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Atomistic weak interaction 
criterion for the specificity of liquid 
metal embrittlement
Masatake Yamaguchi1,2,3*, Tomohito Tsuru3,4, Mitsuhiro Itakura5 & Eiji Abe2,6

Liquid metal embrittlement (LME) occurs in some solid–liquid metal elements’ couples (e.g., Fe-Zn and 
Al-Ga), called specificity. Although some material parameters like solubility and bonding energy were 
suggested as controlling factors, none could be attributed satisfactorily. Here we have unveiled the 
primary factor that governs the specificity of LME. From first-principles calculations compared with a 
systematic surveillance test result, we found that the grain-boundary (GB) adsorption energy shows 
near-zero values in all embrittling couples; the interaction between solid and liquid metal atoms is 
weak when an atom from the liquid state penetrates the grain boundary of the solid. Furthermore, we 
found that the calculated surface adsorption energy that promotes bond-breaking does not correlate 
to the specificity. Therefore, we consider that the penetration of a liquid metal atom surrounded 
by weakly interacting solid metal atoms is necessary before the bond-breaking assisted by surface 
adsorption occurs at a microcrack tip. This mechanism is also applicable for transgranular cracking 
along low-energy boundaries and crystal planes. While liquid metal atoms penetrate and diffuse 
into solid GB macroscopically before cracking, liquid metal’s surface adsorption stronger than GB 
adsorption should promote the bond-breaking of solid metal. In conclusion, the atomistic penetration 
precedes the surface-adsorption-assisted bond-breaking and controls the specificity of LME.

Solid metals are susceptible to brittle fracture when they come in contact with certain liquid metals (e.g., Fe–Zn 
and Al–Ga). This phenomenon is called liquid metal embrittlement, discovered in  18741. One of the most severe 
embrittling cases is polycrystalline aluminum alloys embrittled by liquid gallium; liquid gallium penetrates 
aluminum GBs macroscopically at high  speed2. Zinc atoms’ penetration, diffusion, and subsequent liquid zinc 
penetration into steel GBs have been observed because molten zinc embrittlement has attracted much attention 
by increasing steels’  strength3,4, especially in the automotive industry. Luo et al. have clarified that bismuth forms 
bilayer interfacial phase along nickel  GBs5. In these cases, the subsequent embrittlement occurs due to the change 
in GB strength induced by liquid metal atoms existing in the GB before cracking.

On the other hand, embrittlement occurs even when exposed to the liquid metal without detectable atomic 
diffusion or liquid penetration into GBs, lath boundaries in martensitic steel, and crystal lattice planes. Although 
liquid mercury atoms do not seem to penetrate and diffuse into high-strength steel’s GBs and lath boundaries, 
embrittlement does occur along those  boundaries6. Even single crystal aluminum exhibits embrittlement by 
liquid  gallium7 after significant plastic deformation. The extremest example is the mercury embrittlement of 
single and polycrystal zinc; fracture occurs within seconds after coating mercury on stress-loaded  zinc8. In this 
way, LME occurs even if liquid metal atoms do not exist along the cracking path before fracture.

