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The macroscopic limit 
to synchronization of cellular clocks 
in single cells of Neurospora crassa
Jia Hwei Cheong1,8, Xiao Qiu2,8, Yang Liu1, Ahmad Al‑Omari3, James Griffith4,5, 
Heinz‑Bernd Schüttler6, Leidong Mao7* & Jonathan Arnold4*

We determined the macroscopic limit for phase synchronization of cellular clocks in an artificial tissue 
created by a “big chamber” microfluidic device to be about 150,000 cells or less. The dimensions of the 
microfluidic chamber allowed us to calculate an upper limit on the radius of a hypothesized quorum 
sensing signal molecule of 13.05 nm using a diffusion approximation for signal travel within the device. 
The use of a second microwell microfluidic device allowed the refinement of the macroscopic limit to 
a cell density of 2166 cells per fixed area of the device for phase synchronization. The measurement of 
averages over single cell trajectories in the microwell device supported a deterministic quorum sensing 
model identified by ensemble methods for clock phase synchronization. A strong inference framework 
was used to test the communication mechanism in phase synchronization of quorum sensing versus 
cell-to-cell contact, suggesting support for quorum sensing. Further evidence came from showing 
phase synchronization was density-dependent.

Significance
Describing and explaining the emergence of coherence in biological oscillators is a central unsolved problem 
in Collective Behavior1. Using microfluidics, the authors have experimentally described when the synchroni-
zation process happens as noisy single cell oscillators transition to the macroscopic limit of tissues and whole 
organisms. Using an artificial tissue created by microfluidics the authors observed how the clocks in single cells 
transitioned to a deterministic, macroscopic limit. This limit was refined by a second microwell device, which 
provided phase information about the oscillators through single cell tracking. Both microscopic single cell data 
together with macroscopic data integrated over the field of view on an artificial tissue were used to document the 
synchronization process. The macroscopic data identified two communication mechanisms that are possible with 
earlier macroscopic data from a variety of sources including RNA profiling, protein profiling, and physiological 
measurements on the clock through race tubes. A strong inference framework was used to test quorum sensing 
vs. a contact model of communication underlying phase synchronization of cellular clocks2. The approaches 
here provide a model for a method to use single cell data to explain emergent properties of tissues and whole 
organisms, such as circadian rhythms, and a test of two mechanisms of coherence between cellular oscillators 
at the macroscopic limit.

Collective behavior occurs on a variety of scales of biological organization, from the collective attack of 
viruses on bacterial cells3 and synchronization of clocks in single cells4 to collective behavior of flocks5, schools6, 
herds7, troops of primates8, and whole communities of organisms9. Some forms of collective behavior lead to 
synchronized oscillations, whether the system is cells synchronizing their clocks or fire flies synchronizing their 
flashing10. A fundamental problem in collective behavior is understanding the synchronization of biological 
oscillators1. The focus here is on the phase synchronization of clocks in single cells4; the problem of understanding 
synchronized oscillators arises in the study of other signaling systems as well11,12. At the single cell level there is 
substantial stochastic intercellular variation in the phase of cellular clocks13, but as these cells transition to the 
macroscopic limit of 107 cells per milliliter (ml), the clocks become synchronized and display coherent circadian 
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rhythms on the macroscopic scale of 107 cells/ml14,15. Our goal here is to understand both experimentally and 
theoretically how this phase transition to synchronized behavior takes place in moving from cells to tissues to 
whole organisms16,17.

There are a variety of theories on how this transition to the macroscopic limit takes place. One hypothesis 
is that some form of cellular communication, such as quorum sensing18–20 or cell-to-cell contact21, allows the 
clocks in different cells to synchronize22. Models have been proposed for how this might happen23–25. A second 
possibility is that stochastic intracellular noise plays a positive role in synchronization26. In previous work it has 
been demonstrated that stochastic intracellular noise can lead to periodic behavior27,28, but these models do not 
address subsequent synchronization of oscillators. There is a possibility that noise could play a positive role in 
synchronizing the cellular clocks with respect to their phase when genetically identical cells share a common 
random environment as a synchronizing agent29. This hypothesis converges on a physical hypothesis known 
as Stochastic Resonance30, in which stochastic intracellular noise helps to solidify periodic behavior as well as 
oscillator synchronization. One of the earliest examples of invoking Stochastic Resonance to explain the origin of 
the clock is in the model clock system, Neurospora crassa31. Recently in the same clock system it has been shown 
from single cell data that there is one stochastic resonance predicted under a variety of Light/Dark regimens32,33.

The advent of microfluidics34 allows researchers to capture and manipulate single cells to address experi-
mentally the problem of cellular synchronization9,35. In order to study this interesting phase transition from 
cells with substantial phase variation4 to a state of substantial phase locking, two microfluidic platforms (Fig. 1), 
the “big chamber device” and microwell device, were developed. The purpose of the big chamber device was 
to reproduce the transition in synchronization behavior of conidial cells at the macroscopic limit of 107/ml. 
Nakashima36 developed the liquid culture assay used in most molecular studies of the clock in Neurospora 
crassa37–40. The definition of the macroscopic limit used here throughout is reproducing the behavior of these 
Nakashima liquid cultures and the synchronization of the cellular oscillators in such cultures. One of the features 
of these liquid conidial cultures is that the clock at the macroscopic limit can only be observed over a 48 hour 
(h) window (Fig. 1d). On the micro-scale of single cells this limit on observation of circadian rhythms over 48 h 
can be removed fortunately13. The big chamber device also provides information about the size of the signaling 
molecule as discussed below. The purpose of the second microwell device (Fig. 1e–f) in contrast allows tracking 
of the oscillations of individual cells over 10 days and the manipulation of the conidial cell environment, such as 
density. In this way a more detailed study of phase synchronization can be made over 240 h.

First, the big chamber device was used to pack conidial cells of the model clock system (Fig. 1b), N. crassa, 
into one artificial tissue so that the emergence of circadian rhythms could be studied both macroscopically and 
microscopically simultaneously. The media was selected to minimize formation of filaments and cell fusion to 
simplify the modes of communication between cells13,41. The purpose of this report is to characterize this transi-
tion from disorder to order in an ensemble of cellular clocks in an artificial tissue. In previous work evidence 
was provided that single conidial cells have clocks and that most of their stochastic intracellular variation was 
in phase4. Using a second microwell device, in one experiment three hypotheses are tested: (1) phase synchro-
nization; (2) density effect on phase synchronization; (3) contact model hypothesis. We demonstrate that phase 
synchronization takes no more than 829 cells or a cell density of 2166 cells per fixed area of the device and is 
density-dependent. Contact hypothesis is also evaluated as an alternative to quorum sensing. Two models for how 
this phase synchronization takes place are developed, evaluated, and compared against the aggregate behavior 
of cells in this artificial tissue or in a microwell device. This would allow us to make more refined predictions on 
when phase synchronization would occur to guide future microfluidic experiments14.

