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A database of calculated solution 
parameters for the AlphaFold 
predicted protein structures
Emre Brookes1* & Mattia Rocco2

Recent spectacular advances by AI programs in 3D structure predictions from protein sequences 
have revolutionized the field in terms of accuracy and speed. The resulting “folding frenzy” has 
already produced predicted protein structure databases for the entire human and other organisms’ 
proteomes. However, rapidly ascertaining a predicted structure’s reliability based on measured 
properties in solution should be considered. Shape-sensitive hydrodynamic parameters such as the 
diffusion and sedimentation coefficients ( D0

t(20,w)
 , s0

(20,w)
 ) and the intrinsic viscosity ([η]) can provide 

a rapid assessment of the overall structure likeliness, and SAXS would yield the structure-related 
pair-wise distance distribution function p(r) vs. r. Using the extensively validated UltraScan SOlution 
MOdeler (US-SOMO) suite, a database was implemented calculating from AlphaFold structures 
the corresponding D0

t(20,w)
 , s0

(20,w)
 , [η], p(r) vs. r, and other parameters. Circular dichroism spectra 

were computed using the SESCA program. Some of AlphaFold’s drawbacks were mitigated, such as 
generating whenever possible a protein’s mature form. Others, like the AlphaFold direct applicability 
to single-chain structures only, the absence of prosthetic groups, or flexibility issues, are discussed. 
Overall, this implementation of the US-SOMO-AF database should already aid in rapidly evaluating 
the consistency in solution of a relevant portion of AlphaFold predicted protein structures.

The Anfinsen dogma, that protein sequences dictates their three-dimensional (3D) structure, was postulated 
nearly 50 years  ago1. It set in motion a quest to find methods to reliably and accurately predict 3D protein struc-
tures from their sequence, which became even more important with the full sequencing of the human and other 
genomes (see https:// www. ncbi. nlm. nih. gov/ genome). Recent spectacular advances in the 3D structure prediction 
from protein sequences by Artificial Intelligence (AI) programs such as AlphaFold (AF) and RoseTTAfold appear 
to have revolutionized the field in terms of accuracy and  speed2,3. Boosted by their success in predicting structures 
to near (and sometimes even better than) crystallographic accuracy, the AlphaFold consortium (https:// alpha 
fold. ebi. ac. uk) has already made publicly available a series of databases of predicted protein structures first for 
the entire human and several other organisms  proteomes4, and more recently for the entire UniProt database of 
curated  sequences5 (https:// www. unipr ot. org).

However, these AI programs have not tackled the folding issue from a thermodynamic/mechanistic approach, 
but rather by combining many different observations in a deep learning  process6,7. Apart from simple cases of 
highly homologous sequences, or clearly recognized folding classes, to reasonably rapidly ascertain the degree 
of confidence of a predicted structure based on a few measured properties in solution we believe should become 
a necessary step. For instance, besides known occurrences of multi-chain proteins, determining a molecular 
mass M in solution can immediately verify the protein oligomerization state and prompt for the need of further 
modeling. On a different level, circular dichroism (CD) spectroscopy, possible on very small sample  amounts8, 
would permit a rapid check of the actual secondary structure content of a predicted 3D structure.

Particularly useful for known single-chain proteins in the AF databases, shape-sensitive hydrodynamic param-
eters such as the translational diffusion and sedimentation coefficients ( D0

t(20,w) , s
0
(20,w) ) and the intrinsic viscosity 

([η]), could provide a robust assessment of the overall fold likeliness. These measurements, requiring little mate-
rial and with a reasonably quick turnaround, are usually accessible in most research endeavors, especially in core 
facilities where analytical  ultracentrifugation9,10, multi-angle static and dynamic light scattering (MALS and DLS) 
coupled to size-exclusion chromatography (SEC)11,12 or directly on plate  readers13, and SEC-coupled differential 
 viscosimetry14,15, can often be found. On another level, small-angle X-ray scattering (SAXS) measurements can 
provide the rms radius of gyration Rg and the pair-wise distance distribution function p(r) vs. r16–18. Notably, 
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several synchrotron beamlines offer on-line SEC-SAXS (e.g., Table 11.1 in Ref.19), some accepting mailed-in 
samples for this set-up (e.g., https:// www. diamo nd. ac. uk/ Users/ Suppo rt- for- Europ ean- Access- to- Life- Scien ces/ 
Appli catio ns/ Bio- SAXS. html; https:// www. embl- hambu rg. de/ biosa xs/ mailin. html; https:// www. synch rotron- 
soleil. fr/ en/ beaml ines/ swing; https:// bl1231. als. lbl. gov/ htsaxs).