One of the curious phenomena that many researchers have tried to solve is why embrittlement occurs or does 
not occur depending on a given solid–liquid metal elements’ couple under a specific test condition. Such selectiv-
ity is called the specificity of  LME9, which has been known for over a century, yet it is not well understood. Some 
material parameters suggested as controlling factors are solubility, interatomic bonding energy, and intermetallics 
formation. However, none of them could be attributed to the specificity of LME  satisfactorily10,11. We considered 
that the crucial atomistic mechanism of LME must be hidden behind the mystery of the LME specificity.
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Herein, for the first time, we have realized the primary factor that governs the specificity of LME. From 
first-principles calculations, we found an excellent correlation between our calculated GB adsorption energy of 
a liquid metal atom in solid metal and the specificity of LME, as shown in Fig. 1a–c. Compared with the system-
atic surveillance test result (Table 1) by Rostoker et al.10, our calculated GB adsorption energy shows near-zero 
values in all the embrittling couples; this outcome provides an energy criterion that determines the occurrence of 
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Figure 1.  Calculated atomistic energies of liquid metal elements compared with the specificity of LME. (a) 
GB adsorption energies on FeΣ3(111) symmetrical tilt GB and lattice dissolution energies in Fe of liquid metal 
elements. (b) Surface adsorption energies of liquid metal elements on Fe(111) surface, which is a fracture 
surface of FeΣ3(111) GB. Inserted figures show computational cells of the Fe-Pb case. (c) GB adsorption 
energies on AlΣ5(012) symmetrical tilt GB and lattice dissolution energies in Al of liquid metal elements. (d) 
Surface adsorption energies of liquid metal elements on Al(012) surface, which is a fracture surface of AlΣ5(012) 
GB. Negative energy indicates attractive interaction between atoms. Embrittlement or Non-embrittlement refers 
to Rostoker et al.’s specificity data of  LME10, as shown in Table 1. The number in the label box is the melting 
temperature (degrees of Celsius). The green box indicates that a binary intermetallic compound exists (e), 
whereas the other box does not (n)22.

Table 1.  A specificity data of LME. This table is taken from Rostoker et al.10 and modified. See text. Hg* 3% 
Zn amalgam. E: embrittlement with no apparent prior plastic deformation (probably GB cracking). N: non-
embrittlement. Steel (Fe): The steel was an alloy constructional type quenched and tempered to Rc 45 hardness. 
Al, Mg, and Ti alloys: The test was done using at least two high-strength commercial alloys for each metal.

Test temperature (℃)

30 50 125 180 210 250 260 300 325 350 380 450 475

Melting point temperature, Tm (℃)

− 39 30 98 157 181 221 232 271 304 321 328 420 450

Liquid metal

Solid metal Hg* Ga Na In Li Se Sn Bi Tl Cd Pb Zn Te

Steel (Fe) N N N E E N N N N E N E E

Al alloy E E E E N N E N N N N E -

Mg alloy N N E N N N N N N N N E -

Ti alloy E N N N N N N N N E N N N
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embrittlement. On the other hand, surface adsorption must promote bond-breaking at a microcrack tip because 
surface energy reduction is well known to enhance temper embrittlement by solute  segregation12–16 (Supple-
mentary Note). However, our calculated surface adsorption energy of a liquid metal atom on solid metal does 
not correlate with the specificity of LME, as shown in Fig. 1b–d. So, what is the atomistic picture that explains 
these calculated results consistently?

We have further proposed an essential atomistic process necessary for bond-breaking at a microcrack tip, 
which controls the specificity of LME, as shown in Fig. 2. We consider that when embrittlement occurs without 
experimentally observing liquid metal atoms’ existence along the cracking path before fracture, it must be neces-
sary for the liquid metal atom to penetrate at least one or several atomic distances and then be surrounded by 
weakly interacting solid metal atoms at a microcrack tip. The penetrated liquid metal atom probably stretches 
highly and weakens chemically solid–solid metal bonds across the GB, lath boundary in martensitic steel, and 
crystal lattice plane. Subsequently, not-yet-penetrated liquid metal atoms break the stretched and weakened 
interatomic solid metal bonds by adsorbing on these solid atoms. As a result, solid metal bond-breaking occurs 
irreversibly due to surface termination by liquid metal atoms, and therefore the microcrack grows. When the 
GB adsorption energy shows far-from-zero values, an intense repulsive or attractive interaction prevents the 
atomistic penetration or the subsequent bond-breaking, respectively, as shown in Fig. 3. Again to say, such an 
atomistic process may be impossible to be detected by modern experimental technology. Computational simula-
tions will be necessary to make the process visible.For an experiment showing the specificity of LME, we paid 
particular attention to the result by Rostoker et al.10, as shown in Table 1. Although the experimental details are 
missing, this experiment conducted a bending test for more than 40 combinations (couples) under similar test 
conditions (except temperature). In this respect, this experiment is an incomparable one. The solid metals used 
are high-strength steel (Fe) and high-strength alloys of Al, Mg, and Ti, while liquid metals used are Hg, Ga, 
Na, In, Li, Se, Sn, Bi, Tl, Cd, Pb, Zn, and Te. According to the test results, solid–liquid couples were classified as 
either “Embrittlement” when a brittle fracture occurs with no apparent prior plastic deformation, probably GB 
cracking, or “Non-embrittlement” when such a severe brittle fracture does not occur. It is important to note that 
some non-embrittlement elements in Table 1 can cause embrittlement under other tests. For example, while Pb 
and Bi are non-embrittlement elements in Table 1, these liquid metals (Pb and Bi) cause embrittlement on T91 
martensitic steel, where cracking occurs mainly along its lath boundaries with significant plastic  deformation17.