Results
Packing single cells into an artificial tissue with a “big chamber” microfluidic device.  In order 
to determine experimentally the macroscopic limit to the synchronization of cellular clocks, a “big chamber” 
microfluidic device with chamber dimensions 1800 × 1150 × 10 (height) μm was designed (Fig. 1a). The device 
trapped ~ 150,000 cells near a barrier to create an artificial tissue (Fig. 1c). Both fluorescence measurements on 
individual cells and aggregate measurements on five fields of view with ~ 1700 cells each were obtained. What 
is remarkable is that time-lapse photography (Supplementary Video) demonstrated circadian rhythms to the 
naked eye. The video is summarized in Fig. 1d, showing the circadian rhythm with period of 21 h in agree-
ment to race tube experiments and liquid culture experiments beyond the macroscopic limit14; moreover, the 
oscillations are limited to 2 periods as in Nakashima liquid cultures36 (Fig. 1d). Aggregation of cells over fields 
of view and over individual cells yielded similar estimates of the period as well as the Hilbert phase curves (see 
“Materials and methods”) (supplementary Fig. S1). Three different media for conidial growth were tried in the 
big chamber with similar results (Fig. 2).

The artificial tissue has about ~ 150,000 cells and places an upper limit of 13.5 nm on a hypoth‑
esized quorum sensing signal molecule’s radius for cellular clock synchronization.  From the 
Supplementary Video and Figs. S2 and S3 it is clear that we are obtaining synchronized oscillations by cells over 
the dimensions of the device (1800 × 1150 × 10 μm). This synchronous behavior is captured in the phase trajec-
tories of a fluorescent strain MFNC9 with a mCherry recorder fused to the clock-controlled gene-2 promoter 
(ccg-2P)42 (see “Materials and methods” for calculating phase) across different fields of view of the artificial 
tissue (Fig. 3)43.

The fields of view (as displayed in Fig. 3a for spatial location within the tissue) were highly coherent (e.g., 
phase synchronized) with each other as shown in Fig. 3b) and Supplementary Fig. S2. This was measured by phase 
measures43 between different fields of view on the tissue (Fig. 3b) as well as by measures of sychronization44. For 
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example, the synchronization measure known as the Kuramoto order parameter (K) between different fields of 
view is defined as:

where the brackets denote an expectation over time and Mj is the phase of the jth “giant cell”. The quantity n is 
the number of oscillators being compared (e.g., n = 2 for two fields of view) and i =

√
−1 . If the fields of view 

were perfectly synchronized, the Kuramoto K would be 1.00, and if the fields of view were unsynchronized, the 
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Figure 1.   Two microfluidic devices, the “big chamber device” and microwell device, are used to characterize 
the synchronization of cellular oscillators on the macro-scale and micro-scale. A microfluidic “big chamber 
device” is developed to pack ~ 150,000 cells into an artificial tissue to examine the macroscopic limit to 
synchronization of cellular clocks in media 513. The big chamber enables the fluorescence detection of conidial 
cells (strain MFNC942) through an mCherry recorder driven by clock-controlled gene-2 (ccg-2) promoter both 
in aggregate and individually42. Time fluorescence measurements were taken every half hour over 10 days. (a) 
An image of a microfluidic device that houses 5 big chamber devices for experiments. (b) Schematic of the big 
chamber device consisting of an inlet and outlet where cells (green circles) flow into the device from the inlet 
end and are gradually trapped at the barriers present at the outlet end. The dimensions of a main chamber are 
1800 × 1150 × 10 (height) μm. (c) Fluorescence image of the cells trapped in the big chamber device. Scale bar: 
50 μm. (d) The detrended fluorescence for around 140,000 cells is shown over 209 h. The plots were created 
in MATLAB_R2020B (https://​www.​mathw​orks.​com/​produ​cts/​matlab.​html). (e) A microwell microfluidic 
device to trap individual cells is constructed to test the quorum sensing model versus the contact model. Left: 
fluorescence image of MFNC9 cells in the microwell device. Scale bar: 100 μm. Right: visualization of MFNC9 
cells trapped in individual microwells at 20 × magnification. (Top: bright field; bottom: fluorescence). Scale bar: 
50 μm. (f) Schematic of cells (in green) seeded in individual microwells of 10 μm in diameter.

https://www.mathworks.com/products/matlab.html
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Kuramoto K would be 0.00. The synchronization measure (K) observed between any two fields of view was over 
0.97 (Table 1) in a transect across the artificial tissue.

The trajectories of CCG-2 recorder for different fields of view aligned with each other, showing similar fluo-
rescent trajectories over time (Fig. 4), a result recapitulated in three other experiments done with different media 
conditions (Fig. S4). (The use of the term trajectory is used to invoke the connection of the data on CCG-2 with 
the dynamic models considered below, but the cells themselves may or may not be moving). All of these views 
on the phase at different locations in the tissue suggest a high degree of phase synchronization across the tissue 
over an 1800 × 1150 μm area (Supplement Fig. S3). A video is available showing how a quorum sensing signal in 
a model will synchronize cells in a tissue completely over time4. As the phase evolves, there is a fan shape in the 
spread of phase curves and averages over single cells33 (Supplement Fig. S3).This can be explained by stochastic 
intracellular variation that will result in phase variation, as well as a quorum sensing signal that synchronizes 
cells to the phase mean.

If this synchronization is enabled by a chemical signal diffusing in the media between cells in the artificial 
tissue, then diffusion theory can be used to calculate an upper limit on the size of the communication signal (See 
“Materials and methods”) of 13.05 nm. This includes the possibility of the signal being a protein45.

A quorum sensing deterministic model predicts circadian oscillations of the artificial tissue at 
the macroscopic limit.  As the macroscopic limit is approached, the full stochastic network describing the 
clock in single cells goes to a deterministic limit33, and a deterministic model can be used to describe the behav-
ior of the clock under a quorum sensing hypothesis13. Each field of view that contains around 1700 cells (Fig. 3a) 
can be thought of as one giant cell. The molecular counts of genes and their cognate products are large in number 
with little stochastic intracellular variation in molecular counts of species in Fig. 5. Under the quorum sensing 
hypothesis, the clock reaction network is specified in Fig. 5a. This clock reaction network has a substantial body 
of empirical support at both the macroscopic and microscopic levels4,13,14,32,33,46–48. The three clock mechanism 
genes are white-collar-1 (wc-1), white-collar-2 (wc-2), and frequency (frq). The genes wc-1 and wc-2 are the posi-
tive elements in the clock network, and the frq gene is the negative element49. Meanwhile, the gene frq encodes 
the oscillator37. The concentration of the encoded protein FRQ, provides to the cell, the time of day. The FRQ 
protein is the pendulum on the clock, while the transcription factor complex WCC = WC-1/WC-2 is the hand 
that starts the pendulum FRQ moving38. The negative effect by FRQ occurs by its action as a cyclin to recruit a 
kinase/phosphatase pair to deactivate WCC​40. This results in a negative feedback loop that explains in part how 
the clock mechanism produces oscillations46. The description of the dynamics of the clock mechanism genes and 
their encoded products have been identified in earlier work46.

