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Multi‑angle quantum approximate 
optimization algorithm
Rebekah Herrman1*, Phillip C. Lotshaw2*, James Ostrowski1, Travis S. Humble2 & 
George Siopsis3

The quantum approximate optimization algorithm (QAOA) generates an approximate solution to 
combinatorial optimization problems using a variational ansatz circuit defined by parameterized 
layers of quantum evolution. In theory, the approximation improves with increasing ansatz depth but 
gate noise and circuit complexity undermine performance in practice. Here, we investigate a multi-
angle ansatz for QAOA that reduces circuit depth and improves the approximation ratio by increasing 
the number of classical parameters. Even though the number of parameters increases, our results 
indicate that good parameters can be found in polynomial time for a test dataset we consider. This 
new ansatz gives a 33% increase in the approximation ratio for an infinite family of MaxCut instances 
over QAOA. The optimal performance is lower bounded by the conventional ansatz, and we present 
empirical results for graphs on eight vertices that one layer of the multi-angle anstaz is comparable 
to three layers of the traditional ansatz on MaxCut problems. Similarly, multi-angle QAOA yields a 
higher approximation ratio than QAOA at the same depth on a collection of MaxCut instances on fifty 
and one-hundred vertex graphs. Many of the optimized parameters are found to be zero, so their 
associated gates can be removed from the circuit, further decreasing the circuit depth. These results 
indicate that multi-angle QAOA requires shallower circuits to solve problems than QAOA, making it 
more viable for near-term intermediate-scale quantum devices.

Among several quantum algorithms implemented on noisy intermediate-scale quantum (NISQ) devices1–12, the 
quantum approximate optimization algorithm (QAOA) offers an opportunity to approximately solve combinato-
rial optimization problems such as MaxCut, Max Independent Set, and Max k-cover13–22. QAOA tunes a set of 
classical parameters to optimize the cost function expectation value for a quantum state prepared by well-defined 
sequence of operators acting on a known initial state. Variations to the original algorithm include alternative 
operators and initial states23–30 while purely classical aspects such as the parameter optimization and problem 
structure have been tested as well31–36. However, an outstanding concern is that practical implementations of 
QAOA require large numbers of qubits and deep circuits37. For example, a recent study has developed a system-
atic set of parameters that are argued to require p = 30 layers of QAOA to reach performance comparable to the 
conventional Goemans–Williamson algorithm on MaxCut36, while another study has argued that hundreds of 
qubits or more are needed to compete with conventional solvers in time-to-solution38. Noise grows rapidly with 
circuit depth and affects the fidelity of the prepared quantum state so the performance that can be achieved from 
near-term quantum computers at these depths is questionable39–49.

One approach to reduce the circuit depth of QAOA is to increase the number of classical parameters intro-
duced in each layer, a variation that we term multi-angle QAOA (ma-QAOA). This approach was originally 
briefly introduced in50. Increasing the number of classical parameters allows for finer-grain control over the 
optimization of the cost function and the approximation ratio, which measures optimality relative to the known 
best solution. While introducing more classical parameters can lead to a more challenging optimization, a cor-
responding reduction in circuit depth preserves the critical resource of the quantum state. In addition, finding 
the absolute optimal angles is not necessary in order to see an improvement over QAOA.

Here, we quantify the advantages of using multiple parameters for each layer of QAOA. First, we prove that 
the approximation ratio converges to one as the number of iterations of ma-QAOA tends to infinity, a property 
that ensures the optimal solution is the most likely. We next demonstrate that one iteration of ma-QAOA gives an 
approximation ratio that is at least that of the approximation ratio after one iteration of QAOA. This shows that 
ma-QAOA performs at least as well as QAOA. We also show that ma-QAOA used to solve the MaxCut problem 
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on star graphs achieves an approximation ratio of one after one iteration, while single-iteration QAOA tends to 
an approximation ratio of 0.75 as the number of vertices goes to infinity. This result gives a concrete example 
where ma-QAOA gives a strictly larger approximation ratio than QAOA. We simulate solving MaxCut using 
ma-QAOA and QAOA on all connected, non-isomorphic eight vertex graphs and compare the performance of 
the two ansatzes. In doing so, we find that the average approximation ratio for ma-QAOA after one iteration is 
larger than the average approximation ratio of QAOA after three iterations. In looking at larger, fifty and one-
hundred vertex graphs, we see that ma-QAOA retains its advantage over QAOA, giving approximation ratios 
that are on average six percentage points higher after the first iteration.

