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Three dimensional modeling 
of atrioventricular valves provides 
predictive guides for optimal choice 
of prosthesis
Faizus Sazzad1,3,4*, Jin Hao Goh2, Zhi Xian Ong1, Zakaria Ali Moh Almsherqi1, 
Satish R Lakshminarasappa1, Kollengode R Ramanathan1,3 & Theo Kofidis1,3

Inaccuracies in intraoperative and preoperative measurements and estimations may lead to adverse 
outcomes such as patient-prosthesis mismatch. We aim to measure the relation between different 
dimensions of the atrioventricular valve complex in explanted porcine heart models. After a detailed 
physical morphology study, a cast of the explanted heart models was made using silicon-based 
materials. Digital models were obtained from three-dimensional scanning of the casts, showing the 
measured annulopapillary distance was 2.50 ± 0.18 cm, and 2.75 ± 0.36 cm for anterior and posterior 
papillary muscles of left ventricle, respectively. There was a significant linear association between 
the mitral annular circumference to anterior–posterior distance (p = 0.003, 95% CI 0.78–3.06), 
mitral annular circumference to interpapillary distance (p = 0.009, 95% CI 0.38–2.20), anterior–
posterior distance to interpapillary distance (p = 0.02, 95% CI 0.10–0.78). Anterior–posterior distance 
appeared to be the most important predictor of mitral annular circumference compared to other 
measured distances. The mean length of the perpendicular distance of the tricuspid annulus, a, was 
2.65 ± 0.54 cm; b was 1.77 ± 0.60 cm, and c was 3.06 ± 0.55 cm. Distance c was the most significant 
predictor for tricuspid annular circumference (p = 0.006, 95% CI 0.28–2.84). The anterior–posterior 
distance measured by three-dimensional scanning can safely be used to predict the annular 
circumference of the mitral valve. For the tricuspid valve, the strongest predictor for the circumference 
is the c-distance. Other measurements made from the positively correlated parameters may be 
extrapolated to their respective correlated parameters. They can aid surgeons in selecting the optimal 
prosthesis for the patients and improve procedural planning.
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LV	� Left ventricle
MV	� Mitral valve
OSHE	� Office of safety, health and environment
PT	� Pulmonary trunk
PM	� Papillary muscle
PV	� Pulmonary vein
RA	� Right atrium
RTV	� Room-temperature-vulcanizing
RV	� Right ventricle
SMC	� Superior vena cava
SOP	� Standard operating procedure
TEL	� Technology enhanced learning
TMVR	� Transcatheter mitral valve replacement
TV	� Tricuspid valve

Atrioventricular heart valves, namely mitral and tricuspid valves, are prone to coexisting disease and may lead 
to heart failure. Mitral valve calcification and mitral valve prolapse are potentially life-threatening conditions. 
Concomitant tricuspid valve disease is not uncommon. Mitral and/or tricuspid intervention may entail increased 
procedural complexities1,2.

Treatment consists of atrioventricular (AV) heart valve replacement or valve repair for which a variety of 
interventional modalities exist3. Even mitral valve repair, the gold standard for resolving mitral regurgitation, 
encompasses a diversity of techniques. Furthermore, surgical procedures involved in the replacement of a dis-
eased mitral/tricuspid valve are preceded by echocardiography and other imaging modalities4,5. However, inac-
curacies arise during the surgical procedure when estimating the size of the AV valve orifice using surgical 
tools. Of note, circular, rigid valve prostheses are regularly used to replace a highly asymmetric and flexible 
annulus. Replacement of the valve would depend on the surgeon’s estimation based on the tool, which can lead 
to a deleterious mismatch.

The AV apparatus is highly heterogeneous. It consists of the annulus, the leaflets, chords, and the papillary 
muscles. Understanding of the AV apparatus’ morphology is critical, which determines surgical treatment, in 
order to avoid or mitigate ventricular failure and its systematic consequences6. Compared to the tricuspid valve, 
more problems are known to arise in the mitral valve. Consequently, more research is being done to improve 
and facilitate the treatment of the mitral valve. However, the tricuspid valve function is also an important deter-
minant of survival7.

A silicon-based cast and a digital 3D representation of the model would allow easier manipulation to obtain 
a greater variety of measurements than simple two-dimensional measurement. 3D scanning technologies have 
been used as an effective method of constructing models as an anatomical representation of the human body8,9. 
This would also hope to provide a method for cross-referencing measurements obtained from echocardiography 
reconstruction of the mitral valve that may have inaccuracies from these imaging10.

To address the inaccuracies in AV surgery or therapeutic intervention arising from a variety of different 
treatment techniques and manual measurements during the surgical process, further analysis of the specific 
mitral valve dimensions that carry physiological significance should be explored. Understanding these dimen-
sions could present certain patterns in the parameters that may help to improve the surgical process of AV valve 
interventions. While there exist multiple studies that have analyzed the AV valve and its related structures11,12, 
this study aimed to obtain measurements of the porcine atrioventricular valve in a three-dimensional (3D) space. 
We investigated the measurements of the anatomical features of the mitral and tricuspid of the explanted pigs’ 
heart using 3D scanning to better understand its architecture and provide a baseline for the relationship between 
the various measurements made in the mitral and tricuspid anatomy and the proposed anatomical reference.