In addition to the clock mechanism genes, there are two clock-controlled genes (ccg) as outputs of the clock 
mechanism. The hypothetical gene ccg encodes the quorum sensing signal CCG, and the gene ccg-2 encodes 
a hydrophobin CCG-2, whose promoter is being used as the hands on the clock mechanism42. The gene ccg-2 
also happens to be the best characterized clock-controlled gene50. The dynamics (e.g., rate constants) of the clock-
controlled genes are given in previous work as well48,51. All of the rate constants in these pieces of the model 
have been identified14, including transcription rates denoted with an S, translation rates, with an L, and decay 
reactions for mRNAs and proteins, with a D. The new piece in the model with unknown parameters identified 
here by ensemble methods52 (Fig. 5) is the communication between cells involving the quorum sensing signal13.

The quorum sensing model rests on a “mean-field” assumption where the quorum sensing signal Se diffuses 
instantaneously and uniformly within the big chamber microfluidic device so that all cells experience the same 
concentration of the signal [Se] in the device. This assumption is supported by the data (Fig. 1d). The signal in 
a cell Sj itself is encoded and ultimately produced by the ccg gene at a rate KS1 and decays in the media at a rate 
D10 and at a rate D9 in a cell. This signal diffuses in or out of a giant cell, respectively, at a rate η or ηext . depend-
ing on the concentration inside ([Sj ]) or outside ([Se ]) of the cell and on volumes of the field of view and of the 

Figure 2.   Periodogram of experiments done with MFNC942 conidial cells placed in different media solutions 
while running a 10 day long experiment in the big chamber microfluidic device. Periodograms were generated 
with ~ 145,000 cells for each experiment. The plots were created in MATLAB_R2020B (https://​www.​mathw​orks.​
com/​produ​cts/​matlab.​html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Figure 3.   Pairwise phase trajectories of 5 fields of view in a transect across the artificial tissue in the big 
chamber device are highly correlated. Cells were grown in Media 513. (a) Fields of view are shown in the artificial 
tissue. Each field of view contains ~ 1700 cells. (b) The phases between all pairs of fields of view are graphed over 
10 days in the big chamber device43, and their computation is described in “Materials and methods”. The plots 
were created in MATLAB_R2020B (https://​www.​mathw​orks.​com/​produ​cts/​matlab.​html).

Table 1.   Measures of synchronization (K) between 5 different fields of view (FOV) along a transect through 
the artificial tissue in Fig. 3a exceed 0.97 using the Kuramoto K44.

K FOV 1 FOV2 FOV3 FOV4

FOV1 – – – –

FOV2 0.9563 – – –

FOV3 0.9373 0.9531 – –

FOV4 0.9318 0.9474 0.9513 –

FOV5 0.9182 0.9262 0.9267 0.9441

https://www.mathworks.com/products/matlab.html


6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6750  | https://doi.org/10.1038/s41598-022-10612-2

www.nature.com/scientificreports/

cell with 8 µm diameter53. This diffusion assumption about the signals has been successfully used, for example, 
in modeling the synctitium of nuclei of the Drosophila developing blastoderm54. Since the field of view and cell 
diameter are basically the same, the areas of the field of view and of the tissue in the field of view determine the 
diffusion. In previous work a reasonable way for the quorum sensing signal to interact with WCC was deter-
mined, and the interaction was argued to be a negative effect on WCC production13. With these assumptions 
the diagram in Fig. 5a specifies the following system of ordinary differential equations (ODEs)55 to describe the 
clock dynamics at the macroscopic limit:
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Figure 4.   The trajectories of [CCG-2] fluorescence over all 5 fields of view in Fig. 3a aligned almost perfectly. 
The fluorescent intensity was normalized and detrended with a 24 h moving average over time. The plots were 
created in MATLAB_R2020B (https://​www.​mathw​orks.​com/​produ​cts/​matlab.​html).

https://www.mathworks.com/products/matlab.html
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Figure 5.   Quorum sensing and contact models for synchronizing clocks in single cells: (a) quorum sensing 
model. This is a modification of Fig. 4a in previous work13; (b) contact model.
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For simplicity the subscript for a field of view j on all molecular species in (1)–(20) has been suppressed. The 
Hill cooperativity coefficients n and m were taken as 4 in fitting models below based on previous work46. This 
deterministic model falls in the class of transcriptional repression models56.

The big chamber device is not sufficient to test this quorum sensing model due to the loss of phase information 
between cells in each field of view within the big chamber device (Fig. 1a–d). Hence, a new microfluidic device 
called a “microwell device” was constructed (see “Materials and methods”) (Fig. 1e–f). There are up to 15,876 
wells within this device. Each well is 10 μm deep and 10 μm in diameter to trap one conidial cell of average size. 
Individual cells are easily tracked over 10 days, and their phase information about their individual clocks can 
be recovered43.

Following the example of the classic work characterizing glycolytic oscillations in Saccharomyces cerevisiae 
with a mixing experiment57, two populations of cells that were 12 h out of phase were then mixed together4, 
and then their synchronization was observed over time (Fig. 6d). The 240 cells were clustered by their single 
cell trajectories (from 0 to 30 h) into two separate clusters known as CCG​1 and CCG​2. An average of the clus-
ter is taken to create an equivalent of a field of view, but the phase information of each single cell trajectory is 
preserved. The averages of the single cell trajectories in cluster 1 (CCG​1) and cluster 2(CCG​2) for the CCG-2 
recorder construct42 are in good agreement with their model ensemble averages for the quorum sensing model 
(Fig. 6a–b). An examination of the observed trajectories or the expected trajectories of the CCG-2 recorder42 
also reveals that the clusters of trajectories become synchronized in the first 80 h (Fig. 6c–d). The use of the 
microwell device has then refined the estimate of the macroscopic limit from ~ 150,000 cells to 15,876 cells per 
device area, at which phase synchronization of cellular oscillators is achieved.

As a control, these two cell populations used in the mixing experiment (Fig. 6) were loaded separately into 
2 microwell devices with one population receiving an additional 12 h of light before shifting to the dark and 
observed over 10 days. These two isolated populations were then mixed in computero and clustered as in the real 
experiment (see “Materials and methods”). The artificial mixture was then clustered, and over 80% of the cells in 
the mixture on the computer were correctly assigned to their true subpopulation membership.

To test the quorum sensing hypothesis at the macroscopic limit an ensemble of deterministic models speci-
fied by Eqs. (1–22) was fitted to two CCG-2 trajectories for two clusters of cells in the microwell device (Fig. 6) 
(See “Materials and methods” with all tests reported below being omnibus except as noted). All parameters in 
the model were estimated (Table 2). The purpose of the ensemble method is to identify models consistent with 
the data in Fig. 6 when the number of measurements is limited, but the number of parameters (Fig. 5) is large. 
Ensemble methods were originally developed by Boltzmann58,59 and were first introduced into systems biology 
in 200252,60. While an individual model in the fitted ensemble may be a poor predictor of the system, the average 
over all 40,000 models in the ensemble is quite a good predictor of system behavior (see “Materials and meth-
ods”). Not only does it allow prediction of how the system behaves (Fig. 6a,b), but it also tells us what we know 
and don’t know about the clock network, for example. For example, in Table 2 the estimated lifetime of the FRQ 
protein (1/D6 in Table 2) is about 1.7 h. The estimated value is a little shorter than the value at the macroscopic 
limit of 4–7 h39. The estimated lifetime of the stabilized wc-1r1 is a critical parameter in maintaining stable 
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circadian rhythms46. Here its estimated lifetime is 1/D7 = 24 h (Table 2), while the measured value of 128 h was 
also long46. In general there was concordance between estimates of the rates (Fig. 5a) at the single cell level and 
macro scales33. In addition to the estimated parameters informing how the oscillations are sustained, the model 
identification through the standard errors (Table 2) tells us which rates are well specified by the data and which 
are not well specified. Both decay rates, D6 and D7, are well specified; however, there are other rates below that 
are not as well constrained by the data. The focus below is on the new parameters related to communication 
between cellular oscillators.