Importantly, all these parameters and functions can be calculated, with varying degree of accuracy, from 3D 
structures. Among the CD spectra computational methods available, we have chosen SESCA, which appears to 
offer very accurate results for a wide variety of  structures20. The computation of the hydrodynamic parameters 
from atomic level structures is a mature field, with several approaches and corresponding software available, and 
with an average accuracy comparable to that of the experimentally determined parameters, 2–4%21,22. For the 
hydrodynamic and the p(r) vs. r distribution calculations, we have employed the extensively validated UltraScan 
SOlution MOdeler (US-SOMO) public domain  suite23–25.

This effort has allowed us to produce and make publicly available, from the AlphaFold released predicted 
protein structures databases, the comprehensive US-SOMO-AF database presented here, containing the cor-
responding calculated M, D0

t(20,w) , s
0
(20,w) , [η], p(r) vs. r, CD spectra, and other ancillary information. Note that 

the AlphaFold databases were generated from the UniProt sequences without being curated any further. For 
instance, many proteins are synthesized with either an initiator  methionine26, a signal  peptide27, or a transit 
 peptide28, which will be post-translationally removed. In addition, some proteins are also further processed by 
removal of one or more propeptide sequences (see https:// www. unipr ot. org/ help/ ptm_ proce ssing_ secti on). These 
modifications will affect the calculated parameters in an inverse proportion to protein size. As the mature form 
will be nearly always purified and studied, we have by default removed whenever possible the UniProt-identified 
initiator, signal, and transit peptide residues from the AF structures before performing the hydrodynamic, struc-
tural and spectroscopic calculations. For the propeptides, we have instead generated alternate AF structure(s) 
when they were removed (see Supplementary Methods for details).

Based on the calculated values, some analyses regarding the effectiveness of performing a screening of pre-
dicted structures against experimental parameters are presented. Advantages, drawbacks, and potential improve-
ments are then discussed.

Results
Database generation and website implementation. The steps leading to the implementation of the 
US-SOMO-AF database are outlined in “Methods” section and fully described in the Supplementary Methods 
sections. Briefly, each entry in the entire AF-v1 (and subsequently -v2) databases was first checked against the 
corresponding entry in the UniProt database to find the (putative) initiator, signal, and transit peptide regions, 
which were then removed from the AF PDB files. If propeptide sequence(s) were present, additional PDB files 
were generated with this/these region(s) removed. If more than a single propeptide was present, permuted struc-
tures were generated. These extra AF-derived PDB files have “-pp#” appended to the filename (where “#” is a 
number). Potential disulfides were identified (allowing a better evaluation of the partial specific volume v and of 
M) and written as SSBOND records in the curated PDBs, together with HELIX and SHEET information identi-
fied using the  DSSP29 implementation in UCSF  Chimera30. Batch-mode US-SOMO was used to calculate M, v , 
D
0
t(20,w) , s

0
(20,w) , the derived Stokes’ radius Rs, [η], Rg, the maximum extensions along the principal X, Y and Z 

axes of the molecule, and the generation of the p(r) vs. r distributions (normalized by the M of the structure). 
 SESCA20 was used to generate 170–270 nm CD spectra.

In Fig. 1a,b, two screenshots of the US-SOMO-AF webpage (https:// somo. genapp. rocks) are shown, with panel 
a featuring the text/data part and panel b containing the graphic output. The header contains hyperlinks to the 
US-SOMO, SESCA, and AlphaFold websites, and to Ref.24. It is followed by a warning message concerning the 
meaningfulness of the calculations when applied to “real” proteins (see “Discussion” section). By hovering the 
mouse over entries, an explanation will appear below the corresponding field on the right column. A UniProt 
accession number, or some initial part of it, can be entered in the first field (typing just the initial part and click-
ing “Search” will provide a list of corresponding entries, including alternate structures). In any case, if the code 
is present in the database, the corresponding entry will be shown in the “AlphaFold model name” field, followed 
by the “Title” and “Source” fields as retrieved from the PDB file. If an initiator methionine, a signal or a transit 
peptide, and/or any propeptide(s) were identified and their atoms removed from the current AF PDB file, their 
identity and the stretch of residues involved will be listed in the “Post Translational Processing” field, otherwise 
“none” will appear. The actual residue(s) stretch(es) present in the structure are displayed in the “UniProt residues 
present” field. Note that if any propeptide stretch was removed from the middle of a structure, the subsequent 
chain part(s) was/were renamed “B”, “C”…, without renumbering (see Supplementary Methods for details). The 
dates on which the AF predictions and US-SOMO/SESCA computations were done appear in their corresponding 
fields, and in between the “Mean confidence” field reports the calculated mean % per-residue confidence, based 
on the values present in the AF original PDB file.