Materials and methods
This study was conducted at the Cardiac Surgery Research Laboratory at the National University of Singapore 
from January to November 2021. Data from all experiments were collected prospectively according to Office 
of Safety, Health and Environment (OSHE) guidelines with compliance to biological hazards tissue handling 
standard operating procedures at a Biosafety Level 3 Laboratory (BSL-3) facility. The study was approved by the 
Institutional Animal Care and Use Committee (IACUC), Centre for Life Sciences (CeLS), Department of Com-
parative Medicine (CM), Singapore (Protocol No #R17-1126), with all personnel handling hazardous materials, 
including research staff were informed of the risks and instructed on the handling methods. In total, thirty-six 
explanted swine heart samples were collected and enrolled for processing, while swine hearts with significant 
structural defects were excluded from our study.

Sample size and distribution.  Thirty-six explanted swine hearts were procured for processing, while 
hearts with significant structural defects, dissection, or traumatic injury were excluded from our study. There 
was four initial proof of concept experiments that were performed to establish the experiment setup. Sixteen 
explanted hearts were used for the morphological 2D analysis of AV valves. Six samples were used for Mitral 
valve complex assessment, and the rest ten were used for tricuspid valve complex evaluation, where the sample 
was used for one particular valve only due to extensive dissection of the samples. On the other hand, additional 
16 samples were assigned to both AV valve casting after the initial four proof of concept studies. Out of Sixteen 
casting, all were useful for mitral valve evaluation, whereas two samples for tricuspid evaluation were discarded 
due to inadequate casting quality.
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Explanted swine heart models.  In our study, we obtained casts of the cardiac chambers to yield bet-
ter visualization of the cardiac atrioventricular apparatus. All great cardiac vessels—aorta, pulmonary trunk, 
superior vena cava (SVC), inferior vena cava (IVC), and pulmonary vein (PV) were partially removed from the 
heart. Blood clots and fibrin residues within the cardiac chambers were flushed out with water and/or removed 
surgically. Residual pericardium between the aortic root and pulmonary trunk (PT) was separated via blunt 
dissection. All valves (semilunar and atrioventricular valves) leaflets and their chords- were removed to ensure 
unobstructed flow of the cast material from atria to the ventricles. The explanted heart was suspended on a 
dedicated stand (Fig. 1A) with sutures used to anchor the four sites—LA, PV, RA, and the aorta in a free-floating 
position with the apex of the heart oriented inferiorly, allowing an uninterrupted flow of impression material 
and avoidance of artificial indentations forming on the cast. This enabled an accurate replica representation of 
the heart under diastolic conditions with avoidance of cavitation, pressure effects, and manipulation artifacts.

2D measurements of the AV valve.  In the first step, we conducted 2D measurements of the AV valves. 
A different set of hearts (n = 16) was used for the 2D anatomical measurements. Following standard operating 
procedures in a wet lab setting, the samples were exposed by blunt dissection, using Metzenbaum scissors where 
the left and right atrium were removed (Fig. 1B). Before measurements were made, the last step of the dissection 
was to remove all leaflets and sub-valvular apparatus in both the mitral and tricuspid valves.

Due to the non-circular shape, planimetric variation, and small structure of the AV valve anatomy, a surgical 
suture (2/0 mersilk) was used to make various measurements to provide a more reliable and accurate curvature 
estimation. The annulus was first measured, followed by the respective commissures. These commissure points 
were marked out with a knot, with a surgical suture for references in measurement making. The shortest distance 
between the papillary muscle to each commissure was measured, as well as the perpendicular and horizontal 
distances of the tricuspid, as shown by the image in Fig. 2. These points were arranged based on the anatomical 
clock positions, with respect to a surgical orientation of the mitral and tricuspid valve during surgery. In the 
second round of dissection, the coronal section of the dissected heart is observed. The measurements for the 
height of the papillary muscle, distance from annulus ring to papillary tip, and ventricle depth were obtained. 
The measurement method is added to the Supplementary Doc 1.

The casting of impression materials.  We utilized five different cast materials—Gypsum cement (LUN-
ABEAN) (Fig. 3A), EVA (Ethylene–vinyl acetate) copolymers (STANLEY) (Fig. 3B), RTV (Room-temperature-
vulcanizing) silicone (Fig. 3C), Silicone rubber from EASYMOULD (Fig. 3D), and DRAGONSKIN (Fig. 3E) 
for a total of 20 explanted swine heart experiments. Each material was prepared according to the recommended 
instructions prior to installation; then were instilled into the heart via the LA and RA openings with a 30 ml 
introducer syringe or via direct casting in accordance with its unique material viscosity (Supplementary Doc 1). 
The luer lock tip of the introducer syringe was modified to enlarge the opening for smooth delivery of impres-
sion material into the heart. The heart filled with impression materials was kept in position for 45–60 min for 
sedimentation then placed into a fridge for 24 h at 5.9 °C subjective for consolidation. The cast was removed 
from the heart via incisions along the left and right cardiac borders on the next day to obtain a cast (Fig. 3A–E). 
The casts are excised from the heart, and excess materials were trimmed. Anatomical structures like MV and PM 
were located and marked on the cast.

Creation of 3D models.  The casting models were scanned using the EinScan Pro 2 × Plus 3D Scanner from 
the Shining 3D Pte Ltd under the ownership of the Technology Enhanced Learning (TEL) Imaginarium. The 
scanner uses structured-light 3D technology to obtain the geometry of the scanned subject. The scanner projects 
light onto the object, which is reflected into the camera. The light is distorted along the surface of the 3D object, 
which is captured by cameras located at a perspective different from that of the projected light, allowing for the 
geometric reconstruction of the object (Supplementary Fig. 1).