As a control on this Markov Chain Monte Carlo (MCMC) experiment, the chi-squared statistic χ2 was plotted 
as a function of sweeps (Fig. 7a), i.e., a visit on average of once to each of the 71 parameters (i.e., 28 rate constants 
and 43 initial conditions of molecular species) in the model (Fig. 5a). The MCMC experiment has equilibrated 
by sweep 2431 (Fig. 7a). The equilibration run yielded an ensemble of models with a good fit with χ2 = 2016  to 
n = 442 time points or χ

2

n  = 4.56. The only departure of the model ensemble from data appears in the amplitude 
predicted for peak 3. So, the equilibration run was successful in converging to a well-fitting ensemble (Fig. 7a) and 
implies that the deterministic models collected in the accumulation run will fit the field of view data very well. 
As a second control, the communication parameters were plotted as a function of sweep (Fig. 7b) in the accu-
mulation phase of MCMC. As expected, there was no systematic trend in the diffusion coefficient η with sweep.

The MCMC experiment is summarized in Fig. 7c. The model average over the ensemble was used to predict 
successfully the two clusters of CCG-2 trajectories over time in each field of view, CCG​1 and CCG​2. The fitted 
ensemble predicted the cluster 1 data quite well at the macroscopic limit. Some of the behavior of the ensemble is 
shown for the hypothetical signaling molecule concentrations inside and outside a cell. The signal concentrations 
[

Sj
]

  in each giant cell j (S1 and S2) of the hypothetical quorum sensing signal is clearly oscillating and driving the 
oscillations within each giant cell in a field of view (Fig. 7d). The media concentration of [Se] also appears to be 
oscillating. Our resulting model suggests that the signal concentrations in each cell appear to synchronize with 
the signal concentration in the media.

Summary statistics across the fitted ensemble for the 28 rate constants (their means and standard errors) are 
given (Table 2), and the best fitting model with initial conditions is found in Supplement Table S1. There are four 
key parameters in the clock mechanism46, the rate of activation of the oscillator gene FRQ by WCC (A), the rate 
of deactivation of the oscillator gene FRQ by WCC(Ā), the rate of deactivation of FRQ (P), and the rate of decay 
(D7) of the stabilized wc-1 mRNA (wc-1r1). All of these values are in good agreement with their inference from 
previous data sets on a macroscopic and microscopic scale (Supplement Table S1).

The new information is the inference about the communication parameters, KS1, C4, D9, η , ηext , and D10. 
The product of the rate of production of signal (KS1) and the effect of the signal on WCC (C4) are constant. 

Figure 6.   Data from CCG-2 trajectories fitted to an ensemble of deterministic model. (a,b) The trajectories 
of the fluorescent recorder are observed to synchronize in the first 80 h, and in the best model in the fitted 
model ensemble (Supplement Table S1) under quorum sensing synchronization was observed as well. Single 
cell trajectories were clustered into two groupings. Then the 240 single cell trajectories were averaged to create 
a “field of view” similar to the big chamber device. These two clusters of trajectories were then fitted by the 
ensemble method to the quorum sensing model in Fig. 5a46. (c,d) Plots of the simulation data and experimental 
data shows trajectories that are synchronized. The plots were created in MATLAB_R2020B (https://​www.​mathw​
orks.​com/​produ​cts/​matlab.​html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6750  | https://doi.org/10.1038/s41598-022-10612-2

www.nature.com/scientificreports/

So, only one of these two parameters can vary independently. There is limited information about the diffusion 
rates as seen by plotting the chi-squared surface as a function of the diffusion coefficients, η and ηext , with the 
rest of the parameters at their best values (Supplement Fig. S5). There is a lower bound on η of around 20 and 
little information about ηext . The chi-squared surface supports smaller values of  ηext and larger values of η for 
the diffusion rates. The rate of production of the quorum sensing signal (KS1) is large as expected13. The decay 
rate of the signal within the cell (D9) is predicted to be quite large (D9 = 10.484 h−1) with a lifetime of 0.1 h, and 
the decay rate outside of the cell (D10) is predicted to be quite large (D10 = 2.375 h−1) with a lifetime of 0.42 h.

A variety of clock mutants exist in the biological clock of N. crassa. Some of the clock mutants (e.g., period-4 
(prd-4), 18 h; frq-1, 16 h)61 have shorter periods than MFNC9 (21 h)13; others have longer periods (e.g., frq-7, 
29 h)61. These mutants provide an independent validation of the circadian signals seen in single cells using fluo-
rescent strains of these mutants. Here we measured the period of these clock mutants in single cells over 10 days 
(Fig. 8). The resulting periods (Fig. 8) agree with mutants observed in race tubes61. This is another example of 
circadian behavior in microwell devices being consistent with measurements on the macro scale.

A contact model is also used to predict the circadian oscillations of an artificial tissue at the 
macroscopic limit.  An alternative to the quorum sensing hypothesis is cell-to-cell communication or a cell 
contact hypothesis (Fig. 5b). This mechanism operates in cell aggregation of Myxococcus xanthus21,62. Under 
this hypothesis only cells in physical contact (as in the tissue in Fig. 1c) can share their communication signal. 
Meanwhile, the cell contact model is much more straightforward because there is no signal and no decay of 
signal present in the medium (Fig. 5b vs. 5a). The diffusion coefficients, η and ηext , are replaced with one dif-
fusion coefficient D of the signal between cells. So, there are 4 more parameters in the quorum sensing model 
(Fig. 5a), [Se] at time 0, D10, η, and ηext , than are in the contact model and one added diffusion coefficient (D) 
between cells in the contact model; therefore, the contact model has 3 degrees of freedom less than the quorum 
sensing model. The model is captured in Fig. 5b and specifies the same system of ODEs in Eqs. (1)–(20) but with 
Eqs. (21–22) replaced by (23):

Table 2.   The moments of the rate constants across the ensemble for the quorum sensing hypothesis derived 
from a microwell experiment.