Results
Multi‑angle quantum approximate optimization algorithm.  We develop the multi-angle QAOA 
beginning with the standard formulation of the quantum approximate optimization algorithm (QAOA). The 
QAOA relies on a combination of classical parameter optimization and applying cost and mixing operators to a 
quantum state in order to approximately solve combinatorial optimization (CO) problems13. CO problems are 
defined by an objective function, C(z), where z is a bit string of length n. Often, C(z) is the sum over a collection 
of clauses,

When solving these problems with QAOA, C(z) is encoded into a matrix C with eigenvalues given by the 
classical cost values

QAOA requires two operators,

and

which have real-valued angle inputs γ ∈ [0, 2π) and β ∈ [0,π) . B drives transitions between computational 
basis states and is typically

where Bv = σ x
v  is the Pauli-x operator acting on qubit v in the quantum system. The two operators are applied 

to an initial state,

Here the sum is over the computational basis |z� . The QAOA ansatz operator applied p times to |s� is denoted 
p-QAOA. The state for p-QAOA is

Since C and B are sums of matrices, we may write

and

Instead of focusing on minimizing the classical optimization efforts in QAOA, QAOA can be modified such 
that it requires more classical parameters50. The new classical parameters are introduced to QAOA by allowing 
each summand of the cost and mixing operators to have its own angle instead of a single angle for the cost opera-
tor and a second angle for the mixing operator. In this modification,

and

where �γl = (γl,a1 , γl,a2 , ...) and �βl = (βl,v1 ,βl,v2 , ...) . Here, l denotes the layer, ai denotes a specific clause, and vj 
refers to a specific qubit. We call this modification multi-angle QAOA and abbreviate it ma-QAOA. Similarly 
to QAOA, when the operators for ma-QAOA are applied p times to the initial state, we call this p-ma-QAOA.
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The performance of the algorithm is typically characterized by the approximation ratio, denoted A.R.,

which compares the expectation value of the cost operator 〈C〉 to the optimal solution value Cmax . We will write 
�C� = �C�p for p-QAOA and �C� = �C�ma

p  for p-ma-QAOA.

Convergence of ma‑QAOA.  For QAOA, the expected value of C after p iterations is �C�p = �γ ,β|C|γ ,β� . 
Let Mp be the maximum of 〈C〉p over all angles. Then, Mp ≥ Mp−1 . Farhi, Goldstone, and Gutmann showed 
that Mp tends to the maximum of the objective function, Cmax , for the CO problem being solved as p tends to 
infinity13.

We similarly define the expected value of C after p iterations of ma-QAOA as �C�ma
p =

〈

�γma, �βma

∣

∣

∣
C
∣

∣

∣
�γma, �βma

〉

 

where �γma = ( �γ1, �γ2, ... �γp) and �βma = ( �β1, �β2, ... �βp) . We also define Mma
p  to be the maximum of 〈C〉ma

p  over all 
angles. Clearly, Mma

p ≥ Mp because QAOA is the special case of ma-QAOA where βp,u = βp,v for all u  = v and 
γp,ai = γp,aj for edges ai  = aj.

In order to show ma-QAOA gives the optimal solution to a combinatorial optimization problem, we must 
show 〈C〉ma

p  converges to Cmax as p tends to infinity. Convergence is the first main result of this work.

Theorem 2.1  The multi-angle quantum approximate optimization algorithm converges to the optimal solution of 
a combinatorial optimization problem as p → ∞.

The proof of convergence is given in section “Methods”.