The ten fields that follow report the US-SOMO computed parameters. Since the hydrodynamic parameters 
were computed with the statistically-based ZENO  method31–33, standard deviations (SD) can be generated. 
However, a SD is reported only for [η], as they are tiny for all other parameters. Note that a calculated v is pro-
vided because besides being used to compute s0(20,w) from D0

t(20,w) and M, it could also be used to compute an 
experimental M from SAXS  data18. The bottom two entries report the per-residue % of α-helix and β-sheet as 
calculated from HELIX and SHEET fields in the curated PDB. They could be compared with CD-derived values, 
besides comparing experimental and calculated spectra (see below).

External links for the current entry to both UniProt and AlphaFold websites are placed after the parameters 
listings. Curated PDB- and mmCIF-formatted files for the entry can be retrieved from the provided hyperlinks, 
as well as text files with the p(r) vs. r distribution and CD spectrum, and a csv-formatted file containing all the 

https://www.diamond.ac.uk/Users/Support-for-European-Access-to-Life-Sciences/Applications/Bio-SAXS.html
https://www.diamond.ac.uk/Users/Support-for-European-Access-to-Life-Sciences/Applications/Bio-SAXS.html
https://www.embl-hamburg.de/biosaxs/mailin.html
https://www.synchrotron-soleil.fr/en/beamlines/swing
https://www.synchrotron-soleil.fr/en/beamlines/swing
https://bl1231.als.lbl.gov/htsaxs
https://www.uniprot.org/help/ptm_processing_section
https://somo.genapp.rocks
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identifying information and the single-value parameters. All these files can be also retrieved as single compressed 
files (zip or tar.xz). Below these hyperlinks, the computed p(r) vs. r distribution and CD spectrum graphs are pre-
sented, followed by a JSmol (https:// sourc eforge. net/ proje cts/ jsmol) representation of the structure (see Fig. 1b).

Controls for the visualization and copying as an image of both graphs are provided. JSmol commands are also 
available to change the representation and export it. The default representation colors the structure according 
to the per-residue confidence level (red, lowest; blue, highest), but for a more in-depth analysis we refer the user 
to the original AF website.

In the end, parameters for a total of 365,198 and 1,002,038 structures were generated from the AF-v1 and -v2 
databases, respectively (sequences with multiple predicted segments were not included, as the computations of 
their parameters are meaningless). The AF-v2 structures, including replacements for all AF-v1 structures, are 
stored in the freely accessible US-SOMO-AF database.

General data analyses. Although it is beyond the scope of this work to provide extensive data analyses 
and interpretations, some observations can be made. To begin with, we have randomly selected from the 365,198 
AF-v1 curated structures originally present in the US-SOMO-AF-v1 database, a subset containing 41,200 pre-
dicted structures with no counterparts in the RCSB  PDB34 database (https:// www. rcsb. org), and we have ana-
lyzed their calculated properties (data provided as a spreadsheet, Supplementary Data 1).

The graphs in Fig. 2 qualitatively illustrate the potential of selected calculated parameters to distinguish 
between structures, by observing the spread of the Rs (Fig. 2a) and [η] (Fig. 2b) values for a given M value (Rs 
was chosen as a proxy for either s0(20,w) or D0

t(20,w) , the experimentally determined parameters). It is evident that 
Rs alone (Fig. 2a) can already distinguish between structures, and its ability to discriminate, albeit somewhat 
limited, does not substantially change on increasing M in the interval  104–105 Da. A significantly larger spread 
is instead displayed by [η], almost independently of M (Fig. 2b). To provide a measure of the discriminating 
ability of Rs and [η], we have grouped their values in bins spanning M intervals of 5 kDa, and we have computed 
the pair-wise% difference between each entry. Then, we calculated the percentage of pairs whose % difference 
was above two pre-established cut-offs, 6% and 9%, reflecting the potential experimental errors conservatively 

Figure 2.  Plots of selected calculated parameters for 41,200 AF-v1 predicted structures with no corresponding 
entries in the solved structures PDB database. (a) Rs vs. M, log–log scale. (b) [η] vs. M, log–log scale. (c) [η] vs. 
% decreasing mean confidence level, log-lin scale. (d) A 3D plot where M (log scale) is on the vertical Z-axis, 
and Rs and [η] are on the horizontal X- and Y-axes, respectively (both linear scales).