Rate constant
Ensemble mean for each rate under quorum sensing for the microwell D/D 
experiment

Ensemble Standard error (SE) of rate across ensemble computed under 
quorum sensing for the microwell D/D experiment

A 6.946009E−03 3.313135E−06

Ā 9.969590E−02 8.297570E−05

S1 3.320978E+01 1.923567E−02

S3 1.041769E−03 2.155980E−04

S4 1.951816E+01 8.880192E−03

D1 1.164574E+00 9.405917E−04

D3 1.870605E+00 6.546756E−04

C1 1.665926E−03 1.348076E−06

L1 4.165664E+01 2.685045E−02

L3 5.276481E+00 3.137782E−03

D4 5.395039E−01 2.537757E−04

D6 5.761848E−01 2.585495E−04

D7 4.217466E−02 3.477031E−05

D8 4.741010E−05 8.957513E−06

C2 3.580439E+00 2.470929E−03

P 9.767857E+01 5.976836E−02

Ac 1.064269E+01 5.098955E−02

Bc 9.094971E−01 2.667601E−03

Sc 1.490714E−03 2.502344E−06

Lc 1.145927E−08 3.711730E−11

Dcr 5.943974E+01 1.366934E−01

Dcp 4.044340E−01 6.436382E−04

KS1 2.408651E+09 2.156671E+08

C4 1.234348E+00 5.422941E−02

η 2.038943E+00 7.304766E−01

ηext 2.466155E+01 2.222896E+00

D9 1.484148E+01 2.340141E−01

D10 2.374897E+00 7.021016E−01
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To test the contact hypothesis at the macroscopic limit an ensemble of deterministic models specified by Eqs. 
(1–20, 23) was fitted to two CCG-2 trajectories for two fields of view in the microwell device (See “Materials and 
methods”)46. As a control on this MCMC experiment the chi-squared statistic χ2 was plotted as a function of 
sweep (Fig. 9a). The equilibration run yielded an ensemble of models with  χ2 = 4372 or χ

2

n  = 9.89, after 3,187 
sweeps compared to previous results46. So, the equilibration run was not successful in converging to a well fitting 

(23)
d
[

Sj
]

dt
= −D9 ∗

[

Sj
]

+ Ks1 ∗
[

[CCG]+ η ∗
(

−2
[

Sj
]

+
[

Sj+1

]

+
[

Sj−1

])]

, j �= 1, n

Figure 7.   The model ensemble fitted to fluorescence of MFNC942 cells with a ccg-2 promoter in the microwell 
device averaged over two clusters of single cell trajectories initially with different phase (Fig. 3a) supported the 
quorum sensing hypothesis in a MCMC experiment. (a) As a control on the MCMC experiment the chi-squared 
statistic χ2 was plotted as a function of sweeps, i.e., a visit on average to all 71 parameters in the model. The large 
chi-squared statistics for sweeps 1–29 were removed to allow the rest of the chi-squared plot to be resolved. (b) 
As a second control two of the communication parameters were plotted as a function of sweeps to check that 
there is no trend with sweep in the MCMC experiment. (c) The MCMC experiment demonstrated that the 
measured fluorescence on one field of view fitted the quorum sensing model. (d) The quorum sensing signals 
within the two giant cells did oscillate, and they appeared to converge. The plots were created in MATLAB_
R2020B (https://​www.​mathw​orks.​com/​produ​cts/​matlab.​html).

Figure 8.   Periodogram or power spectrum of clock mutants and the noise model control. Validating the 
circadian signal obtained in single cells in a microwell device with clock mutants of different period. The 
periodograms are reported for 3 mutants in the microwell device. All detrending was done with a 24 h sliding 
window except for frq7 with its 26 h observed period. A 30 h sliding window was used for frq7. An artificial 
dataset for a sinusoid of 30 period was also created to check that the moving averaging detrending behaved 
appropriately to generate the simulated period of 30 h. The plots were created in MATLAB_R2020B (https://​
www.​mathw​orks.​com/​produ​cts/​matlab.​html).
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ensemble (Fig. 9a) and implies that models collected in the accumulation run do not explain the field of view data 
as well as the quorum sensing hypothesis. The MCMC fitting experiment is summarized in Fig. 9c. The model 
average over the ensemble was used to predict successfully the measured CCG​2 trajectory over the first cycle 
(Fig. 9c), but not CCG​1. Some of the behavior of the ensemble is shown for the hypothetical signaling molecule 
concentrations inside two giant cells. The hypothetical quorum sensing signal concentrations within a cell are 
clearly not oscillating in a sustained way and not driving the oscillations within each giant cell (Fig. 9d). As a 
consequence, the model had problems in fitting the first field of view as the communication between fields of view 
was not rapid enough for the convergence of the fluorescent cycles (CCG​1 and CCG​2). As a second control, the 
communication parameters were plotted as a function of sweep (Fig. 9b) in the accumulation phase of MCMC. 
The parameters displayed little trend, indicating further equilibration was not needed.

Direct Test of the Contact Model versus quorum sensing hypothesis.  The microwell microfluidic 
device provides the opportunity to test the quorum sensing hypothesis against cell-to-cell communication or 
contact hypothesis. Based on the single cell data alone, the final chi-squared goodness of fit of the two mod-
els were significantly different ( χ2(contact) – χ2(quorum)) = 4373–2019 = 2354, df = 3, P < 0.0001). Relevant to 
distinguishing quorum sensing from a contact hypothesis, some of the microwells contain 2–3 cells, and other 
wells contain only 1 cell. If single cells are truly isolated and require physical contact for synchronization as in 
the big chamber device, the prediction is that the isolated single cells should not synchronize under the contact 
model. A second prediction is that under both quorum sensing and contact models there should be less variation 
and more synchronization in the fluorescent cells with 2 or more neighbors in a well. The results of this test are 
shown in Fig. 10.

The F-ratio comparing the variances across time was highly significant (F479,479 = 14.5144, P < 0.00001). The 
normalized standard error of single cells uniformly exceeded that of multiple cells in a well. This is consistent 
with there being less synchronization in single cells than between wells with multiple cells. The synchronization 
is also computed for the two cell populations to answer the question whether there is significant synchroniza-
tion in single cells.

As a negative control the Kuramoto order parameter K was calculated on 1,644 conidial cells isolated in drop-
lets in a flow-focusing microfluidic device13. The resulting Kuramoto K in 1-cell droplets in the flow-focusing 
device was K = 0.0322 ± 0.000743. In contrast, the synchronization measure K in 1-cell microwells and multi-cell 
microwells were 0.7018 ± 0.0066 (n = 178 in Kuramoto K) and 0.7220 ± 0.0055 (n = 23 in Kuramoto K) respectively, 
which are significantly greater than the negative control. The conclusion is that single cells in microwells are 

Figure 9.   The model ensemble fitted to fluorescence of MFNC942 cells with a ccg-2 promoter in the microwell 
device integrated over two fields of view (Fig. 3a) did not support the contact model in a MCMC experiment. 
(a) As a control on the MCMC experiment the chi-squared statistic χ2 was plotted as a function of sweep, i.e., a 
visit on average to all 67 parameters in the model. The large chi-squared statistics for sweeps 1–50 were removed 
to allow the rest of the chi-squared plot to be resolved. (b) As a second control two of the communication 
parameters were plotted as a function of sweep to check for the presence of a trend in the MCMC experiment. 
(c) The MCMC experiment demonstrated that the measured fluorescence on one field of view fitted the contact 
model for one oscillation. (d) The quorum sensing signals (S1 and S2) within the two giant cells did oscillate in 
a damped way. The plots were created in MATLAB_R2020B (https://​www.​mathw​orks.​com/​produ​cts/​matlab.​
html).
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showing synchronization without physical contact with other cells. This observation provides support for quo-
rum sensing. The two Kuramoto K values for 1-cell/microwell and multiple cells/microwell are also significantly 
different ((z ≈ t1998 = 45.7035, P < 0.00001). It is possible that the slightly larger Kuramoto order parameter could 
be due to both a contact hypothesis and quorum sensing acting in synchrony. Hence, the contact hypothesis 
cannot be completely eliminated.