MaxCut problem and performance on star graphs.  In graph theory, a graph G = (V ,E) consists of a 
collection of vertices, V, and edges, E, which are pairs of vertices. MaxCut is a CO problem defined with respect 
to a graph. For QAOA, each qubit corresponds to a vertex in G and the cost operator is13

The goal of the problem is partition the vertices into two sets such that the number of edges with endpoints 
in each set is maximized.

A star graph on n vertices is a graph that consists of one vertex of degree n− 1 , called the center. All other 
vertices of the graph have degree one, meaning each vertex is connected to the center and only the center. An 
example can be seen in Fig. 1. All stars are trees, and are thus bipartite, so the optimal MaxCut solution includes 
all edges of the graph. In order to show ma-QAOA outperforms QAOA when solving MaxCut on star graphs, 
we show that �C�ma

1 = 1 and 〈C〉1 tends to 0.75 as n tends to infinity. The proof is found in section “Methods”.

Computational results.  In order to test how ma-QAOA performs, we simulated the algorithm on a col-
lection of one-hundred triangle-free 3-regular graphs with fifty vertices and one-hundred triangle-free 3-regu-
lar graphs with 100 vertices and compared the approximation ratios calculated with ma-QAOA to those of 
1-QAOA. We also performed the same calculations with fifty modified Gn,p random graphs with fifty and one-
hundred vertices each; approximation ratio results for all large graphs are summarized in Table 1. In the Gn,p 
model, n sets the number of vertices, and p is the probability that an edge exists. In particular, we examined 
G50,0.08 and G100,0.035 in order to create random graphs that have average degree approximately three. After ran-
domly generating the graphs, triangles were removed by randomly removing edges from each triangle. For these 
sets of triangle-free graphs we can compute 〈C〉ma

1  for large n using the analytical result of Theorem 4.1. Table 1 
shows the average approximation ratios for each collection of graphs with ma-QAOA and 1-QAOA, as well as 
the changes in the approximation ratio and percent change in the approximation ratio gap. This approximation 
ratio gap is the percent difference between one minus the approximation ratio for 1-QAOA and one minus the 
approximation ratio for ma-QAOA. The ma-QAOA has a higher average approximation ratio and gives a signifi-
cant percent increase in approximation ratio gap for each collection of graphs. These simulations only compare 

(2)A.R. = �C�
Cmax

C =
∑

ij∈E

1

2
(−σ z

i σ
z
j + 1).

Figure 1.   The star graph on five vertices.
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1-QAOA to 1-ma-QAOA, however, the next set of computational results compares 1-ma-QAOA to p-QAOA for 
p ≤ 3 on all connected, non-isomorphic graphs.

In previous work, we determined 〈C〉1 , 〈C〉2 , and 〈C〉3 for all connected, non-isomorphic eight vertex graphs 
and compiled them into an online data set35,51. For this work, we calculated the angles that maximize 〈C〉ma

1  and 
compared 〈C〉p to 〈C〉ma

1  . On average, the performance of ma-QAOA is comparable to 3-QAOA on these graphs. 
Table 2 shows that ma-QAOA has a higher average approximation ratio than 1-QAOA and 2-QAOA on all eight 
vertex graphs. However, the average approximation ratio for one iteration of ma-QAOA is larger than the aver-
age approximation ratio for 3-QAOA.

Figure 2 shows how the distribution of approximation ratios for ma-QAOA compares to the approximation 
ratios for up to three iterations of QAOA for all connected, non-isomorphic eight vertex graphs. The percentage 
of graphs with approximation ratio at least 0.95 is significantly higher with ma-QAOA than up to three levels 
of QAOA. The fraction of graphs with approximation ratio at least 0.85 and 0.9 is higher for 3-QAOA than ma-
QAOA, however significantly more graphs have an approximation ratio of at least 0.95 with ma-QAOA.