https://sourceforge.net/projects/jsmol
https://www.rcsb.org
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estimated around 3% (see Supplementary Methods). The results are presented in Fig. S1, and clearly show that 
the discriminating ability is practically constant, independent of both the M values and of the number of pairs. 
For Rs even a 9% cut-off would allow about 70% of the pairs to be discriminated, while for [η] this figure is 
around 90%. [η] is, however, more affected by potentially flexible regions not properly taken into account by the 
computations, sometimes leading to suspiciously very high values. Indeed, a correlation between increasing [η] 
values vs. a decreasing % confidence level in the structure prediction can be seen in Fig. 2c, becoming, however, 
much less defined when the confidence level goes below 50%. In Fig. S2a, we report a Z-scores analysis of this 
behavior. The shape somewhat follows the number of structures in each bin (Fig. S2b), as expected, since the 
chances of a sample including an individual from the tail of the distribution increases with sample size. However, 
the Z-scores seem to flatten out when the confidence level drops below 50%, likely reflecting the lack of [η] value 
clustering. Finally, Fig. 2d shows in 3D how combining two parameters, Rs and [η], can effectively increase the 
ability to discriminate. Another important parameter is Rg, but it can rarely be determined by MALS techniques, 
that have a lower detection limit of ~ 10–11 nm. While SAXS can determine Rg, it can also be used to derive the 
p(r) vs. r  distribution18, which contains more information and can be directly compared with the one computed 
from structure. Note that the effect of not taking into account the hydration water in the computation of the p(r) 
vs. r distribution is relatively minor, and its importance decreases as M increases. Therefore, plots involving Rg 
are not presented here, but could be easily generated from the Supplementary Data 1 spreadsheet.

Since the AF prediction algorithm was trained on the RCSB PDB structures, the exclusion in the above 
analysis of AF-predicted structures having a counterpart in the RCSB was done to avoid biasing this subset with 
potentially “correct” calculated parameters. However, it could be also interesting to compare some experimental 
hydrodynamic parameters with those calculated from both AF-predicted and experimental structures. Unfortu-
nately, in the AF-v1 database there were very few instances that matched the necessary criteria, that is, i. RCSB 
PDB complete structures of single chain proteins from the same organism also present in the AF-v1 database; 
ii. without prosthetic groups; iii. having verified sound experimental hydrodynamic parameters, in particular 
D
0
t(20,w) and s0(20,w) . After perusing Table 2 of Ref.24, only three proteins met these criteria, and the comparisons 

are presented in Table 1. For two proteins, human carbonic anhydrase and human serum albumin, both AF-
predicted and PDB structures produced very similar D0

t(20,w) and s0(20,w) values (inter-difference of ~ 0.6–0.9%), 
with excellent matches with D0

t(20,w) (− 2.4 to + 1.8%) and somewhat worse with s0(20,w) (− 3.7 to + 5.4%). Notably, a 
large inter-difference instead was present for soybean trypsin inhibitor (STI; − 4.6 to 4.8%), with the experimental 
D
0
t(20,w) matched better by the AF prediction and s0(20,w) by the PDB structure (this apparently odd fact can be 

explained by either experimental value being potentially incorrect). The inter-difference could be rationalized 
by superimposing the structures and calculating the RMSD between them, as reported in Table 1. The smallest 
protein, STI, has the largest RMSD, and this is apparently sufficient to be reflected in the different calculated 
D
0
t(20,w) and s0(20,w) values.

Selected examples. In Table 2, we have listed 14 entries chosen from the 41,200 mentioned above. They 
were initially selected to represent intervals from 2.2 to 0.66 in the computed Rg/Rs ratio indicating deviation 
from globular shape (Rg/Rs ~ 0.7 for a sphere). A suitable range of [η] values was also sought, as well as a good 
representation of the organisms present in the AF-v1 databases, the presence or absence of a signal peptide, and 
some spread in the mean % confidence. M, Rg, Rs, and [η] were chosen as the calculated parameters, and the 
entries are ordered by decreasing M. Connected to Table 2 is Fig. 3, that displays snapshots of the 3D structures 
for each entry colored according to the per-residue confidence level, followed by the p(r) vs. r and CD plots.

Table 1.  Comparison between experimental and calculated D0
t(20,w) and s0(20,w) for three proteins having a 

crystallographic structure and a predicted AF-v1 structure. The PDB entries had a few missing residues, which 
were previously manually  added21; the experimental parameters for all proteins were taken from Ref.24. a The 
2CAB.PDB entry and the AF-P00915 structure differ at one amino acid position, and have also a position-swap 
on another two residues; the reported MW is that of the PDB entry.