Cell density and signal concentration affect cellular clock phase synchronization.  With evi-
dence for quorum sensing one prediction of the quorum sensing hypothesis was tested. A hallmark of quorum 
sensing is a density dependent effect on the behavior. For example, induction of Conidial Anastomosis Tubes 
or CATs in N. crassa appears to be a quorum sensing behavior, which is density dependent64. In N. crassa one 
hypothesis is that cell density should have an effect on communication between cellular clocks and hence their 
synchronization65.

The microwell device in Fig. 1e–f had a cell density of 15,876 wells per area or volume of the microwell 
chamber, which is kept constant. The second microwell device with five chambers was constructed on the same 
slide with four densities of 15,876, 7569, 3025 and 2116 wells in separate chambers; the remaining chamber was 
reserved for mCherry beads as a control. This would allow us to measure simultaneously whether the collective 
behavior, such as synchronization of cellular oscillators displays quorum sensing, i.e., a cell density dependence 
of quorum as evidenced by cellular clock synchronization (Fig. 11). This experiment was replicated 5 times suc-
cessfully to yield the relation in Fig. 11b. As the density increases, so does the synchronization of cellular clocks 
as measured by the Kuramoto K (Fig. 11b). In each of these 5 replicate experiments yielding the relation in 
Fig. 11b, the slope was always positive. By a nonparametric sign test on the 5 slopes66, this implies the P-value is 
(

1
2

)5 = 0.0325, which is significant at the 0.05 level. These measurements begin to chart out the phase transition to 
synchronization. The conclusion is that collective behavior of synchronization depicts quorum sensing behavior.

It is natural to ask whether or not other properties of cellular clocks have a relation to density as found in the 
cell density-dependent glycolytic oscillations in S. cerevisiae65. If cellular oscillators were in phase, they might 
be expected to reinforce the circadian signal. In fact, there also appears to be a significant relation between the 
average amplitude of cellular clocks (as measured by the maximum in the periodogram or power spectrum) and 
their density in the microwell device as they synchronize (Fig. S6a), but not with period (Fig. S6b) in contrast 
to glycolytic oscillations65.

While the quorum sensing model has a substantial body of empirical support at both the macroscopic and 
microscopic levels4,13,14,32,33,46–48, it is sometimes useful to consider a simpler heuristic model at the center of 
both collective behavior10 and statistical physics23,67, namely the Kuramoto model of phase synchronization, 
to highlight how phase synchronization is taking place. The model shares some features with our clock model 
of quorum sensing, such as a mean- field assumption about the quorum sensing signal. This Kuramoto model 
also focuses entirely on phase synchronization being described here and has been used previously to elucidate 
the clock model13.

Figure 10.   The standard error in fluorescence of single cells is significantly higher than that of multiple cells in 
the microwell device. There were 178 single cells in microwells, and 23 cells that were not isolated from each 
other. 1000 bootstrap samples were taken at each time point and used to calculate a variance (and hence 
standard error) at each time point. At each time point a root mean square error for single cells (X) and multiple 
cells (Y) was calculated with n = (178 + 23): 

√

∑
((

1

n

)(
∑

X2 +
∑

Y2
))

 and used to normalize the standard 
errors for single and multiple cells. Plots was created in MATLAB_R2020B (https://​www.​mathw​orks.​com/​produ​
cts/​matlab.​html).
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In this model there are n oscillators with constant intrinsic frequencies ωi and measured variable Hilbert 
phases φi . Kuramoto connected these in a system of ODEs to which stochastic intracellular noise has been added:

where K is the unknown coupling constant between all of the n oscillators and ǫi is the stochastic intracellular 
white noise in the cellular clock with mean 0 and variance σ 2 . A stochastic Runge–Kutta Method (SDEs)68 and 
Markov chain Monte Carlo (MCMC) were applied to identify the Kuramoto model. The ensemble method was 
used to fit the phase trajectories of the stochastic Kuramoto model to the measured Hilbert phase trajectories of 
each of the oscillators in Fig. 7 to examine the phase synchronization. In carrying out the fitting the initial Hilbert 
phase of each of the n oscillators at time 0 ( φ_i(t = 0)) and the coupling constant K were the parameters to be 

dφi

dt
= ωi + K

n
∑

j=1

(

sin
(

φj − φi
))

+ ǫi , i = 1, . . . , n,

Figure 11.   Microwell-based microfluidic chip with varying cell density gradient. (a) Fluorescence images of 
four chambers containing varying microwells of 15,876(S1), 7569(S2), 3025(S3), 2116(S4) respectively. The 
number of cells that was able to be tracked with Cell Profiler were 5198(S1), 2452(S2), 999(S3) and 829(S4) cells. 
Scale bar: 100 μm. (b) Robust Regression of Kuramoto K on density of cells for each microwell chamber using 
an M-estimator63 from 5 separate and independent microwell experiments. The predicted robust regression line 
is K = 0.70 + (3.96 ± 3.40)(10–6) × density (t17 = 1.2814, P = 0.1086). The test was one-sided because the expectation 
is that K would increase with density. Almost the same regression line was obtained with ordinary straight 
line regression. At least 5,000 cells were tracked in each microwell experiment. In all 5 replicates by themselves 
each experiment produced a positive slope between Kuramoto K and density. A sign test for a positive slope in 
the 5 replicates has a P = (1/2)5 = 0.03. Bootstrap resampling of 100 single cells was carried out to obtain the 
standard deviation (SE). The SE for each microwell chamber are 0.0015(S1), 0.0030(S2), 0.0039(S3), 0.0058(S4). 
(c) Plot of the experimental results of phase vs. time (5 days) with the data used in Fig. 6. (d) Simulation results 
of the ensemble method used to obtain the Hilbert phase trajectories in Fig. 6. It displays the synchronization 
of two different group of cells. Plots was created in MATLAB_R2020B (https://​www.​mathw​orks.​com/​produ​cts/​
matlab.​html).
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identified. The initial frequencies ωi were sampled from the measured frequencies from a periodogram of isolated 
cells4. The fit was excellent with a chi-squared per data point of χ2/n = 0.69. The resulting coupling constant of 
K = 10.0094± 0 .0018 was substantial, which provides another line of evidence of the phase synchronization of 
the oscillators through a quorum sensing signal in Fig. 11d. Furthermore, the spread over time in Hilbert phases 
of the oscillators graphically portrays the tug of war between the quorum sensing signal to synchronize the oscil-
lators and the noise ǫi decoupling them.