Measurement reliability.  We quantify the number of measurements to obtain a reliable result from ma-
QAOA and QAOA using a simple noise model with Kraus-operator error channels acting after each unitary 
operator in the ansatz. On fully connected hardware, the numbers of one-qubit unitary operators and two-qubit 
unitary operators per iteration of QAOA for MaxCut equal the numbers of vertices n and edges m in the graph, 
respectively. On connected n = 8 vertex graphs, 7 ≤ m ≤ 28 . Following these unitary and channel operators, 
the circuit produces a final state ρ = Fρideal + (1− F)ρnoise , where F is the probability associated with the ideal 
noiseless evolution component ρideal52. Assuming error rates of ǫn and ǫm for each one- and two-qubit unitary 
respectively, F = (1− ǫn)

np(1− ǫm)
mp.

A measurement projects ρ onto a basis state |z� and the total set of measurement probabilities is described 
by ρ′ = ∑

z �zρ�z , with �z = |z��z| . The expected number of measurements to sample a result |z� from the 
ideal distribution is 1/F in the worst-case48, when Trρ′

idealρ
′
noise = 0 ; the number of measurements can decrease 

Figure 2.   The fraction of non-isomorphic, eight-vertex graphs with approximation ratios at least X 
( f (A.R. ≥ X )) for 1-ma-QAOA and p-QAOA. The lines are included in order to outline the shape of each 
distribution.

Table 1.   The average approximation ratio (A.R.) for a collection of one-hundred 3-regular graphs with fifty 
vertices, one-hundred 3-regular graphs with 100 vertices, fifty modified G50,0.08 random graphs, and fifty 
modified G100,0.035 random graphs.

Graph type Average A.R. for 1-QAOA Average A.R. for ma-QAOA Change in A.R. Percent change in gap (1-AR)

50 vertex 3-regular 0.7617 0.8123 0.0506 21.26%

100 vertex 3-regular 0.7562 0.8000 0.0438 17.98%

Modified G50,0.08 0.7554 0.8156 0.0602 24.65%

Modified G100,0.035 0.7497 0.8098 0.0602 24.04%

Table 2.   The average approximation ratio for all connected, non-isomorphic graphs eight vertices.

QAOA type Average approximation ratio for all eight vertex graphs

ma-QAOA 0.9257

1-QAOA 0.8061

2-QAOA 0.8767

3-QAOA 0.9192
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depending on the specific state and noise process, but to keep the discussion general we take the expected num-
ber of measurements as 1/F . We compute F using the average numbers of edges 〈m〉 for graphs in our datasets, 
for example �m� = 14.4 at n = 8 , but note each specific graph has an integer number of edges. Assuming p = 1 , 
n = 8 , �m� = 14.4 , and an error rate of 1% for each unitary operator, the expected number of measurements to 
obtain a sample from the noiseless distribution is 1.25.

We find that parameter optimization with ma-QAOA yields angles of zero for a subset of the edge and ver-
tex unitary operators and we use this in the calculation of F. Since exp(−iγp,aCa) = I = exp(−iβp,vBv) when 
γp,a = 0 and βp,v = 0 , all unitary operators with an angle of zero may be excluded from the optimized circuit. 
This decreases the exponent of the first and second terms in F by the number of vertex and edge operators that 
have zero angles, respectively, and thus reduces the amount of noise in ma-QAOA relative to QAOA. Table 3 
gives the percent of zero angles, rounded to three decimal places, for each collection of graphs that were studied.

Table 4 shows the ratio of the expected number of measurements needed to sample from the noiseless 
distribution for p-QAOA relative to ma-QAOA for each collection of graphs with varying values of ǫ〈m〉 , using 
the average reduction in gates for ma-QAOA from Table 3. Note that if the ǫ�m� = 0.05 , the number of samples 
increases rapidly with p.

From the performance bound of Theorem 2.1, ma-QAOA will never need more layers than standard QAOA 
to reach a given approximation ratio. Whenever standard QAOA requires more layers than ma-QAOA, the 
additional noise from these layers will lead to an increase in the number of samples that are needed according to 
our model. Since one iteration of ma-QAOA is comparable to three iterations of QAOA on eight vertex graphs, if 
the trend holds for larger graphs, ma-QAOA has the potential to require significantly fewer samples than QAOA.