Parameter Experimental
1AVU.PDB 
(completed) % diff. with expt

AF-P01070 (no 
propeptide) % diff. with expt % diff PDB-AF

Soybean trypsin inhibitor (MW 20,083 g/mol; RMSD between structures 1.72 Å)

D
0
t(20,w) , F 9.47 ± 0.18 9.91  + 4.65 9.43  − 0.42  − 4.84

s
0
(20,w) , S 2.29 ± n.a. 2.18  − 4.80 2.08  − 9.17  − 4.59

Parameter Experimental
2CAB.PDB 
(completed) % diff. with expt

AF-P00915 (no 
Met 1) % diff. with expt % diff PDB-AF

Human carbonic anhydrase B (MW 28,744 g/mol; RMSD between structures 0.75 Å)a

D
0
t(20,w) , F 8.89 ± 0.03 9.05  + 1.80 9.00  + 1.24  − 0.55

s
0
(20,w) , S 3.01 ± 0.19 2.92  − 2.99 2.90  − 3.65  − 0.68

Parameter Experimental
1AO6.PDB 
(completed) % diff. with expt.

AF-P02768 (no 
propeptide) % diff. with expt. % diff PDB-AF

Human serum albumin (MW 66,437 g/mol; RMSD between structures 1.36 Å)

D
0
t(20,w) , F 6.31 ± 0.09 6.16  − 2.38 6.21  − 1.58  + 0.81

s
0
(20,w) , S 4.28 ± 0.04 4.47  + 4.44 4.51  + 5.37  + 0.89
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Table 2 and Fig. 3 provide an insightful glimpse on the great variety of predicted structures and their asso-
ciated calculated parameters, suggesting that performing some of these checks can indeed boost, or question, 
their reliability. As expected, CD spectra display differences between most structures, and they are a robust 
check on the predicted secondary structure content. The variability in [η] values in Table 2 appears to confirm 
its discriminating ability above that of Rs, but clearly it is the p(r) vs. r distribution that would provide the best 
test, although it is the least rapidly experimentally accessible parameter among those considered.

Comparisons with experimental SAXS-derived data. To strengthen our case, we have conducted a 
direct comparison between experimentally-derived p(r) vs. r, retrieved from the SASBDB  database35 (https:// 
www. sasbdb. org/), and those calculated for the corresponding AF-v1 structures. After a SASBDB search for 
UniProt codes also present in the AF-v1 database, 473 matching datasets were retrieved. Again, the selection 
among them was based on the experimental sample being complete, monomeric, and without prosthetic groups, 
leading to 45 candidates. The final chosen data are presented in Fig. 4, and cover a molecular mass range from 
16 to 107 kDa, collected at several SAXS beamlines in either batch or SEC-SAXS mode. In two cases, the corre-
sponding PDB structures were also available. In Fig. 4a, we see a large difference between the SEC-SAXS experi-
mentally-derived p(r) vs. r for the 16 kDa P. falciparum myosin essential light  chain36 (black) and that calculated 
for the AF-Q8IJM4 structure (red), clearly indicating a more extended conformation in solution. In Fig. 4b, the 
batch-SAXS experimentally-derived p(r) vs. r for the 44 kDa H. sapiens Hsp90 co-chaperone Cdc37  protein37 
(black) is significantly different from that calculated from the AF-Q16543 predicted structure (red), hinting 
at a different domains arrangement in solution. The effect of removing the propeptide segment from an AF 
predicted structure can be appreciated in Fig. 4c, where the 54 kDa H. sapiens pro-matrix metalloproteinase-1 
(MMP-1) studied before (black) and after (blue) propeptide 20–99 segment cleavage (SEC-SAXS unpublished 
data collected by R. Holland at Diamond, UK) is compared with the corresponding curated AF-P03956 struc-
tures (red and magenta, respectively), and with the p(r) vs. r calculated from chain A in the RCSB PDB structure 
 4AUO38 (green). Here the effect of removing the 9.2 kDa propeptide is noticeable, and subtle differences also 
appear between the SAXS-derived and calculated p(r) vs. r, with the AF-P50897 and PDB-derived structures 
being almost identical. Another complete accordance between AF- and PDB-derived (AF-P50897 and 3GRO, 
unpublished) p(r) vs. r can be seen in Fig. 4d for the 31 kDa H. sapiens palmitoyl-protein thioesterase 1 (PPT1; 
red and green, respectively), but both are quite different from the SEC-SAXS derived  data39 (black) that point 
to a more elongated structure. A noticeably more elongated structure is also apparent in Fig. 4e by comparing 
the SEC-SAXS  derived40 p(r) vs. r for the 107 kDa H. sapiens probable ATP-dependent RNA helicase DDX58 
(black) with the one calculated for AF-O95786 (red). Finally, in Fig. 4f are two cases where SEC-SAXS-derived 
and AF-calculated p(r) vs. r yield nearly identical curves, the 72 kDa A. thaliana enhanced disease susceptibil-
ity 1  (experimental41, blue; AF-Q9SU72, magenta) and the 25 kDa H. sapiens arpin isoform 1  (experimental42, 
black; AF-Q7Z6K5, red).