Figure 1.   A customized, repositionable experimental holder is used to suspend the explanted swine heart by 
fixing it to the stand in the upper four sites with suture materials. (A) vertical orientation and side view of the 
explanted heart for casting. Atria was closed using 5/0 polypropylene suture materials permitting a small orifice 
to pour the liquid cast material. (B) Coronal orientation of the AV valves. LA left atrium, IVC Inferior vena cava, 
SVC Superior vena cava, LV Left ventricle, MV Mitral valve, TV Tricuspid valve, PT Pulmonary trunk.
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The casting models were placed on a turntable, and the exposure was adjusted through the EXScan Pro 
software from Shining 3D under an LED light source to ensure adequate lighting. Exposure was a fixed vari-
able, and the number of steps for the turntable was set to eight before allowing the scan to proceed. Each step 
is a rotation of the turntable, indicating that after every step, the model will be rotated at an angle of 45° for the 
scanner to scan a new face of the model to provide an accurate representation of the model. Two-dimensional 

Figure 2.   Anatomical orientation of the AV Valves clockwise. Mitral valve (MV) orientation (View from LA 
to LV): 10 o’clock and 2 o’clock are the respective commissures; 12 o’clock and 6 o’clock is the vertical distance 
between A2 and P2 segments. The tricuspid valve (TV) is marked at the annulus as S (Septal), A (Anterior), and 
P (Posterior), which represents the length of the corresponding annulus. The three commissures were positioned 
at 8 o’clock for Antero-septal, 4 o’clock for Postero-septal, and 12 o’clock for an Antero-posterior commissure. 
A perpendicular distance was measured from the commissure to the opposite annulus and perpendicular to 
the horizontal plane joining the other two commissure was marked as a, b, and c respectively, where “a” is a 
measured distance from 4 o’clock to 10 o’clock, “b” is a measured distance from 12 o’clock to 6 o’clock and “c” is a 
measured distance from 8 o’clock to 2 o’clock. PT Pulmonary trunk.

Figure 3.   Figure panel showing the castings of AV chambers (both right and left) with the use of different 
impression materials: (A) Gypsum cement (LUNABEAN), (B) EVA (Ethylene–vinyl acetate) copolymers 
(STANLEY), (C) RTV (Room-temperature-vulcanizing) silicone, (D) EASYMOULD silicone rubber, (E) 
DRAGONSKIN silicone rubber.
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measurements were obtained in centimeters, while the outline of the mitral valve annulus was displayed as a 3D 
figure. With the turntable, the scanner has a range error for its scan accuracy of up to 0.04 mm. The scanner also 
has a slice resolution of 0.16 mm, which was sufficient as the visible details in the models, such as the papillary 
muscle tips, have a distance greater than 0.16 mm.

Our standard protocol started with LV first. The LV cast was placed on the turntable with the anterolateral 
papillary muscle facing up to allow the scanner to record the top layer of the model. The model was then flipped 
180° and scanned again to record the bottom layer. The two layers were then aligned through EXScan Pro. The 
apex of the heart, the tip of the left atrium (LA), and the tip of the aorta on the model were used as points to align 
the two layers together. The final product was then exported and saved as a Wavefront file. The same procedure 
was followed for RV. The right heart models were placed with their medial, septal, sides facing up first before 
rotating the model 180° to have its lateral side facing up. For the remaining, the same steps were repeated in 
order to obtain the scans. Alignment of top and bottom scans presents a measurement risk, as it was done by 
eyeball estimation. In order to reduce the inaccuracy, three different scans of each model were obtained, and the 
average measurements of the three scans were calculated for further analysis.

Computational measurements.  In our study, for computational measurement, we have used BLENDER, 
an open-source 3D creation software, which also has the capabilities of modeling 3D objects, and can import 3D 
scans of various formats along with obtaining measurements for the objects. Using Blender, different sets of data 
were obtained from the Wavefront model scan file. The distance between the tip of the LA and the heart apex 
of the cast model was measured to ensure that the digital model is scaled to the correct size in Blender. After 
importing the Wavefront file into Blender, the model was scaled to match the appropriate size. The measure tool 
in Blender was then used to measure the distances from the points plotted on the model. Each 3D model was 
measured three times to eliminate inaccuracies and averaged.

The draw tool was used to create an outline of both mitral and tricuspid annulus, and the circumference was 
obtained under the Curve Info. Depiction of the points of interest used to obtain the measurements is shown in 
Fig. 4. The distances from the points indicated in Fig. 4I(A–C) and the papillary muscles were measured, along 
with the interpapillary distance for the mitral valve in Fig. 4II(A).