Computing angles.  With a larger number of variables to optimize, the ma-QAOA method requires more 
classical effort to find angles that optimize the approximation ratio. However, it is not necessary to identify exact 
optimal angles, only to find angles that are better than QAOA angles.

We used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to compute angles for the 8-vertex graphs; 
details can be found in “Methods” section. Figure 3 shows how the approximation ratio improves on average 
across all iterations of BFGS for each ansatz studied for a random sample of eight vertex graphs. Note that after 
approximately ten iterations, ma-QAOA tends to achieve a higher approximation ratio than any of the p-QAOA. 
We do note that the time required to perform each iteration of BFGS is slower for ma-QAOA, as the number of 
gradient components is linearly dependent on the number of variables being optimized.

Scaling.  We assess the scalability of ma-QAOA using computed optimized 〈C〉 for sets of triangle-free 
Erdős-Rényi and 3-regular graphs with n = 50 and n = 100 vertices. The computational details are given in 
section  “Methods”. We compare the run times for typical graph optimizations to assess how the ma-QAOA 
parameter optimization time increases with graph size.

For the Erdős-Rényi graphs, the time for a single optimization for n = 50 was 0.10 seconds, for n = 100 it 
was 0.46 seconds. We attribute the difference primarily to the scaling in the calculation of the gradient, which 
is the most expensive calculation in the optimization. Our approach computes each of the n+m derivatives 

Table 3.   The percent of βv and γa , rounded to three decimal places, that are zero when optimizing ma-QAOA 
on the family of graphs found in the first column.

n Percent of v with βv = 0 Percent of a with γa = 0

8 15.030 25.449

50 (3-reg.) 13.000 18.147

50 (E.R.) 11.440 14.381

100 (3-reg.) 14.690 19.973

100 (E.R.) 12.900 16.541

Table 4.   The ratio of the expected number of measurements to obtain a sample from the noiseless distribution 
for p-QAOA relative to 1-ma-QAOA on an n vertex graph, assuming an average number of edges 〈m〉 for 
graphs in the datasets.

n 〈m〉

ǫn = ǫ�m� = 0.01 ǫn = 0.01, ǫ�m� = 0.05

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

8 14.4 1.05 1.32 1.65 1.22 2.77 6.28

50 (3-reg.) 75 1.22 4.30 15.10 2.15 166.16 1× 104

50 (E.R.) 87.2 1.20 4.77 18.94 2.02 291.78 4× 104

100 (3-reg.) 150 1.57 19.32 238.39 5.39 3× 104 2× 108

100 (E.R.) 167.34 1.50 22.08 324.26 4.71 7× 104 1× 109



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6781  | https://doi.org/10.1038/s41598-022-10555-8

www.nature.com/scientificreports/

∂〈Cp,uv〉ma/∂βp,w and ∂〈Cp,uv〉ma/∂γp,jk for each of the m terms 〈Cp,uv〉ma in the cost function, giving a total 
number of terms ∼ (n+m)m . The time to compute each term will vary with the degree of the graph, as this 
determines the number of cosine terms in Theorem 4.1; however, for our graphs the degree is approximately 
constant hence can be neglected in the scaling. For our graphs m ∼ n on average, so the overall scaling is ∼ n2 , 
which is consistent with the ≈ 4× increase in time when n is doubled from n = 50 to n = 100 . We attribute the 
remainder of the time difference to variations in the number of iterations as n and m increase.