Conformational variability. To provide an additional test of the discriminatory ability of the hydrody-
namic parameters and p(r) vs. r distribution, we have selected the O88338 Cadherin-16 from M. musculus struc-

Table 2.  Some calculated parameters for a selection of AF-v1 predicted structures with no RCSB PDB 
counterparts, ordered by decreasing molecular mass. The corresponding structures and calculated p(r) vs. 
r distributions and CD spectra can be seen in Fig. 3. a Tetratricopeptide repeat protein 37. b Trans-sialidase, 
putative. c Protocadherin gamma-a1. d Vomeronasal 2 receptor, 50. e Cadherin-16. f Putative wall-associated 
receptor kinase-like 13. g Aminotran_5 domain-containing protein. h Adenosine deaminase-like protein. 
i Flotillin. j Lipase. k BHLH transcription factor. l RNA-binding protein, putative. m Prepilin peptidase-dependent 
protein C. n Uncharacterized protein.

UniProt 
accession Organism

Mean AF % 
conf.

Signal 
peptide

Molecular 
mass [Da] Rg [nm] Rs [nm] [η]  [cm3/g] Helix% Sheet%

Q6PGP7a H. sapiens 86.48 n/a 175,523 6.98 6.30 10.4 74.5 0.5

Q4DE01b T. cruzi 65.88 n/a 102,098 3.99 5.74 12.0 6.5 23.2

Q9Y5H4c H. sapiens 75.64 1–28 98,141 8.42 6.56 23.3 9.2 25.5

D3ZV97d R. norvegicus 82.81 1–20 94,123 5.55 4.76 8.93 42.8 11.2

O88338e M. musculus 84.24 1–21 87,414 8.69 5.87 21.2 5.7 32.5

Q9LMT9f A. thaliana 78.02 1–26 82,090 5.16 4.66 8.96 25.4 15.2

I1LDW0g Glycine max 75.28 n/a 73,181 2.86 4.16 6.33 32.6 8.9

A4I8P1h L. infantum 60.77 n/a 64,586 2.66 3.72 5.18 29.2 9.2

Q6PFT0i Danio rerio 81.28 n/a 46,965 11.3 5.75 47.8 66.0 10.8

Q9VG48j D. melanog 88.50 1–18 44,673 2.04 2.89 3.44 38.0 9.0

A0A060D4L2k Zea mays 68.46 n/a 30,921 3.90 4.06 15.7 32.2 10.4

Q8IJG3l P. falciparum 69.83 n/a 19,460 2.05 2.57 5.66 26.4 11.9

P08372m E. coli 82.28 n/a 12,010 2.89 2.48 10.5 44.3 21.7

O16446n C. elegans 88.31 1–19 8483 1.18 1.66 3.46 68.9 0.0

https://www.sasbdb.org/
https://www.sasbdb.org/
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ture (see Table 2, Fig. 3) that contains a number of independently folded domains connected by linkers, and 
we have run a Discrete Molecular Dynamics (DMD)43,44 simulation to expand its conformational space (see 
Supplementary Methods for details), followed by hydrodynamic and p(r) vs. r calculations on 100 produced 
structures. As can be seen in Supplementary Video 1, sufficiently different alternative conformations were gener-
ated within an overall frame, allowing an evaluation of the spread in the predicted parameters and their potential 
discriminating capability. For instance, the Rs spread, 5.88–6.16 nm (a ~ 4.5% change) would be barely above 
experimental error in distinguishing between the most different conformations in this set, while the spread in 
[η], 20.8–23.8  cm3/g (a ~ 12.6% change), would clearly allow distinguishing between many conformations (all 
this set’s individual data are in Supplementary Data 2 spreadsheet, and the Rs and [η] are reported in each video 
frame, along with the p(r) vs. r distributions). Even more striking is the variation in the p(r) vs. r distributions 
that are also collectively reported in Fig.  5. Thus, even for such a restricted structural variation, comparing 
experimental and calculated parameters can provide reliable tests of the predicted structures.