To elucidate the mystery of the specificity of LME, we considered that the GB and surface adsorption energy 
of a liquid metal atom must be essential for the following reasons. In many cases, severe embrittlement occurs 
along GBs with almost no prior plastic deformation. Additionally, the (fracture) surface adsorption of a liquid 
metal atom must be necessary because the energy lowering effect by the adsorption can promote bond-breaking 
at a microcrack tip of solid metal. Based on these ideas, we calculated the GB and surface adsorption energies 
of a liquid metal atom in solid metals for many couples (Methods and Supplementary Fig. S2). The energies’ 
standard (zero value) for the liquid metal atom is the energy of its crystalline state at absolute zero temperature. 
It is a good approximation for the liquid state because the energy difference between the liquid and its solid 
states, i.e., the latent heat (enthalpy) of fusion (Supplementary Table S2)18, is insignificant compared with the 
size of the GB and surface adsorption energy.

As another factor, the interstitial lattice dissolution energy of the liquid metal atom in solid metal might 
be significant for the embrittlement along the low-energy lath boundary and crystal lattice plane. This type of 
embrittlement occurs with a large amount of prior plastic deformation, which is necessary to cause microcrack 
nucleation in non-GB cracking. Unfortunately, in our experiences, the interstitial lattice dissolution energy 
becomes too large in positive to obtain the numerically converged value. Although the tensile stress concentra-
tion at the microcrack tip is critical, it is not easy to include that in the calculations. For this reason, we calculated 

a b c

Figure 2.  A proposed atomistic process of bond-breaking at a microcrack tip. (a) Atomistic penetration of 
liquid metal atom into GB, lath boundary, or lattice plane of solid metal at a microcrack tip under tensile stress. 
(b) The atomistic penetration of liquid metal with weak interaction (near-zero energy) stretches and weakens 
the solid metal bonding. (c) The subsequent surface adsorption of liquid metal atoms achieves the bond-
breaking of solid metals. The process of (a–c) repeats, and the microcrack grows when the weak interaction 
criterion is satisfied.
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the substitutional lattice dissolution energy instead, which probably correlates to the interstitial one and lath 
boundary adsorption energy of a liquid metal atom in solid metal.

As stated in the fourth paragraph, we found an excellent correlation between the specificity of LME and 
our calculated GB adsorption energies of liquid metal elements in iron (Fe) and aluminum (Al), as shown in 
Fig. 1a–c. All the embrittling elements have near-zero GB adsorption energy, while non-embrittling elements 
have far-from-zero GB adsorption energy, except Al-Cd. For iron (steel), indium causes more GB embrittlement 
than lead and bismuth in Martin’s  experiment17; indium consistently appears at near-zero energy more closely 
than lead and bismuth (Fig. 1a). It is also reasonable for sodium to have far-from-zero GB adsorption energy 
(Fig. 1a) because sodium rarely causes the embrittlement of  steel19. The calculated GB adsorption energies of 
zinc in iron (Fig. 1a) and gallium in aluminum (Fig. 1c) are slightly negative values; these imply the zinc and 
gallium atoms feel weak attractive interaction from iron and aluminum GB, respectively, and can easily penetrate 
the GBs. Therefore, zinc diffusion in iron GB and liquid gallium penetration in aluminum GB would realize 
 quickly2–4. In addition, we can see a similar trend as in iron and aluminum for both magnesium and titanium 
cases (Supplementary Fig. S3 and S4). However, there are only two embrittling couples for each, magnesium or 
titanium. Nickel also shows asimilar trend using other experimental data (Supplementary Note and Fig. S6). 
Therefore, the trend of near-zero GB adsorption energy for the embrittling couples must be a necessary condition 
and criterion for the occurrence of LME.