MV measurements included: Annulus circumference (AC), Annulus 3D structure, Inter-commissural diam-
eter (CC), Anteroposterior diameter (A2P2), Diameter maximum (Dmax), Interpapillary distance (IPAP). We have 
also measured the annulus to corresponding papillary muscle tip distance (APD), as shown in Fig. 4I(A) and 
II(A). Annulus to papillary distance (ALP) at C(10)G marking represents anterolateral commissure at 10 o’clock 
(Fig. 2) to the tip of corresponding papillary muscle H. Similarly, the annulus to papillary distance (PMP) for 
posteromedial commissure at 2 o’clock (Fig. 2) to the tip of the papillary muscle distance was taken from D(2)H 
point. Additionally, Papillary muscles measurements the IPAP (G to H) and the distances of the ALP (annulus-
papillary distances) to points A, B, C, D, E, and F along the mitral valve [Fig. 4I(A–C)] shows the distributions of 
the distances measured. With reference to ALP, the annulus-papillary distances measured from A(12)G, B(6)G, 
C(10)G, D(2)G, E(9)G, and F(3)G. With reference to PMP, the different means for annulus-papillary distances 
to points along the mitral valve include from A(12)H, B(6)H, C(10)H, D(2)H, E(9)H, and F(3)H [Fig. 4II(A–C)].

For the Tricuspid valve, we assessed: Annulus circumference (AC), Septal annulus length (SA), Anterior annu-
lus length (AA), Posterior annulus length (PA). The imaginary triangle joining the three commissures (Figure-2) 
was used for horizontal distance measurement. The distance from 12 o’clock (Antero-posterior commissure) to 8 
o’clock (Antero-septal commissure) was represented as HA(12–8); distance from 8 o’clock (Antero-septal com-
missure) to 4 o’clock (Postero-septal commissure) to was represented as HS(8–4), and distance from 4 o’clock 
(Postero-septal commissure) to 12 o’clock (Antero-posterior commissure) to was represented as HP(4–12). A 
perpendicular distance was measured from the corresponding commissure to the opposite annulus, which was 
perpendicular to the horizontal plane joining the other two commissure was marked as a, b and c respectively. 
“a” was a measured distance from 4 o’clock to 10 o’clock, “b” is a measured distance from 12 o’clock to 6 o’clock 
and “c” is a measured distance from 8 o’clock to 2 o’clock (Fig. 2). Annulus-papillary distances (APD) were also 
measured from A(8)Gt, B(10)Gt, C(12)Gt, D(2)Gt, E(4)Gt, and F(6)Gt as shown in Fig. 4III(A–D).

Statistical analysis.  The Statistical Package for the Social Sciences (version 27.0) was used for interactive 
and batched statistical analysis. Categorical data were presented in the frequency tables and one-way analysis of 
variance (ANOVA) analysis was performed where applicable. Multiple linear regression analysis was performed 
to identify the correlation among the interest variables. Statistical significance was defined as p-value < 0.05.

Institutional review board.  This study was approved by the Institutional Animal Care and Use Commit-
tee (IACUC), Centre for Life Sciences (CeLS), Department of Comparative Medicine (CM), National University 
of Singapore (Reference #R17-1126).

Informed consent.  Preclinical, experimental study, informed consent is not applicable.

Results
Morphology of AV valve complex: 2D measurements.  Mitral valve.  The mean mitral annu-
lar circumference (AC) was 10.07 ± 0.49  cm [9.20–10.50  cm]; mean inter-commissural distance (CC) was 
3.12 ± 0.21 cm [2.70–3.30 cm]; mean antero-postero diameter (A2P2) was 2.62 ± 0.26 cm [2.30–2.90 cm]; mean 
maximum annular diameter (Dmax) was 3.52 ± 0.22 cm [3.30–3.80 cm]. The distance between the two papillary 
muscle tip (IPAP) was 1.5 ± 0.21 cm [1.30–1.80 cm].
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ALP distance for C(10)G represents anterolateral commissure at 10 o’clock (Fig. 2) to the tip of papillary mus-
cle H. The mean C(10)G distance was 2.50 ± 0.18 cm [2.20–2.70 cm] in our series. Similarly, the PMP distance 
for posteromedial commissure D(2)H was 2.75 ± 0.36 cm [2.20–3.10 cm]. The measured LV free wall thickness 
was 1.43 ± 0.21 cm [1.20–1.80 cm] with a LV radius 2.78 ± 0.18 cm [2.60–3.10 cm] and LV Height measured was 
2.82 ± 0.32 cm [2.50–3.30 cm].

Tricuspid valve.  The mean tricuspid annular circumference (AC) was 8.96 ± 1.49 cm [7.27–11.80 cm]; mean 
septal annulus length (SA) was 2.73 ± 0.89 cm [1.63–4.47 cm]; mean anterior annular length was 3.90 ± 0.38 cm 
[3.32–4.50 cm], and mean posterior annulus length was 2.33 ± 0.58 cm [1.43–3.02 cm]. From the data obtained, 
the posterior annulus (PA) was the shortest section of the annulus ring, as seen in the average, minimum and 
maximum measurements. The tricuspid valve complex of the swine model showed that the anterolateral papil-
lary muscle is the most prominent and identifiable, while the other two papillary muscles were rudimentary. In 