It is interesting to consider scaling of the optimization time with the number of vertices n for instances beyond 
the current dataset. For a gradient-based optimization this requires computing ∂�Cma�/∂θ = ∑

a ∂�Ca�/∂θ for 
each parameter θ , for each step in the optimization. For MaxCut and a variety of other problems53, the number of 
clauses Ca is poly(n), and so there are poly(n) parameters and poly(n) partial derivatives ∂〈Ca〉/∂θ in the gradient. 
There are situations in which the time to compute each ∂〈Ca〉/∂θ is independent of n, specifically, when p and the 
graph structure are fixed such that each partial derivative can be computed using n-independent “sub-graphs”13. 
Then we need to compute poly(n) terms with fixed compute time per term, so the overall time to compute the 
gradient scales as poly(n). The gradient based optimization approach BFGS exhibits super-linear convergence 
on a variety of practical problems54, which supports the idea that the number of steps will not scale problemati-
cally with n. Perhaps counterintuitively, a recent investigation of variational quantum algorithms suggests that 
algorithms with more parameters have fewer local optima and achieve better convergence to global optima55, 
suggesting ma-QAOA may require fewer BFGS step to optimize than standard QAOA.

Discussion
We have shown that multi-angle QAOA converges to an optimal solution, and furthermore that �C�ma

1 ≥ �C�1 , 
as QAOA is a special case of ma-QAOA. Additionally, the analysis of star graphs shows that there is a family of 
graphs that always gives larger 〈C〉 for MaxCut when solved with ma-QAOA than when solved with QAOA. We 
find significant increases in the approximation ratio in numerical optimizations for large triangle-free graphs 
and over the set of all non-isomorphic graphs with eight vertices, hence fewer layers are required to reach the 
same performance as QAOA. We also show that optimized rotation angles are often zero in ma-QAOA and this 
reduces the number of unitary operators per layer relative to QAOA. In the presence of noise, the reduction 
in number of layers and in the number of unitary operators per layer can significantly decrease the expected 
number of measurements needed to sample a result |z� in the distribution of the noiseless state. This could be a 
significant advantage for computations on noisy quantum hardware.

Interestingly, some graphs do not have a significantly higher 〈C〉 when solving MaxCut with ma-QAOA ver-
sus QAOA. It would be useful to characterize for which graphs the increase in 〈C〉 from QAOA to ma-QAOA is 
insignificant. This would help determine the appropriate ansatz to use in order to solve MaxCut on the graph.

One drawback to ma-QAOA is that the number of classically optimized parameters is n+m per layer, where 
n is the number of vertices of G and m is the number of edges. An argument can be made that if x parameters are 
required to optimize one iteration of ma-QAOA, the results should be compared to QAOA with the same number 
of parameters. This approach would require p ≈ x

2 iterations of QAOA, which may not be feasible on current 
hardware as a large number of layers will accumulate considerable noise. From this perspective, it is advantageous 
to incorporate additional parameters into a small number of circuit layers. It could be interesting to consider the 
comparison with the same numbers of parameters from a theoretical perspective, but it is beyond our scope here.

From a practical standpoint, one way to solve optimal ma-QAOA angles would be to calculate β and γ that 
optimize QAOA. We can use those angles as the initial point of a BFGS search for the optimal βp,v and γp,ai for 
all vertices v and edges ai . Overall, however, the results seem to indicate that good parameters can be found in 
polynomial time. As many combinatorial optimization problems, like MaxCut, are NP-Hard, any polynomially-
bounded effort that improves performance is likely to improve performance at large scale.

Figure 3.   Typical behavior of the BFGS search algorithm for 100 random eight vertex graphs each with 100 
random seeds in BFGS, for regular QAOA at (a) p = 1 , (b) p = 2 , (c) p = 3 and for (d) ma-QAOA at p = 1 . 
Solid curves show averages over graphs and seeds, dashed-dotted lines show the average ± standard deviation 
and dotted lines show the final values. Each curve terminates at the average final iteration of the BFGS algorithm 
for the dataset.
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Methods
Proof of convergence. 
Proof  Recall that QAOA converges to the optimal solution for a combinatorial optimization problem, which 
is the maximum over the objective function13. Thus, in order to show convergence of ma-QAOA, we need only 
bound ma-QAOA from below by the value of QAOA. However, it is clear that the optimal expected value of the 
cost function for ma-QAOA can be no lower than that of QAOA, since QAOA is a special case of ma-QAOA 
when all γp,ij = γp,kl and all βp,a = βp,b for all edges ij, kl and all vertices a, b. 	�  �

Formula for 〈C〉.  In order to prove that �C�ma
1 = 1 for MaxCut on star graphs, we derive a formula that cal-

culates 〈C〉ma
1  for MaxCut on triangle-free graphs.

