table 2), indicating their intrinsic housekeeping gene nature with higher expression levels in a broad spec-
trum of tissue types. Among these genes in zero tissue category (Z-score < 3), MT-related genes (mitochondria 
genes) and the RPL gene family (protein-translation genes) exhibited the highest expression. DAVID functional 
analysis of these commonly expressed genes (genes with a Z-score of < 3 and an average TPM value of > 100) 
suggested their functional enrichment in translation initiation and ribosome functions (Supplementary Fig. 1).

Among the analyzed tissue expression results, the testis, cerebellum, and cerebellar hemisphere had the 
greatest numbers of dominant tissue expression transcripts (Fig. 2A). The testis had exclusive gene expression 
profiles for many protein-coding  genes20. The cerebellum and cerebellar hemisphere had the most dominant 
tissue transcripts (approximately 13,000 transcripts). There are reported literatures on the enriched expression 
protein genes in both brain and testis tissues by large scale proteomic and transcriptomic  studies21,22. Alternative 
splicing and polyadenylation events were also highly elevated in the brain and testis  tissues23,24. Compared with 
some other brain regions, the amygdala, hippocampus, and putamen had less than 300 dominantly representa-
tive tissue transcripts. Thus, highly differential gene expression profiles were observed even in various tissue 
subregions (such as the brain), which implied the spatial gene expression patterns.

For individual transcript expression patterns (TPM levels), the overall profiles differed between tissue types. 
Hemoglobin subunit beta is the highest expressed tissue-dominant transcript (Rank1 transcript TPM = 5012.79). 
Although the testis had the maximum number of dominant tissue transcripts, their average expression level was 
only 1.2. The ovary had the highest TPM expression level of tissue transcripts, with an average TPM value of 28.6 
(Fig. 2B). The pancreas had the second highest expression level of tissue transcripts (TPM = 15.7), with PRSS2 
(trypsin-2 gene) being the most abundantly expressed gene. In some tissues, Rank1 transcripts were dominantly 
expressed transcript type, such as in the hippocampus.

On the basis of the functional pathway enrichment analysis, we selected top 100 Rank1 transcripts from dif-
ferent tissue types to examine their functional significance. Among those abundantly expressed liver genes, the 
top 3 gene ontology (GO) terms were enriched in the acute-phase response, phospholipid efflux, and reverse 
cholesterol transport (Fig. 3A). Muscle genes were enriched in skeletal muscle contraction, mitochondrial elec-
tron transport (NADH to ubiquinone), and muscle contraction regulation (Fig. 3B). For the spleen tissue, the 
top 3 enriched functions were those involved in innate immune responses, immune responses, and inflamma-
tory responses (Fig. 3C). Thus, these dominantly expressed tissue representative genes appeared to be highly 
correlated with known biological functions in selected tissues.

Table 1.  Numbers of tissue representing transcripts interrogated with their tissue expression Z-scores. 
Expressed transcript of protein-coding genes were calculated for their Z-core value in each tissue as described 
in the “Methods”. *Numbers of tissues with Z-score >=3 for each transcript were noted (zero to four tissues)

Tissues* Numbers of transcripts
Numbers of transcripts 
(TPM ≥ 1)

Numbers of transcripts 
(TPM ≥ 10)

Numbers of transcripts 
(TPM ≥ 100)

Zero 28,457 14,558 3273 231

One 77,606 22,576 4447 423

Two 35,865 10,354 1663 112

Three 3615 912 145 9

Four 28 12 4 0

145,571 48,412 (33.2%) 9532 (6.5%) 775 (0.5%)
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User‑friendly interface for examining tissue‑dominant transcripts. We developed a user-friendly 
web tool to examine dominant tissue-representative transcripts of protein-coding genes in normal human tis-
sues. Following the concepts of our previous database design, this representative tissue transcripts of the protein-
coding gene (RTTPG) database specifically concentrated on the visualization of the tissue expression profiles of 
protein-coding genes. The GTEx dataset provides a unique gene expression resource that would be suitable for 
the functional investigation of alternative transcripts expression in noncancer tissues.

We mainly identified dominantly expressed transcripts by their Z-score values according to various tis-
sue types by using an easy-to-recognize graphical illustration. We observed that the majority of significantly 
expressed transcripts were among the top-ranked transcripts. In the main web entry window, information regard-
ing the top five ranked transcripts was provided to reduce the crowding of display information for genes with 
many transcripts (Fig. 1). We believe that this design would provide superior tissue expression profiles to biolo-
gists. However, an optional “rank selection” function can be used to examine all transcripts and top 10, top 5, 
top 3, besides the highest ranked Rank1 transcripts to fit research needs.