Figure 4.   Schematic diagram and computational images extracted from blender showing dimensions of 
interest. (I) (A). Diagram representation of the mitral valve viewed from the LA (Axial View). The distance from 
A to B refers to the anteroposterior diameter (A2P2), the longest diameter when measured in an anteroposterior 
direction. The distance from C to D refers to the inter-commissural distance (CC), or the diameter between 
the locations where the anterior and posterior leaflets meet. The distance from E to F refers to the diameter 
maximum (Dmax), which is the longest diameter when measured in a lateromedial fashion; (B) Anterior view of 
model showing points A, D, F, and B along with the mitral valve, with reference to (I(A)); (C) Posterior view of 
model showing points A, C, E, and B along with the mitral valve, with reference to (I(A)). (II) Papillary muscles 
in relation to the mitral valve in sagittal view. (A) Cross-sectional representation of left ventricle including mitral 
valve complex. G refers to the tip of the anterolateral papillary muscle, while H refers to the posteromedial 
papillary muscle. The distance from G to H is the interpapillary distance (IPAP), or the distance between the 
tips of the papillary muscles, was measured. The distances between the points A, B, C, D, E, and F [as in Figure 
(I(A))] to the tips of both papillary muscles. These measurements were the various annulus-papillary distances. 
(B) Anterior view of the model shows the tip of the anterolateral papillary muscle. The single highest point 
of the indentation from the papillary muscle was taken as point G. (C) Posterior view of the model showing 
the tip of the posteromedial papillary muscle. The single highest point of the indentation from the papillary 
muscle was taken as point H. III(A) Diagram representation of the tricuspid valve axial view (viewed from the 
RA). The three commissures were positioned at A for Antero-septal, E for Postero-septal, and C for Antero-
posterior commissure. A distance was measured from the commissure to the opposite annulus was marked as 
AD, EB, and CF, representing a,b,c, respectively (as in Fig. 2). (B) Antero-lateral papillary muscle in relation to 
the tricuspid valve in sagittal view. Cross-sectional representation of right ventricle including tricuspid valve 
complex. Gt refers to the tip of the anterolateral papillary muscle. The distances between points A and E, [as in 
Figure (III(A))], were measured to the tip of the papillary muscle.
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some cases, the anterior leaflet and part of the septal leaflet chords were found directly attached to the ventricular 
septum.

The mean APD distance at A(8)Gt was 2.87 ± 1.38 cm [2.07–5.57 cm] in our series. Similarly, APD distance 
at C(12)Gt was 1.94 ± 0.77 cm [1.37–4.00 cm], and APD distance at E(4)Gt was 1.99 ± 1.61 cm [0.98–5.30 cm]. 
From the data obtained, the A(8)Gt was the longest distance from its papillary muscle to its respective com-
missure as seen in the average, minimum and maximum measurements. There were no definite trends between 
the C(12)Gt and E(4)Gt. The mean horizontal distance from commissure to opposite commissure HA(12–8) 
was 2.55 ± 0.58 cm [1.80–3.39 cm]. Similarly mean distance of HS(8–4) was 2.94 ± 0.43 cm [2.43–3.67 cm], and 
mean distance of HP(4–12) was 2.25 ± 0.24 cm [1.95–2.69 cm]. From the data obtained, the longest horizontal 
distance of the corresponding position was from the HS as seen in the average, minimum and maximum meas-
urements. There were no definite trends between HA and HP. The mean length of perpendicular distance a was 
2.65 ± 0.54 cm [1.98–3.67 cm]; mean length of b was 1.77 ± 0.60 cm [1.06–2.91 cm], and mean length of c was 
3.06 ± 0.55 cm [2.36–3.86 cm]. From the data obtained, the longest perpendicular distance from the correspond-
ing position was from the (4–10) as seen in the average, minimum and maximum measurements. The shortest 
perpendicular distance from the corresponding position would be from the c(8–2).

Three measurements of the papillary muscle were taken for height, width, and thickness. The height ranges 
from 2.0 to 3.7 cm. The width ranges from 1.5 to 2.2 cm. The thickness ranges from 0.3 to 0.7 cm. The height 
of the papillary was the most diverse dimension. The thickness of the papillary muscle was the most consistent 
among the samples measured.

3D modeling and cast measurements.  Mitral valve.  The distributions of the various parameters 
are displayed in Fig. 5A,B. Figure 5C,D showed the correlations between the various mitral valve complex pa-
rameters also show that there was a positive correlation between A2P2 vs. mitral annulus circumference (AC) 
(R2 = 0.48) and CC vs. Dmax (R2 = 0.55). Box and whisker plots of IPAP and annulus-papillary distances showed a 
mean IPAP of 1.82 ± 0.21 cm.

With reference to ALP, the annulus-papillary distances have varying means when measured from A(12)G 
(3.08 ± 0.67 cm), B(6)G (1.97 ± 0.97 cm), C(10)G (3.07 ± 0.64 cm), D(2)G (2.52 ± 0.61 cm), E(9)G (2.62 ± 0.69 cm), 
and F(3)G (2.08 ± 0.83 cm) (Fig. 5E). With reference to PMP, the different means for annulus-papillary dis-
tances to points along the mitral valve include from A(12)H (2.51 ± 0.59 cm), B(6)H (2.33 ± 0.70 cm), C(10)H 
(2.14 ± 0.61 cm), D(2)H (2.40 ± 0.61 cm), E(9)H (1.96 ± 0.48 cm), and F(3)H (2.41 ± 0.61 cm) (Fig. 5F).

The Simple and multiple linear regressions of dimensions in the mitral valve were analyzed and displayed 
in Table 1. There was a significant linear association between mitral AC-A2P2 (p = 0.003), AC-IPAP (p = 0.009) 
(Fig. 5G), A2P2-IPAP (p = 0.02) (Fig. 5H), and Dmax-CC (p = 0.001). There was a 1.65 cm (95% CI 0.36–2.94) 
increase in the mean length of mitral AC for each cm A2P2 (p = 0.006). A2P2 appears to be the ‘most important’ 
predictor for Mitral AC, compared to CC, Dmax, and IPAP. The rest of the correlations were statistically non-
significant, and correlation analysis has been added to Supplementary Doc 1 (Supplementary Figs. 2–4).