Theorem 4.1  Let β ′
p,u = 2βp,u and β ′

p,v = 2βp,v The expected value of C after one iteration of ma-QAOA applied 
to MaxCut for triangle-free graphs G is

where w ∈ Nbhd(u) \ v and x ∈ Nbhd(v) \ u.

The neighborhood of a vertex x, denoted Nbhd(x), is the set of vertices y such that xy ∈ E(G).

Proof  The proof of this result relies on the Pauli-solver algorithm, which is explained in detail in56. The proof 
of the result is virtually identical to that for QAOA on triangle-free graphs, but we include the proof here for 
completeness.

Consider edge uv and consider acting on Cuv = (1/2)(I− ZuZv) by conjugation of the mixing operator, 
∏

i∈V e−iβ1,iBi , followed by conjugation of the phase operator, 
∏

uv∈E e
−iγ1,uvCuv . We have that

Note that the first term commutes with 
∏

uv∈E e
−iγ1,uvCuv , so does not contribute to the expected value. Let Vu 

be the neighborhood of u in V(G). Conjugating the third term of Eqn. (3) by 
∏

uv∈E e
−iγ1,uvCuv , we get

where ϒ = e−iγ1,uvCuv e−i
∑

a∈Vu\v γ1,uaCua , and ϒ† is its Hermitian conjugate. By symmetry, the term for ZuYv is 
− sin γ1,uv

∏

b∈Vv\u cos γ1,vb , where Vv is the neighborhood of v in V. Factoring in the coefficient −1/2 of ZuZv 
in Cuv gives the final two terms in the theorem.

Now, let us conjugate the last term of Eq. (3). Doing so, we get

The simplest terms that contribute to the expected value are of the form

and there are f of these where f is the number of triangles containing uv. The higher order terms only contribute 
to the expected value if there are triangles in the graph. Thus, the last term of Eqn. (3) contributes nothing to 
the expected value of triangle-free graphs.

Combining these expressions gives the theorem. 	�  �

〈

�γ1 �β1
∣

∣

∣
Cuv

∣

∣

∣
�γ1 �β1

〉

= 1

2
+ 1

2
sin γ1,uv(cosβ

′
1,v sin β

′
1,u

∏

w

cos γ1,uw + cosβ ′
1,u sin β

′
1,v

∏

x

cos γ1,vx)

(3)

∏

i∈V
eiβ1,iBi ZuZv

∏

i∈V
e−iβ1,iBi = e2iβ1,uXue2iβ1,vXvZuZv

= cos 2β1,u cos 2β1,vZuZv + cos 2β1,v sin 2β1,uYvZu

+ cos 2β1,u sin 2β1,vZvYu + sin 2β1,u sin 2β1,vYuYv .

�s|ϒ†YuZvϒ |s� = �s|e2iγ1,uvCuv e2i
∑

a∈Vu\v γ1,uaCuaYuZv|s�
= �s|e−iγ1,uvZuZv e−i

∑

a∈Vu\v γ1,uaZuZaYuZv|s�
= �s|(I cos γ1,uv − i sin γ1,uv)ZuZv

∏

a∈Vu

(I cos γ1,ua − i sin γ1,uaZuZa)YuZv|s�

= − sin γ1,uv
∏

a∈Vu

cos γ1,ua,

�s|ei
∑

gh∈E γ1,ghCghYuYve
−i

∑

gh∈E γ1,ghCgh |s�
= �s|

∏

a∈Vu\v
(I cos γ1,ua − i sin γ1,uaZuZa)×

∏

b∈Vv\u
(I cos γ1,vb − i sin γ1,vbZvZb)YuYv|s�

sin γ1,uc sin γ1,vc
∏

x  =y

cos γ1,ux cos γ1,vy
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Star graphs.  First, we will show that 〈Cij〉 approaches 0.75 as n tends to infinity for QAOA. Since there are 
n− 1 edges in a star on n vertices, this implies 〈C〉 tends to 0.75(n− 1) . Additionally, n− 1 is the size of the opti-
mal MaxCut solution, so �C�1/Cmax = 0.75.