Furthermore, we found an exciting trend; a continuous view from the calculated energies, as shown in 
Fig. 1a–c (Supplementary Fig. S3, S4, and S6), indicates that the embrittlement seems to occur in a transition 
region from where the intermetallic compounds exist to where they do not exist (Supplementary Note). The 
greater the GB adsorption and lattice dissolution energies are negative, the more the solid–liquid couple forms 
intermetallic compounds. Rostoker et al. pointed out that the embrittling couples tend not to form intermetal-
lic  compounds10, while our criterion further narrowed down the allowed range of embrittling couples from the 
viewpoint of interaction energy.

Lowering the cohesive energy of the GB plane caused by surface adsorption by liquid metal can promote 
interatomic bond-breaking in solid metal as in temper  embrittlement12–16 (Supplementary Note). Figure 1b–d 
shows the calculated surface adsorption energies of liquid metal atoms on iron’s (111) and aluminum’s (012) 
surfaces. The surface adsorption energies were substantial negative values in all the couples, indicating that all 
liquid metal elements decrease the surface energy by adsorption and thus assist bond-breaking. However, there 
seems to be no correlation between the size of surface adsorption energy and the specificity of LME. It indicates 
that the condition of near-zero GB adsorption energy is more significant for LME than the surface adsorption 
strength. We expect the trend in Fig. 1b–d not to change if we could calculate solid–liquid interface energy 
because the cohesion of low melting temperature metal may not be significant. Finally, the above energetic 
considerations have led us to the following atomistic picture.

Figure 3.  Schematic illustration of the criterion for the specificity of LME. P: a penetrated liquid metal atom 
into solid, NP: a not-yet-penetrated liquid metal atom that adsorbed on a solid metal atom, S: a solid metal 
atom with broken solid–solid interatomic bond by the adsorption of liquid metal atom. The solid–liquid couples 
that satisfy the weak interaction (near-zero energy) criterion show embrittlement. The atomistic embrittling 
(bond-breaking) process is schematically shown in Fig. 2 (Supplementary Fig. S9b), where the weak interaction 
criterion is satisfied. Contrarily, the atomistic penetration or the subsequent bond-breaking is suppressed in the 
cases of non-embrittlement (Supplementary Fig. S9ac).
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We explain the atomistic process of bond-breaking of solid metal induced by liquid metal atoms at a micro-
crack tip (Fig. 2) in more detail than already stated in the fifth paragraph. When embrittlement occurs, the GB 
adsorption energy of a liquid metal atom is near zero; the liquid metal atom weakly interacts with the surrounded 
solid atoms. Thus, the liquid metal atom can penetrate inside the microcrack tip at least one or several atomic 
distances through the stretched solid metal’s interatomic bonds under tensile stress concentration with the 
help of thermal activation. This atomistic penetration of the liquid metal must have some weakening effects on 
solid–solid bonds: a highly stretching effect and a chemical effect due to the change of atoms’ arrangement. Then, 
not-yet-penetrated liquid metal atoms adsorb the solid metal atoms consisting of the weakened interatomic bonds 
and then cause the bond-breaking at the microcrack tip. Although the energy reduction by surface adsorption 
can promote bond-breaking, the strength of surface adsorption does not correlate with the specificity of LME, 
as shown in Fig. 1b–d. Therefore, we conclude that the atomistic penetration of a liquid metal atom into solid 
metal’s GB plane is necessary before surface-adsorption-assisted bond-breaking occurs. Even when we cannot 
find liquid metal atoms experimentally along the cracking path before fracture, we consider that the atomistic 
penetration of liquid metal atoms precedes the bond-breaking of solid metal. Further, we consider that a similar 
atomistic penetration and the subsequent bond-breaking can occur at low-energy boundaries like lath in mar-
tensitic steel and crystal lattice planes, after significant prior plastic deformation and subsequent microcrack 
nucleation having huge stress concentration at its tip in the case of non-GB cracking.