At the beginning of the web page, users can first choose a particular tissue icon of their study interest (Fig. 4). 
A new web page will list the transcripts with Z-scores of ≥ 3 in that particular tissue. The features of the web page 
include gene ID, gene name, transcript count, transcript ID, rank of that particular transcript, transcript TPM 
value, coefficient of variation (CV), gene TPM, and Rank TPM% (Supplementary Fig. 2A). Sorting function is 
provided to all feature columns, and users can easily select features for further investigation. For interrogating 
any particular gene, users simply click on the gene ID link, and another new window will be displayed with 
details of the transcript or gene along with a graphic illustration of the top 5 ranked transcript expressions 
among various tissues.

Figure 1.  Tissue expression distribution of the PCP2 gene. The human PCP2 gene is a protein-coding gene for 
Purkinje cell protein-2, which has two transcripts. Rank1 transcript (ENST00000598935) is the major transcript 
expressed in brain cerebellum regions (cerebellar hemisphere and cerebellum), where all Purkinje neurons are 
located. Rank2 transcript (ENST00000311069) is the minor transcript isoform, which is highly expressed in 
the testis tissue. In the RTTPG user interface, the upper table provides additional information regarding gene 
and transcript IDs, gene name, transcript length, ORF length, TPM value, transcript Rank, and the represented 
tissue type for each transcript. In the tissue expression illustration panel below, users can see the tissue 
expression profile and change the expression scale from raw TPM values, log10 TPM values, and Z-score values.
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Figure 2.  Tissue expression distribution of distinctive tissue expression transcripts. (A) The number of 
distinctive tissue expression transcripts (Z-score ≥ 3) in human tissues. (B) The average TPM expression values 
of distinctive tissue expression transcripts in human tissues.
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In this graphic protein-coding gene expression information page, besides essential gene information, sum-
marized gene functions are listed including protein class; molecular function and disease involvement. Users can 
further compare the features of all alternative transcripts based on their expression rank, transcript length, ORF 
length, and dominantly expressed tissues (Z-score ≥ 3) in the transcript list section. In the expression graphic 
display, the GTEx tissue expression levels of the top 5 ranked transcripts are displayed (Supplementary Fig. 2B). 
Users can analyze expression information by using TPM or Z-score values, and Log2, Log10 buttons are available 
for changing the TPM expression scale to log scale to observe lowly expressed transcripts. If the user holds the 
mouse over any given data point, a pop-up text will display the expression TPM value or Z-score value of particu-
lar ranked transcript. On the top right corner, the TREGT link displays additional transcript rank information 
from our previous TREGT web database, which delivers additional transcript expression information and tools.

With this helpful web tool, users can freely examine any protein-coding gene of their interest for expression 
profiles in different tissue types and easily identify tissue-specific transcripts or genes. This observation is assisted 
by using the CV value sorting functions when determining tissue-representative transcripts following select-
ing the tissue icons. For example, AVP, HCRT, and PMCH genes are uniquely expressed in the hypothalamus 
tissue; CFHR2, MASP2, and AHSG genes are expressed in the liver tissue; BMP10, NPPA, and MYL4 genes are 
expressed in the heart tissue (atrial appendage); PGA5, PGA4, and GIF genes are expressed in the stomach tissue; 
and DEFA6, DEFA5, and FABP6 genes are expressed in the small intestine tissue. In addition, genes expressed in 
particular physiological systems, such as GUCA2B gene, which is expressed more in the small intestine, colon, 

Figure 3.  Pathway enrichment analysis for tissue representative protein-coding genes. Top 100 expressed genes 
from the following tissues were chosen for the FunRich enrichment analysis as described in “Methods”: (A) 
liver, (B) skeletal muscle, and (C) spleen. We used the GO-term biological process function for comparison in 
this study.
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stomach, and liver, can be observed with our web interface. Therefore, this RTTPG web tool could be beneficial 
for biomedical researchers in functional analysis.

Discussion
With the advancement of the NGS technique, scientists have generated a large amount of transcriptome data. 
Increased transcriptome data have helped scientists to learn more about the expression patterns of human 
protein-coding  genes25,26. Human protein-coding genes have more alternative transcripts than previously 
 estimated3. However, due to the read length limitations of NGS platforms, studying all alternative transcripts, 
particularly expression profiles among various cell types, may be challenging. With accumulating transcriptome 
data, concerns regarding the expression and biological significance of these transcripts are arising. It is likely 
that transcriptional variations would occur inside cells, and not all transcripts would conduct proper biological 
functions. Intriguingly, recent proteomic studies on the expression and distribution of human protein isoforms 
have implied that only limited numbers of protein isoforms for protein-coding genes have been  detected22,27. 
Using several proteomic datasets, Ezkurdia et al. suggested that the majority of protein-coding genes express 
only a main protein  isoform28. The APPRIS database is an excellent web resource for identifying main principal 
protein isoforms of protein-coding genes in many  species29. In a recent comprehensive study using proteomic 
and transcriptomic datasets, Rodriguez et al. demonstrated that tissue specific alternative splicing events (ASE) 
in the alternative splicing transcripts and subsequent protein isoform productions in human protein-coding 
 genes30. This phenomena is highly conserved evolutionally in some genes and would have important functional 
implications. We also observed that overlapping significant tissue types of reported ASE genes with our RTTPG 
data. Furthermore, our web tool could be valuable in assisting visual interrogation of GTEx tissue expression 
profiles among different top-ranked transcripts.