Tricuspid valve.  The distributions of the various parameters are displayed in Fig. 5I,J. Box and whisker plots 
of annulus-papillary distances (APD) showed the dimensions have varying means when measured from 
A(8)Gt (2.91 ± 0.72 cm), B(10)Gt (2.28 ± 0.81 cm), C(12)Gt (2.19 ± 0.69 cm), D(2)Gt (2.82 ± 0.63 cm), E(4)Gt 
(3.04 ± 0.54 cm), and F(6)Gt (2.48 ± 0.76 cm) (Fig. 5K).

Figure 5L showed that there was a positive correlation between tricuspid annulus circumference (AC) to 
perpendicular distance “c” (R2 = 0.54). The tricuspid AC had a linear association with perpendicular distances 
“a” and “c” (Table-1). There was a 1.56 cm (95% CI 0.28–2.84) increase in the mean length of tricuspid AC for 
each cm “c” (p = 0.02). The perpendicular distance “c” appears to be the ‘most important’ predictor for tricuspid 
AC. The APD measured from five definitive points of the tricuspid annulus has shown no significant correlation. 
The rest other correlations for the tricuspid valve were not significant statistically, and the correlation analysis 
is added in the Supplementary Doc 1 (Supplementary Figs. 5, 6).

Discussion
This study showed significant positive correlations in certain mitral and tricuspid valve dimensions. Our main 
findings were the significant association between mitral AC-A2P2, AC-IPAP, A2P2-IPAP, and Dmax-CC, out of which 
A2P2 was the most important predictor of mitral AC. Additionally, the perpendicular distance-c was the most 
significant predictor for tricuspid AC. As such, this would allow surgeons to better extrapolate from a single 
measurement of the mitral and/or tricuspid valve to determine the optimal prosthesis size.

In the mitral valve, a larger A2P2 denotes a possibly larger annulus circumference. The tricuspid valve had 
a relatively less distinct annulus compared to the mitral valve. The intraoperative finding of a larger distance-c 
may reflect the need for a larger valve size or the need to reduce the annular size via annuloplasty. These cor-
relations show both the normal anatomical relationship and the ideal size for treatment—having an equation 
may aid the interventional cardiologist or surgeon in planning procedures. However, the heart is a physically 
dynamic organ—these anatomical relationships need to cautiously correlate with hemodynamic performance. 
In our setting, the heart was examined under diastolic conditions.

The morphology of the swine heart bears a close resemblance to the human heart. The mitral and tricuspid 
valves are similar to the human heart with respect to the size, leaflets, and chordae tendineae layout13. Porcine 
heart models are therefore suitable as an alternative in heart valve experimentations. Dimensions of the atrio-
ventricular valve leaflets were not obtained in this study as they were presumed to be diseased and removed. 
Additionally, we have noticed about ~ 10–15% reduction in actual physical size and distance of a measured 
dimension in a real specimen versus a cast.
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Feasibility studies of 3D valvular modeling in interventional and surgical planning have been previously 
performed14,15. Patients required multi-modal and multiple computed tomographies and 3D echocardiography 
for valvular delineation prior to printing of the models. Issues encountered include poor cost-effectiveness, 
and limited clinical utility in routine valvular interventions. Furthermore, the resolution of images obtained 
may skew the evaluation of the valves. 3D echocardiography is operator-dependent and may encounter loss of 
signal, blurring, or partial acquisition of the valve14.

Accurate anatomical modeling was achieved through 3D cast models. True quantitative measurements were 
reproduced via hand-held 3D scanners. The delineation of the valvular structures and quantitative measurements 
guide the understanding of relationships between valvular dimensions. Hence, the anatomical relationships 
elicited may have a clinical role in planning for interventions in each unique individual’s anatomy. The 3D model 
in this study is in accordance with the shape of the MV annulus cited in other studies15–18. The MV annulus 
depicted in the model is represented by a non-planar saddle-shaped figure (Supplementary Fig. 7). Additionally, 
other studies provide a similar morphology of the model of the TV as in this study18–21.

Moreover, the construction of a 3D model would have possible applications as a tool for anatomical education. 
Due to the non-planar structure of both the MV and TV, their morphology can be better understood through a 
3D model that would be able to better capture the shape along the x, y, and z axes. 3D models show promising 
results as a form of education in guiding students compared to cadaveric models21–24. Furthermore, virtual 3D 
models would present greater efficiency and accessibility to anatomical research. Virtual programs are capable 
of displaying morphological aspects through animations25, providing greater interactivity. Understanding the 
MV and TV morphology through efficient education and research can produce clinical applications with more 
accurate biomimicry and aid the choice of the prosthetic valve. One of the major limitations of this study is the 

Figure 5.   Mitral valve (A–H), Tricuspid valve (I–L). (A) Box and whisker plots of mitral valve annulus 
parameters in Annulus circumference (AC); (B) Inter commissural distance (CC); (C) Vertical distance of 
mitral valve (A2P2); the maximum transverse diameter of the mitral valve (Dmax); (D) Correlation between 
CC and Dmax diameters of the mitral valve; (E) Distribution of annulus-papillary distances for posteromedial 
papillary muscle (PMP); (F) Distribution of annulus-papillary distances for anterolateral papillary muscle 
(ALP) and Interpapillary distance (IPAP); (G) Correlation between IPAP and AC; (H) Correlation between IPAP 
and A2P2; (I) Box and whisker plots of tricuspid valve annulus parameters in Annulus circumference (AC); (J) 
Commissural lengths, Septal annulus (SA), Anterior annulus (AA), posterior annulus (PA); (K) Distribution of 
annulus-papillary distances; (L) Correlation between perpendicular distance c (8–2) and AC.
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small pool of samples. The positioning of the heart to stimulate the diastolic state may not be ideal in ensuring 
accurate measurements due to the flaccidity of the heart. However, the standardized positioning and anchors 
on the heart helped to account for the variation in positioning.