On the other hand, if the atomistic penetration and subsequent diffusion of liquid metal atoms into GBs are 
experimentally observed, as in the case of galvanized (Zn) embrittlement of high-strength steel, the embrit-
tlement is triggered by grain boundary decohesion at a first stage. We can recognize a significant decohesion 
effect of Zn on Fe GB in our calculated results; the surface adsorption energy of Zn (–0.8 eV/atom) is much 
lower than the GB adsorption energy of Zn (–0.3 eV/atom), which data can be found in Fig. 1a,b. This energy 
difference assists bond-breaking and surface formation in solid metal’s GB. Recent experimental and theoretical 
studies confirm this decohesion  mechanism4,20 in more detail. We emphasize here that our proposed criterion 
of LME includes this type of embrittlement. When liquid metal atoms can penetrate and diffuse into solid met-
als’ GB macroscopically, the decohering effect on GB will emerge for almost all liquid metals because they have 
a significant surface adsorption effect stronger than GB adsorption in solid metals. (Supplementary Fig. S10).

When the weak interaction (near-zero energy) criterion of atomistic penetration is not satisfied, we consider 
the bond-breaking does not occur for the following reasons, as shown in Fig. 3 (Supplementary Fig. S9ac). When 
the GB adsorption energy of liquid metal is enormously positive, the liquid metal atom cannot penetrate the GB 
plane even at a microcrack tip because of the intense repulsive interaction between liquid and solid atoms. When 
the GB adsorption energy is significantly negative, the attractive interaction (bonding) is so intense between 
solid and liquid atoms that it prevents solid–solid bond-breaking near the liquid atom, even if the atomistic pen-
etration occurs. Therefore, the bond-breaking (embrittlement) does not occur when the GB adsorption energy 
appears in the far-from-zero energy region, where the weak interaction criterion is not satisfied. The boundary 
between embrittlement and non-embrittlement regions depends on various material and test parameters such 
as hardness, grain size, temperature, strain rate, etc.

We should note our idea for the role of dislocations on LME. It comes from the analogy of the study of GB 
decohesion by one of the authors (MY)16. We consider that the easier the bond-breaking occurs at a microcrack 
tip, the lesser the dislocations emit from  there14,15, reducing fracture toughness and fracture stress in LME. The 
present study assumes that surface and GB adsorption itself does not affect the dislocation emission because the 
influence of liquid metal on dislocation is not evident theoretically and experimentally. Further investigation is 
necessary on this point.Finally, we note that our study is not applicable for a different type of LME; it is primarily 
a dissolution or corrosion reaction, the crack growth takes hundreds or thousands of hours. Recently, Norkett 
et al.11 have classified LME into three categories: (a) solid metal seems to be brittle simply by touching liquid 
metal (e.g., Fe-Hg, Fe-Pb, Fe-Bi, and Zn-Hg)6–8, (b) liquid metal atoms diffuse as an atom or penetrate as a liquid 
along the GB plane of solid metal over a macroscopic distance (e.g., Fe-Zn, Al-Ga, and Ni-Bi)2–5, and (c) GBs 
are selectively eroded by corrosion reactions (e.g., a preferential dissolution of Cr and Ni from stainless steel in 
molten sodium)21. Our proposed weak interaction criterion based on experimentally unseen atomistic penetra-
tion adapts well to type (a) embrittlement. Furthermore, this criterion is also applicable to type (b) embrittlement; 
the penetration of liquid atoms surrounded by weakly interacting solid atoms is necessary before it develops to a 
macroscopic diffusion of atoms, interfacial phase, or liquid penetration, and then fracture occurs. On the other 
hand, the criterion does not adapt to type (c) embrittlement due to corrosion and dissolution reactions, in which 
solid metal atoms dissolve into liquid metal.