Effects of long unstructured, potentially flexible regions. Finally, we have also explored the effect of 
generating a large number of conformations for AF-predicted unstructured parts in three of the AF-v1 proteins 
shown in Table 2 and Fig. 3, AF-Q4DE01 (residues 1–72 and 746–957), AF-A0A060D4L2 (residues 1–118), and 
AF-Q8IJG3 (residues 1–40), by producing over 16,000 full structures for each entry. Since molecular dynamics 
or even DMD runs would have been prohibitively time-consuming, we used the Monomer Monte Carlo (MMC) 
simulation tool in the SASSIE-web  suite45, followed again by batch-mode US-SOMO to compute the hydro-
dynamic parameters (see Supplementary Methods for details; an animation of 100 randomly chosen among 
the generated structures for AF-A0A060D4L2 is presented as Supplementary Video 2). Besides calculating the 
averages ± SD of each parameter, we also statistically analyzed the data, producing distribution histograms. The 
results can be seen in Fig. 6, where histograms of the distributions of the calculated Rg/Rs ratio (panels a,c,e) and 
[η] (panels b,d,f) are shown. The starting conformations and the average ± SD values are reported in each panel’s 
internal label, and are marked on the plots as solid green, and solid and dashed red vertical lines, respectively. 
From these graphs, the noticeable increase and spread of calculated values is evident for both parameters, the lat-
ter being reflected in the large SD associated with the average values. Some differences can be seen, with [η] more 
correlated to the size of the unstructured regions (decreasing from panels a,b to panels e,f in Fig. 6) and Rg/Rs 
apparently better able to pick up a bimodal distribution (Fig. 6 panel c). Note that since the MMC simulations we 
ran did not involve an energy penalty term in accepting/rejecting conformations at each step, but only an over-
lap check, these calculated average values cannot be directly compared with potential experimentally-derived 
values, as also indicated by the large associated SDs. Nevertheless, they surely confirm that the conformation of 
unstructured parts will severely affect the hydrodynamic properties in solution, reinforcing the importance of 
measuring them.

Discussion
We have presented here a new database stemming from the AlphaFold predicted protein structures databases. 
We initially worked with the AF-v1 release, whose entries were utilized for the tests reported here, and we have 
already extended it to the AF-v2 recent release. The resulting US-SOMO-AF database contains calculated hydro-
dynamic and structural parameters whose experimental determination should be within the reach of scientists 
working with a particular protein for which a “hard” structure is either currently unavailable or in the making. 
Indeed, it is interesting to note that crystallographers and cryo-electron microscopists are already suggesting 
using AF-predicted structures to solve experimental structures by molecular replacement  methods46. Performing 
some rapid tests and comparing the results with those we provide in the US-SOMO-AF database could save them 
valuable time and perhaps hint at twists that should be applied to a predicted structure to better fit the X-ray, 
cryo-EM, and NMR data. In this respect, we would like to point out a tool present in the US-SOMO program 
that allows one to color-code a visualized structure based on the contribution of residues to a particular set of 
distances in a p(r) vs. r  distribution47. For instance, this could provide an easier identification of domains that 
under- or over-contribute to that set of distances. This is another reason why we chose to produce real-space 
p(r) vs. r distributions instead of reciprocal-space simulated SAXS intensity vs. scattering vector curves, for 
which a wide variety of methods, often quite computationally intensive,  exist48. More in-depth analyses could 
be subsequently performed on case-by-case basis.

For a more general application, assessing the reliability of a predicted structure could lead to better designed 
function/structure relationship experiments. The availability of the US-SOMO-AF database has the distinctive 
advantage of allowing a quick comparison without the need to master the expertise necessary to soundly calculate 
the relevant solution parameters.

There are, of course, a series of drawbacks associated with these computations. First and foremost, all the AF 
predicted structures consider all proteins as single chain entities. Efforts are underway  (see6) to cope with this 
issue by allowing multi-chain predictions, and when an evolution in that sense appears in the AF database (only 
a general tool is presently available, see https:// alpha fold. ebi. ac. uk/ faq), all parameters could be re-calculated 
for a new set.