In addition, With the abnormal TV and MV, the normal morphology and shape of both annuli are always 
disturbed. Due to this distortion of the shape, the diameters also are changed dramatically. However, AV valve 
pathology comes with multi-fold changes: normal annuli, dilated annuli, asymmetrically dilated annuli, calci-
fication annuli, and more. Regretfully, no size evaluation can capture the full cycle of the heart, the individual 
patients’ annular variability, and pathology, thus altering the level of mismatch. A better, rather functional 
metric, which may correlate better with the average EOA of the valve, following implantation. The principle 
of implanting the biggest possible valve is best served by a proper anatomical measurement rather than a rigid 
circular, pre-sized tool. In short, our proposed assessment method is not perfect but the least flawed amongst 
them all. This is a limitation in the current study; further 3D modeling studies on experimental diseased hearts 
or in vitro heart models would be needed to validate these findings.

Table 1.   Simple and multiple linear regression of parameters for both the mitral and tricuspid valve. 
*Significant; SLR Simple linear regression, MLR Multiple linear regression, DV Dependent variable, IV 
Independent variable, AS-F ANOVA significance-F, Co-B Coefficient B, L-95 Lower 95%, U-95 Upper 95%, 
TV Tricuspid valve, MV Mitral valve, AC Annular circumference, CC Inter-commissural distance, IPAP Inter-
papillary distance, Dmax Maximum diameter of the mitral valve, A2P2 Anteroposterior diameter of the mitral 
valve.

DV IV R2 ANOVA-F Co-B p L-95 U-95

SLR

MV

AC CC 0.0008 0.91 0.08 0.91 − 1.57 1.75

AC A2P2 0.48 0.003* 1.92 0.003* 0.78 3.06

AC Dmax 0.0002 0.96 0.04 0.96 − 1.7 1.74

AC IPAP 0.40 0.009* 1.29 0.009* 0.38 2.20

A2P2 CC 0.04 0.47 − 0.20 0.47 − 0.79 0.38

A2P2 Dmax 0.15 0.14 − 0.42 0.14 − 0.99 0.15

A2P2 IPAP 0.36 0.02* 0.44 0.02* 0.10 0.78

Dmax CC 0.54 0.001* 0.72 0.001* 0.34 1.09

Dmax IPAP 0.17 0.11 − 0.29 0.11 − 0.64 0.07

CC IPAP 0.11 0.21 − 0.24 0.21 − 0.62 0.15

TV

AC a 0.35 0.03* 1.91 0.03* 0.26 3.57

AC b 0.26 0.06 1.33 0.06 − 0.08 2.74

AC c 0.55 0.002* 2.12 0.002* 0.91 3.33

a b 0.10 0.26 0.26 0.26 − 0.22 0.73

c b 0.16 0.15 0.37 0.15 − 0.15 0.89

c a 0.14 0.19 0.32 0.19 − 0.19 0.84

MLR

MV

AC

CC

0.59 0.006*

− 0.15 0.84 − 1.74 1.43

A2P2 1.65 0.01* 0.36 2.94

Dmax 1.41 0.09 − 0.31 3.13

IPAP 0.93 0.06 − 0.03 1.89

IPAP
A (PMP)

0.20 0.09
0.44 0.04 0.01 0.87

A (ALP) − 0.14 0.55 − 0.63 0.35

IPAP
B (PMP)

0.25 0.06
− 0.06 0.67 − 0.34 0.22

B (ALP) 0.44 0.03 0.07 0.83

IPAP
C (PMP)

0.27 0.07
0.49 0.03 0.07 0.92

C (ALP) − 0.22 0.31 − 0.66 0.23

IPAP
D (PMP)

0.21 0.08
0.62 0.03 0.06 1.18

D (ALP) − 0.43 0.21 − 1.13 0.27

IPAP
E (PMP)

− 0.08 0.67
0.15 0.44 − 0.26 0.56

E (ALP) − 0.17 0.54 − 0.77 0.42

IPAP
F (PMP)

0.0004 0.39
0.07 0.79 − 0.52 0.67

F (ALP) 0.19 0.61 − 0.61 0.99

TV AC

a

0.60 0.006*

1.06 0.12 − 0.36 2.47

b 0.48 0.37 − 0.66 1.62

c 1.56 0.02* 0.28 2.84
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Conclusion
The 3D analysis of the morphological variables of the atrioventricular heart valve complex will provide a deeper 
understanding of mitral and tricuspid valve morphology in the surgical context and can guide decision-making. 
This will allow surgeons and interventional cardiologists to extrapolate from a single measurement of the mitral 
and/or tricuspid valve to the necessary dimensions of the mitral and or tricuspid valve implants.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its 
supplementary materials. Raw data were generated at Cardiac Surgery Research Laboratory at the National 
University of Singapore. Derived data supporting the findings of this study are available from the corresponding 
author on request. 