Methods
First-principles calculations. We conducted density functional theory (DFT) calculations by using 
Vienna Ab initio Simulation Packages (VASP)23,24 using the Projector-Augmented Wave method with Perdew-
Burke-Ernzerhof exchange–correlation (PAW-PBE)  potentials25,26. The cutoff parameter of the plane-wave basis 
set was 360 eV. (For the Cu system, we use 385 eV).

We calculated the substitutional lattice dissolution (solid solution) energy of liquid metal elements in the solid 
metal lattice using supercells. Supplementary Table S1 summarizes solid metal crystal structures, magnetism, 
supercell size, and k-point sampling. The total energy of superlattice having n solid metal atoms is Esctot(n) , and 
that having n− 1 solid metal (M) atoms and one X atom Esctot(n− 1, X) . The total energy per one liquid metal 
atom in the most stable elemental substance is Eatom(X) . Supplementary Table S2 shows the crystal structure of 
each liquid metal in low temperatures. These cells were fully relaxed. The lattice dissolution energy of element 
X in a solid metal is defined by.
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We calculated the grain boundary and surface adsorption energies of more than ten liquid metal elements 
in five solid metals. Supplementary Table 1 shows the details of cell modeling for solid metals. The unit cells, 
including grain or twin boundary and its two fracture surfaces, are shown in Supplementary Fig. S1. Supple-
mentary Table S3 summarizes the calculated grain boundary and surface energies. The grain or twin boundary 
energy is about half of the surface energy for each solid metal except for titanium. Therefore, it indicates that 
these boundaries are high-energy ones. On the other hand, the boundary energy is relatively low for titanium. 
It may be why the calculated adsorption energies of grain boundary and surface correlate very well with each 
other in the titanium case, as shown in Supplementary Fig. S4.

The total energy of these cells is denoted by EGBtot (n) . We relaxed the atomic positions with fixed lattice param-
eters. The grain-boundary and surface adsorption energy Ead(X) is defined by.

or

The former and latter are in the cases of interstitial and substitutional X atoms, respectively. The energy per 
atom for solid metal M, Eatom(M) , is calculated by using a cell similar to the grain-boundary modeling cell to 
reduce numerical inaccuracy. The most stable states are selected for GB and surface adsorption energies at GB 
and surface, respectively.

When dealing with segregation in the atomistic model of the grain boundary, there are two equations to cal-
culate the segregation energy, i.e., interstitial or substitutional type for the Eqs. (2) or (3), respectively. However, 
in the case of metal grain boundaries, the grain boundary energy often does not change significantly in response 
to the insertion or removal of the atoms that construct the grain boundary. The distinction between substitutional 
and interstitial types is not meaningful for the segregation of solute elements in disordered structures of metal 
GB. For this reason, we choose the lower GB adsorption energy from the above two equations.

Supplementary Fig. S2 shows an example of the calculated grain-boundary and surface adsorption energies 
of a Pb atom in the solid metal of iron. We can see that the lattice dissolution energy calculated by using the BCC 
5 × 5 × 5 supercell is close to the corresponding energies calculated by using the grain boundary modeling cell. 
Thus, it indicates that the cell size we used is sufficient. As explained below, we take the fcc solid-state energy of 
Pb as an approximation of its liquid state energy.

Energies of liquid state. All of the liquid metals examined here are low-melting-point metals. Thus, the 
latent heat, the difference in energy between solid and liquid, is on the order of at most 0.02–0.18 eV/atom18, as 
shown in Supplementary Table S2, which is not significant compared with the scale of lattice dissolution and sur-
face adsorption energies. For example, the Pb energy difference between solid and liquid states is only 0.05 eV/
atom at melting temperature. This energy difference is too small to influence the interpretation of the calculated 
results (Fig. 2). For this reason, we consider that there is no problem adopting the solid-state energy of the liquid 
metal element as an approximation of the liquid state energy.

Data availability
All data are available in the main text or supplementary information.
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