This generates discrepancy and debate on the numbers of protein-coding transcripts and their translated 
products, especially concerns about the actual biological significance of alternative transcripts. 31 Although 
more alternatively expressed mRNA transcripts could be discovered using NGS sequence data, limited protein 
molecules were observed by using the proteomic platform data. This observation might be attributable to the 
sensitivity and throughput of the current shotgun-based mass spectrometry platform in the detection of all 
minor protein isoforms in tissues as well as the complicated issues in identification of posttranslational modified 
peptides. Some translated protein variants might have low abundancy or short half-life. Furthermore, another 
reason may be the distinctive expression profiles of different mRNA transcripts observed in only particular cell 
 types15. It is likely that transcripts are preferentially expressed in certain cell or tissue types, this is particularly 

Figure 4.  Web interface of the RTTPG database. We generated a graphic display interface for selecting 
representatively expressed transcripts in human tissues. In the default setting, Rank1 transcripts with a Z-score 
of ≥ 3 were designated for interrogations in the initial home page. Hovering the mouse over the tissue label text 
will show the number of representative transcript numbers. Users can click on any particular tissue icon label of 
their study interest. A new web table page will list the transcripts with a Z-score of ≥ 3 in that particular tissue. 
Users can further select any gene of interest for further interrogation for the alternative transcript expression in 
different tissue types shown in Supplementary Fig. 2.
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evident in developmental  stages9, or pathological malignant  conditions32. This point suggests the importance of 
investigating detail transcript expression in different tissue or cell types. Understanding the difference in expres-
sion between each transcript can provide more insights into putative functional effect on different transcripts 
in respective tissue types. The RTTPG web tool presented here would be beneficial for biologists to perform a 
thorough analysis of transcripts in many tissue types.

Besides expression levels, our web interface provides additional easy to read transcript information, especially 
the length and coding protein information. This feature is absent in most web databases. In a recent report, dis-
torted transcription start and termination sites were the main classes in novel transcripts instead of conventional 
alternatively spliced exon–intron selection  usages33. Thus, protein coding sequences might not be altered in most 
transcripts with alternative UTR regions. Furthermore, this opinion supports the findings of proteomic studies 
regarding a dominant protein  isoform28. Our previous findings demonstrated that the dominant transcripts of 
protein-coding genes were the top-ranked transcripts and often represented the major expression transcripts for 
most protein-coding  genes17,34. It is suggested that the transcriptome complexity of protein-coding genes may not 
be as high as estimated earlier based on the number of alternative transcript s identified by NGS reads. Moreover, 
not all top-ranked transcripts are protein-coding  transcripts17,34. Many alternative transcripts are actually non-
coding transcripts, and we observed that only 80,354 of 145,571 these transcripts annotated as protein-coding 
transcripts by the GENCODE biotype. Therefore, expressed transcript isoforms must be examined in more detail 
in addition to their tissue expression profiles. This further strength the applications of the RTTPG database.

Conclusion
We have utilized the GTEx dataset to establish a web database for visualization of alternative transcripts expres-
sion in various normal human tissue subtypes. This web tool would be useful in analyzing distinctively expressed 
transcripts in a tissue specific fashion. Knowledge learned about the tissue specific expression profiles would be 
valuable in cellular function analysis for further single cell sequencing studies.

Methods
GTEx data processing. The Genotype-Tissue Expression (GTEx) Project was supported by the Common 
Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, 
NIMH, and  NINDS12. The data used for the analyses described in this manuscript were obtained from the GTEx 
Portal on 05/20/20. The transcript expression data file (GTEx_Analysis_2017-06-05_v8_RSEMv1.3.0_tran-
script_tpm) was retrieved for our study. This public release dataset here do not contain participant information 
and also follow the NIH Genomic Data Sharing  guideline13. Only the gene expression data and average values 
were used. We have then preprocessed the GTEx public dataset as described  previously17. In brief, GTEx data-
sets were downloaded from their data portal website, which contained 54 different human tissue types from 
948 donors. Some tissues were divided into subregions; notably, the brain tissue had the most  subtypes13,14. 
GENCODE 26 (GRCh38 genome build) was the human gene and transcript annotation standard applied for 
the GTEx expression analysis pipeline—Version 8. The data file was first pre-processed using Python scripts to 
generate tissue based expression information according to each transcript and gene. Originally, total numbers 
of transcript records in this file was 199,324 records. We then removed 5178 transcripts without any expression 
information among all tissue samples. We used the GENCODE biotype labels to further classify the transcript 
and  genes35. Non-coding genes and their downstream transcript records were filtered and removed. At this stage, 
we selected only 145,571 expressed transcripts from protein-coding genes for this study, and there are 19,591 
protein-coding genes in this processed dataset.