Discussion
In previous work we have shown that by varying the microfluidic device and hence the cellular environment that 
there is the potential to test each of three hypotheses about the cause of the transition to phase synchronization 
of cellular oscillators32,33. One, there is a possibility that stochastic intracellular noise by itself can play a positive 
role in phase synchronization of cellular oscillators32. Experimental evidence for this neutral model was recently 
provided with a flow-focusing microfluidic device that isolated cells in droplets in previous work32,33. A second 
possibility is that a chemical signal could play a role in phase synchronization13 of cellular clocks4. Prior evidence 
for this hypothesis has been provided as well4,44. A strong inference framework was entertained for this second 
signaling hypothesis2, a signal diffusing in the media to cause synchronization13 versus the other alternative 
hypothesis involving cell-to-cell contact as a means to synchronization21. The final possibility is that cell cycle 
coupling with circadian rhythms could provide an explanation69,70 for phase synchronization of cellular oscil-
lators. This hypothesis has yet to be tested in N. crassa. By varying the microfluidic device design each of these 
hypotheses can be tested33 and used to extract information about a putative quorum sensing signal.

A big chamber microfluidic device was designed here to create an artificial tissue that allowed observation 
of single cell oscillators in the macroscopic limit of 150,000 cells (Fig. 1b). This cell number was sufficient to 
reveal the emergence of circadian rhythms (Fig. 1d). Over the dimensions of the device a high degree of phase 
synchronization was observed (Fig. 3, Table 1). In fact, the dimensions of the device allowed the estimation of a 
bound on the putative quorum sensing signal radius of 13.05 nm. The synchronization recapitulated the behav-
ior of Nakashima liquid cultures at the macroscopic limit36. It is possible that by increasing the size of the big 
chamber device to limit diffusion, phase variation in spatio-tempral patterns across the device could be seen71. 
In synthetic quorum sensing systems, spatio-temporal dynamics, such as waves, were observed over on a 400 μm 
scale, but there are other factors including the lifetime of the hypothesized quorum sensing signal S in the media 
(1/D10 = 0.42 h) in N. crassa that may have led to different behavior in the big chamber device over 1800 μm.

In order to refine the specification of the cell density at which a phase transition to synchronization takes 
place experimentally and to test whether collective behavior of synchronization was a quorum sensing behavior, a 
second microfluidic device known as a microwell device was designed to trap individual cells at varying densities. 
The quorum sensing model against a contact model of communication (Fig. 1e,f) was also tested. This device 
mimics a microtiter plate at a microscale for trapping single cells. Initially a total of up to 15,876 cells in wells 
in the microwell device could be individually tracked and measured for their fluorescence over 10 days (Fig. 6). 
Averaging over the single cell trajectories permitted the examination of phase synchronization in the macroscopic 
limit while preserving the phase information of individual trajectories (Figs. 7 and 9). Both the quorum sensing 
and contact models were fitted to experimental data. The results favored the quorum sensing model as cells were 
able to synchronize at a faster pace. The single cell measurements in the microwell device were also validated 
by the use of mutants with varying period microscopically, and the measurements in a microwell device were 
concordant with those at the macroscopic scale61 (Fig. 8). Yet, even the quorum sensing model is a simplification. 
Those systems displaying quorum often utilize not one signal, but multiple signals72. N. crassa quorum is likely to 
be more complex than hypothesized here. Some improvements in measuring phase synchronization in these new 
microfluidic devices should be possible with better single cell tracking methods73. While the microwell device 
is an elegant design that allows simultaneous testing of phase synchronization, density-dependence of quorum 
sensing, and the contact hypothesis, it has limitations. It is possible to envision other more specialized designs 
that more strongly test the contact hypothesis, and these designs should be pursued. Implementing the microwell 
design required 11 trials with 5 successes to overcome problems with number of cells tracked less than 5,000 
(3 experiments failed to meet this criterion), cells growing as a failure (2), or an image stitching problem (1).

Several results support the quorum sensing hypothesis: (Fig. 7) fitting of the quorum sensing mode; (Fig. 10) 
greater variance in single cells vs. multiple cells in microwells; (Fig. 11) density effect on phase synchroniza-
tion; (Fig. S6) density effect on amplitude. There was also one additional piece of data that was supportive of 
the quorum sensing hypothesis. Wells with single isolated cells in the microwell device still displayed phase 
synchronization (Fig. 10). This observation can be explained by the theory of the existence of a diffusible signal, 
but not solely with a contact model hypothesis. This result, however, does not rule out the possibility that both 
quorum sensing and contact could still be playing a role in chemical communication between cellular clocks.

To test directly whether synchronization of cellular clocks was a quorum sensing behavior as in CAT induc-
tion in N. crassa64, the density of cells was varied in one microwell device with multiple chambers at different cell 
densities (Fig. 11a). Synchronization was density-dependent as measured by the Kuramoto K order parameter 
and appeared to represent a second order continuous phase transition. Synchronization appeared to be occurring 
over the range of densities from 2166 to 15,876 wells with cellular clocks (Fig. 11a). That raises the question of 
how density-dependence enters into the quorum sensing model. A specific hypothesis of how this arises will be 
addressed with new approaches in metabolomics of living systems in real time74.

With several lines of evidence now for quorum sensing to explain phase synchronization between cellular 
clocks, the remaining question is—what is this signal molecule? From the experiment with the big chamber 
device (Fig. 3), an upper bound on the radius of the quorum sensing molecule of 13.05 nm was obtained. This 
upper bound includes the possibility that the signaling molecule is a protein as in the quorum sensing signal in 
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the fungal pathogen, Cryptococcus neoformans45. Another possibility is that the quorum sensing signal interacts 
with the extracellular matrix of N. crassa, thereby reducing the measured rate of travel of the signal across the 
big chamber device and hence an increase in the estimated radius of the signal molecule. Our speculation at 
this time is that the second possibility is more likely and that the signal molecule is actually a metabolite. It is 
of considerable interest to isolate this signal molecule to explain the origin of the clock at the macroscopic scale 
from the behavior of single cellular clocks4. Isolating the quorum sensing signal will serve to test the upper bound 
on its estimated size of 13.05 nm.

While conidial cells are relatively easy to manipulate, a remaining challenge is the study and manipulation of 
the filamentous stage in the fungal syncytium with microfluidic devices75–77. It is very likely that by considering 
other life stages in the fungal synctitium other mechanisms of cellular communication will be uncovered and 
found to be involved in the phase transition to synchronization of cellular oscillators78.

Conclusion
A “big chamber” microfluidic experiment was fabricated to demonstrate that communication existed between 
cells in an artificial tissue of ~ 150,000 cells. At this macroscopic limit there was a high degree of phase synchro-
nization between cells in the artificial tissue. The dimensions of the “big chamber device” provided an upper 
bound on of 13.05 nm radius for the putative quorum sensing signal, which includes the possibility that the 
signal is a protein. In a second microfluidic experiment utilizing a microwell device housing ~ 15,876 wells, the 
phase of individual cells could be captured. This enabled a refinement of phase synchronization occurring with 
no more than 15,876 wells per chamber. A microwell with varying microwell arrays assisted in confirming that 
cells were able to synchronize with lower well density of 2116 per chamber in a microwell device. With the result-
ing single cell fluorescence trajectories of single cells in the microwell device, a strong inference framework2 was 
established to test a quorum sensing hypothesis versus a contact hypothesis for communication using ensemble 
methods. The ability to isolate single cells in individual wells showing phase synchronization provided strong 
evidence for the quorum sensing hypothesis and some information about the communication parameters that 
quantitate quorum sensing. Using the microwell devices, the collective behavior of synchronization was shown 
to be density-dependent and hence a quorum sensing behavior.