A second evident drawback resides in the post-translational modifications that many proteins undergo. None 
were considered by the AF team, and we have made an important first step by removing the initiator methio-
nine, signal and transit peptides, and producing alternate structures with/without propeptides. This resulted in 
about ~ 11% (~ 110,000 over ~ 1,002,000) of the AF-v2 structures being modified by our procedures, a sizeable 
amount. The remaining most important modification, affecting the calculated parameters, is glycosylation (e.g., 
see Table 1 in Ref.49). While UniProt provides a list of potential glycosylation sites for entries, and publications 
describing them when available, presently there is no direct way to have the composition of each carbohydrate 

https://alphafold.ebi.ac.uk/faq
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associated with a particular site. This is a pity, as methods for building complex carbohydrates are already avail-
able and/or under development  (see50), and it should be relatively straightforward to automatically add them at 
the appropriate sites. Indeed, this has just been independently advocated in a recent  letter51. Even in absence of 
time-consuming molecular dynamics minimization steps, this simple addition could increase the reliability of 
calculated hydrodynamic and structural parameters. While we hope that such an important step will be taken at 
the UniProt and/or AlphaFold databases level, users that need to refine the calculations on a predicted structure 
after having manually added any prosthetic group can easily do so by using one of the downloadable (http:// 
somo. aucso lutio ns. com) US-SOMO versions.

The third drawback is the handling of flexibility, especially if large unstructured parts are predicted. Here 
the US-SOMO-AF database can only raise red flags, such as very high predicted [η] values associated with 
visualized extended, unstructured parts. Dealing with these issues requires much longer calculations involving 
either Monte Carlo methods or Brownian dynamics simulations  (see52), that would require a major effort to be 
applied systematically on > 1,000,000 structures. While our simple test with three proteins (Fig. 6) just shows 

Figure 4.  P(r) vs. r curves SAXS-derived and calculated from AF and RCSB PDB structures. (a–f) Protein 
source and names, SASBDB, AF (UniProt) and RCSB PDB accession numbers for each entry are indicated in 
the boxes within each panel. In all panels the experimentally-derived and the AF-calculated p(r) vs. r are black 
and red lines, respectively. Additional SAXS-derived and AF-calculated p(r) vs. r present in (c,f) are blue and 
magenta lines, respectively. Additional PDB-calculated p(r) vs. r (green lines) are present in (c,d).

http://somo.aucsolutions.com
http://somo.aucsolutions.com


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7349  | https://doi.org/10.1038/s41598-022-10607-z

www.nature.com/scientificreports/

the complexity of the problem, comparing some experimental parameter with those calculated on a starting AF 
structure would still be quite informative.

All current data has been also deposited to Dryad (https:// datad ryad. org), which promises preservation. We 
expect to maintain the website as long as computational resources are available and community interest con-
tinues. The website leverages a framework (see Supplementary Methods) which is actively maintained, greatly 
simplifies website maintenance and updates, and is being used by multiple projects, some since 2013. Our plan 
is to update the database as new AlphaFoldDB datasets are released. However, modifications or additions to 
AlphaFoldDB released datasets (e.g., inclusion of carbohydrates), may require us to seek additional funding 
and/or solicit community contributions to enhance our processing pipeline and/or its component programs 
(hydrodynamic, structural and spectra calculations). We welcome any group or individual that wishes to host 
or contribute to the website, database or processing pipeline. They can contact us through the feedback tab of 
the website or email us directly.

All considered, we believe that the publicly available (https:// somo. genapp. rocks) US-SOMO-AF database 
described here will become a useful tool allowing the research community, by comparing one or more experi-
mentally-determined parameters with the corresponding computed ones, to quickly evaluate the compatibility 
in solution of an AlphaFold predicted protein structure.

Methods
Production of the results presented in this paper required five major steps: collect the AlphaFold entries and 
additional metadata; prepare the structures for hydrodynamic, structural and CD calculations; compute the 
hydrodynamic, structural and CD properties; build a database containing the hydrodynamic properties and 
additional metadata; and finally build a website allowing users convenient access to the database.

After downloading the AlphaFold-v1 and -v2 databases, we prepared the structures by removing the post-
translational processing regions, where present, identified from the UniProt website. We utilized US-SOMO23–25 
to compute hydrodynamic and structural properties. The US-SOMO suite uses a bead modeling strategy 
which takes into account the theoretical amount of “bound” hydration water, and the ZENO computational 
 algorithm31–33 was employed to calculate the hydrodynamic parameters in a rigid-body frame. US-SOMO was 
also used to compute the p(r) vs. r distribution on not-hydrated structures, using SAXS-related parameters. To 
compute the CD spectra, we used  SESCA20.

All the computed results were collected and inserted into a database. Full descriptions for all these steps can 
be found in the Supplementary Methods section.

Figure 5.  Calculated p(r) vs. r distributions for the 100 conformations generated in the DMD run on the 
AF-predicted O88338 structure.

https://datadryad.org
https://somo.genapp.rocks
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Data availability
The datasets generated and/or analyzed during the current study are available in the US-SOMO-AF website, 
https:// somo. genapp. rocks. All computed data has been deposited in a public data repository: https:// doi. org/ 
10. 5061/ dryad. jq2bv q89s.
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