Ranking of transcripts and Z‑score analysis. Due to the large numbers of data, the transcript expres-
sion information was initially processed and divided according to the different tissue subtypes using Python 
scripts. We then summarized the average expression values of each transcript within all protein-coding genes by 
respective tissue subtypes due to the unequal numbers of donor samples. The overall average expression infor-
mation of every transcript was then tabulated from all GTEx tissues subtypes. Ranking of transcripts in protein-
coding genes was mainly determined by their expression values. Accordingly, assignment of Rank1 transcript 
is annotated to the most abundantly expressed transcript. In some cases, the ORF length or transcript length 
information of particular transcripts were utilized if the average transcript expression TPM values were identi-
cal among transcripts. The transcript with longer ORF length or transcript length was preferably selected and 
annotated with higher order in Ranks. Expression characteristics of all ranked transcripts in each protein-coding 
genes were further collected and investigated as reported  previously17. Python and R packages were used for 
subsequent statistical  analyses36. For selecting distinctively expressed tissue transcripts, we used the standard-
score (Z-score) values, which was computed as the raw data value in each tissue minus the average TPM value, 
divided by the standard deviation. We used the Z-score cutoff of ≥ 3 in order to select distinctively representative 
tissue transcripts. The Z-score value of ≥ 3 indicated that the difference in expression was larger than 3 standard 
deviations with a p value of 0.00135.

The Z-score value allow us to learn about the significant difference of each transcript in a given tissue type. 
For further identifying uniquely tissue representative genes or transcripts across all tissues, the coefficient of 
variation (C.V.) value sorting function was applied to easily reveal tissue-specific transcripts or genes in the gene 
list user interface. Higher coefficient of variation value would indicate a more unique tissue expression profile 
among all tissues.

The variance between the transcripts among different tissues would indicate the tissue-specific expression 
patterns.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6969  | https://doi.org/10.1038/s41598-022-10619-9

www.nature.com/scientificreports/

Functional assignment and enrichment analysis. The DAVID (Database for Annotation, Visualiza-
tion, and Integrated Discovery) functional analysis was performed to identify functional enrichment  classes37. 
The DAVID Bioinformatic Resources 6.8 (https:// david. ncifc rf. gov) was used to obtain significantly enriched 
GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Statistical significance of such 
pathway enrichment analysis was set with p value of < 0.05. Selected genes were uploaded to the DAVID analysis 
pipeline, and default parameters were used for identifying enrichment clusters.

We used another published bioinformatic tool, FunRich (3.1.4), which is useful for functional enrichment 
and gene network  analyses38. The software program was obtained from the FunRich web site (http:// funri ch. org). 
The top 100 genes of Rank1 transcripts from respective tissues were chosen for enrichment analysis. We used the 
GO-term biological process function for comparison according to published instructions.

RTTPG web database construction. The RTTPG database was implemented using PHP language on an 
Apache webserver framework in conjunction with the MySQL database as described  previously39. All transcript 
expression data on the webserver are stored in a flat file format and loaded into MySQL database for RTTPG 
web interfaces. In order to further investigate tissue representative transcripts, we provided the list of putative 
genes based on the tissue subtypes. Several important features of transcripts were displayed for users to examine 
their significance, including transcript TPM value and ORF region length. The graphic expression page then dis-
played the 54 GTEx tissue expression information on top five Ranked transcripts. Users can analyze expression 
information by using TPM or Z-score values. Furthermore, additional gene functional annotations on protein-
coding genes were retrieved from the Human Protein Atlas database and  processed22. We matched the GTEx and 
Human Protein Atlas datasets with the Ensembl Gene ID and provided the Gene Name; Gene Synonym; Gene 
Description; Protein Class; Molecular Function and Disease Involvement features in the individual gene expres-
sion page. The web-hosting Docker engine was utilized in an Ubuntu Linux server. All information regarding 
representative transcript expression is accessed with no restriction and is available at https:// rttpg. ibms. sinica. 
edu. tw.

Data availability
All representative transcript expression data in human tissues can be accessed with no restriction by following 
link at https:// rttpg. ibms. sinica. edu. tw.
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