Materials and methods
Device design and fabrication.  Microfluidic devices were made of polydimethylsiloxane (PDMS) using 
standard soft lithography techniques. The microfluidic “big chamber” device consisted of one inlet and one out-
let for sample loading, an empty chamber with 1150 μm in width, 1800 μm in length and 10 μm in height. The 
microwell microfluidic device was composed of a microwell array that are 10 μm in diameter and 10 μm deep. 
microwell array contains an interlaced 126 × 126 grid of wells, resulting in a total of 15,876 wells. An additional 
microfluidic device that contained five chambers with varying microwells was fabricated and placed on one glass 
slide. The microwell array was 126 × 126 (S1), 87 × 87 (S2), 67 × 67, 55 × 55(S3), 46 × 46(S4) respectively.

Strains.  A bd,ccg-2P:mCherry,A79 known as MFNC9 as well as bd,ccg-2P:mCherry,prd-4 and bd,ccg-
2P:mCherry,frq7 , and bd,ccg-2P:mCherry,A,frq1 were utilized for most fluorescent measurements. A bd,ccg-
2P:mCherry,A,frq7 and A bd,ccg-2P:mCherry,A,frq1 were created by the crosses MFNC9a x frq1,bd (FGSC 2670) 
and MFNC9a x frq7,bd (FGSC 4878), and the prd-4 fluorescent mutant was described previously13.

Microfluidic experimental setup.  MFNC9 cells and related strains with the mCherry recorder were first 
placed under an LED light source (color temperature 6500 K) for 26 h in three different media: (1) media 5 
described previously13; (2) 0.1% glucose + Vogel’s media80; (3) 0.001 M quinic acid + Vogel’s media. Cells were 
loaded into the big chamber polydimethylsiloxane (PDMS) microfluidic device (Fig. 1) using a syringe pump at 
a flow rate of around 5 μL min−1. For the microwell device, 50 μL of 70% ethanol was pipetted into the inlet, fol-
lowed by priming with 50 μL of 1 × PBS supplemented with 0.1% (w/v) bovine serum albumin (BSA). This was 
followed by pipetting 30 μL of cell suspension. Cell concentration of 6 × 107 cells/ml were used. Extra cells that 
were not captured in microwells were washed away with extra media. mCherry beads (Takara Bio) are loaded 
into one of the microwell chambers as a control for all experiments.

Imaging and cell tracking.  A CCD camera (AxioCam HRm, Carl Zeiss Microscopy, LLC, Thornwood, 
NY) was used to record the fluorescence intensity of cells through a microscope (Imager. M2, Carl Zeiss, Micros-
copy, LLC,Thornwood, NY) with a motorized x–y stage (Mechanical stage 75 × 50 R, Carl Zeiss Microscopy, 
LLC, Thornwood, NY) in a dark room. The microscope consists of a Colibri LED light source with continuous 
brightness adjustment and automatic calibration. Images were taken every 30 min with an exposure time of 
900 ms over the 10 day experiment. Loss of cell viability was measured to be 20% or less over 10 days13. Autofo-
cus was not used because it increased the exposure time and hence possibly photobleaching. The excitation light 
from a LED light source was guided through a filter set (Filter Set 60HE, Carl Zeiss Microscopy, LLC, Thorn-
wood, NY). All experiments conducted were done in an environmental control enclosure chamber (InVivo 
Scientific) at a temperature of 30 °C.

CellProfiler was used to track individual cells over time13,73 and validated against our own MATLAB cell 
tracking code over time13 reported previously. The number of cells tracked was lower as cells that grew filaments 
were discarded from the tracking process. Each fluorescence time series were normalized with mCherry beads, 
log-detrended with a 24 h moving average13, and the periodogram computed13. The fluorescence of the field of 
view was obtained by integration over the field of view. In parallel for each field of view the total fluorescence was 
normalized with packed mCherry beads, log-detrended with a 24 h moving average, and used in deterministic 
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model identification by ensemble methods. Prior work had demonstrated that variation in room temperature of 
the LED light source was 1.11% per 1 °C and highly correlated with control bead intensity81. Thus, normalization 
by the intensity of the mCherry beads removed variation in LED light source intensity”.

Estimating an upper bound on the size of the quorum sensing molecular signal.  Assuming that 
a quorum sensing molecule exists, we made an estimate that it would take 24 h for it to diffuse across the whole 
device with a size of 1800 μm. The molecular diffusion coefficient is then calculated by the following equation 
DA = La

2/tD. DA is the diffusion coefficient of the quorum sensing molecule while La is the size of the microflu-
idic device where the cells are confined in, tD the travel time and La, the travel distance. We are able to obtain a 
diffusion coefficient of 2250 μm2/min with this following equation. Next, we used the Stokes–Einstein Equation 
to obtain an estimate of the upper limit of the size with DA = kBT/(3πηdA)  where DA is the molecular diffusion 
coefficient, absolute temperature T, by the Stokes–Einstein Equation, da the diffusants molecular diameter, η the 
solvent viscosity. We were then able to obtain an upper limit of size of the quorum sensing signal as 13.05 nm.

Calculating phase.  To calculate the phase for a fluorescent series x(t), first the Hilbert transform 
x̃(t) = PV 1

π

∫∞
−∞

x(τ )
t−τ

dτ was computed from the Fast Fourier Transform82 of x(t). The Hilbert phase FH (t) is 
defined as the phase angle between the Hilbert Transform x̃(t) and x(t) by FH (t) = tan−1

(

x̃(t)
x(t)

)

t o avoid discon-
tinuities in the phase angle at π and −π , the Hilbert phase was continuized to FC(t) . The continuization was 
done recursively through the relation: FC(t + 1) = FC(t)+mC(t)2π , where at each step the argument m was 
chosen to minimize: Dfm =

∣

∣FH (t + 1)− FC(t)+ 2πm
∣

∣ . With the continuized Hilbert Phase FC(t) , the phase 

is defined by:MC = ⌊FC(t1)−FC(t0)⌋
2π  in units of cycles. An accessible description of these phase measures and code 

to calculate them in MATLAB are available43 with associated MATLAB in GitHub.

Ensemble methods.  The quorum sensing and cell-to-cell contact models specifying the ODEs in (1)–(23) 
were identified using a Metropolis–Hastings updating scheme46. Proposed solutions during the Markov Chain 
Monte Carlo (MCMC) were with an Adaptive Runge–Kutta solver. The equilibration stage involved 40,000 
sweeps. The accumulation phase involved 40,000 sweeps.

The data sets generated during the current study are available from the corresponding authors on reasonable 
request.
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