Wang, Hadfield, Jiang, and Rieffel showed that57

where d is the deg(i)− 1 , e is the deg(j)− 1 and f is the number of triangles containing edge ij56,57.
Let us consider the above formula applied to a star graph. Without loss of generality, let j be the center of each 

star. Then d = 0 , e = n− 2 , and f = 0 , since star graphs are trees. For each edge of the star, Eq. (4) reduces to

We set β = π/8 , which implies sin 4β = 1 , since only one trigonometric function has β as an argument. As 
n tends to infinity, note cosn−2 γ tends to zero unless γ = kπ for some k ∈ N . However, if γ = kπ , sin γ = 0 . 
Thus, this quantity is maximized when γ  = kπ , which implies 〈Cij〉1 tends to 0.75 for star graphs.

In order to prove �C�ma = n− 1 for ma-QAOA on star graphs, we examine Theorem 4.1. Without loss of 
generality, let u be a leaf vertex and v be the center. Note that the first product is empty, since the leaf vertices 
have no neighbors except the center. Thus, Theorem 4.1 reduces to

Now, recall 
〈

�γ1 �β1
∣

∣

∣
Cuv

∣

∣

∣
�γ1 �β1

〉

≤ 1 , as two vertices that have an edge between them add one to the objective 
function if they are in different sets. In order to obtain equality, we can set γ1,uv = π/2 , as it is an argument for 
only a single sine term. Next, note that if either term in the parenthesis is one, the other must be zero. Also, set-
ting one term equal to one allows gives an expected value of one for the edge. Let β ′

1,u = π/2 and β ′
1,v = 0 . Then 

cosβ ′
1,v = sin β ′

1,u = 1 while cosβ ′
1,u = sin β ′

1,v = 0 . Thus, the first term in the parenthesis is one and the second 
is zero. This allows us to set γ1,vx = π/2 for all x ∈ Nbhd(v) . Since each of the n− 1 edges in the star are described 
similarly, �C�ma

1 = n− 1 for all n. The size of the optimal cut on a star graph is n− 1 , so �C�ma
1 /Cmax = 1.

Setup for computational results.  In order to calculate the angles that maximize 〈C〉p and 〈C〉ma
1  for the 

eight vertex graphs, we used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm58. The algorithm inputs 
an initial collection of angles and then uses a numerical gradient and second order approximate Hessian to find 
angles that converge to local maxima of 〈C〉p and 〈C〉ma

1  . For the eight vertex graphs, one-hundred random seeds 
were used to optimize 〈C〉ma

1  . The results for the 〈C〉p were taken from the online dataset51 of Ref.35, where we 
performed an exhaustive analysis of QAOA performance on small graphs. These used fifty seeds for p = 1 , one-
hundred seeds for p = 2 , and one-thousand seeds for p = 3.

For the fifty and one-hundred vertex graphs, we used the method of moving asymptotes (MMA) algorithm59,60, 
but note that calculations with BFGS gave similar results. The 〈C〉1 were computed using Eq. (4) and the reported 
results were taken as the best from one-thousand initial seeds in MMA optimizations. The 〈C〉ma

1  were computed 
with Theorem 4.1 and MMA optimization. We report results as the best optimized values from one-thousand 
seeds at n = 50 and from one-hundred seeds at n = 100.

Data availability
The datasets generated during and/or analysed during the current study are available in the Multi-Angle-QAOA 
repository, https://​code.​ornl.​gov/​5ci/​multi-​angle-​qaoa.
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