Received: 6 February 2022; Accepted: 22 March 2022

References
	 1.	 Pozzoli, A., Zuber, M., Reisman, M., Maisano, F. & Taramasso, M. Comparative anatomy of mitral and tricuspid valve: What can 

the interventionlist learn from the surgeon. Front. Cardiovasc. Med. 5, 80. https://​doi.​org/​10.​3389/​fcvm.​2018.​00080 (2018).
	 2.	 Cetinkaya, A. et al. Long-term outcomes of concomitant tricuspid valve repair in patients undergoing mitral valve surgery. J. 

Cardiothorac. Surg. 15, 210. https://​doi.​org/​10.​1186/​s13019-​020-​01244-6 (2020).
	 3.	 Gheorghe, L. et al. Current devices in mitral valve replacement and their potential complications. Front. Cardiovasc. Med. 7, 531843. 

https://​doi.​org/​10.​3389/​fcvm.​2020.​531843 (2020).
	 4.	 Lancellotti, P. et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive sum-

mary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 14(7), 611–644. https://​doi.​
org/​10.​1093/​ehjci/​jet105 (2013).

	 5.	 Dahou, A., Levin, D., Reisman, M. & Hahn, R. T. Anatomy and physiology of the tricuspid valve. JACC Cardiovasc. Imaging. 12(3), 
458–468. https://​doi.​org/​10.​1016/j.​jcmg.​2018.​07.​032 (2019).

	 6.	 Sanz, J., Sánchez-Quintana, D., Bossone, E., Bogaard, H. J. & Naeije, R. Anatomy, function, and dysfunction of the right ventricle: 
JACC state-of-the-art review. J. Am. Coll. Cardiol. 73(12), 1463–1482. https://​doi.​org/​10.​1016/j.​jacc.​2018.​12.​076 (2019).

	 7.	 Watt, T. M. F., Brescia, A. A., Williams, A. M. & Bolling, S. F. Functional tricuspid regurgitation: Indications, techniques, and 
outcomes. Indian J. Thorac. Cardiovasc. Surg. 36(Suppl 1), 131–139. https://​doi.​org/​10.​1007/​s12055-​019-​00915-x (2020).

	 8.	 Tjørnild, M. J. et al. Mitral valve posterior leaflet reconstruction using extracellular matrix: In vitro evaluation. Cardiovasc. Eng. 
Technol. 11(4), 405–415. https://​doi.​org/​10.​1007/​s13239-​020-​00472-0 (2020).

	 9.	 Mathur, M. et al. Tricuspid valve leaflet strains in the beating ovine heart. Biomech. Model. Mechanobiol. 18(5), 1351–1361. https://​
doi.​org/​10.​1007/​s10237-​019-​01148-y (2019).

	10.	 Javaid, M. & Haleem, A. Current status and challenges of Additive manufacturing in orthopaedics: An overview. J. Clin. Orthop. 
Trauma. 10(2), 380–386. https://​doi.​org/​10.​1016/j.​jcot.​2018.​05.​008 (2019).

	11.	 Haleem, A., Gupta, P., Bahl, S., Javaid, M. & Kumar, L. 3D scanning of a carburetor body using COMET 3D scanner supported by 
COLIN 3D software: Issues and solutions. Mater. Today Proc. 39, 331–337. https://​doi.​org/​10.​1016/j.​matpr.​2020.​07.​427 (2021).

	12.	 Moradian, M. Diagnostic errors in echocardiography: Review of five interesting pediatric cases. J. Tehran Heart. Cent. 7(1), 33–36 
(2012).

	13.	 Lomholt, M., Nielsen, S. L., Hansen, S. B., Andersen, N. T. & Hasenkam, J. M. Differential tension between secondary and primary 
mitral chordae in an acute in-vivo porcine model. J. Heart Valve Dis. 11(3), 337–345 (2002).

	14.	 Daemen, J. H., Heuts, S., Olsthoorn, J. R., Maessen, J. G. & Sardari Nia, P. Mitral valve modelling and three-dimensional printing 
for planning and simulation of mitral valve repair. Eur. J. Cardiothorac. Surg. 55(3), 543–551 (2019).

	15.	 Vukicevic, M., Puperi, D. S., Grande-Allen, K. J. & Little, S. H. 3D printed modeling of the mitral valve for catheter-based structural 
interventions. Ann. Biomed. Eng. 45(2), 508–519 (2017).

	16.	 Jimenez, J. H., Soerensen, D. D., He, Z., He, S. & Yoganathan, A. P. Effects of a saddle shaped annulus on mitral valve function and 
chordal force distribution: An in vitro study. Ann. Biomed. Eng. 31, 1171–1181 (2003).

	17.	 Levine, R. A., Triulzi, M. O., Harrigan, P. & Weyman, A. E. The relationship of mitral annular shape to the diagnosis of mitral valve 
prolapse. Circulation 75(4), 756–767 (1987).

	18.	 Mahmood, F. et al. Mitral annulus: An intraoperative echocardiographic perspective. J. Cardiothor. Vasc. Anaesth. 27(6), 1355–1363 
(2013).

	19.	 Anwar, A. M., Geleijnse, M. L., Cate, F. J. & Meijboom, F. J. Assessment of tricuspid valve annulus size, shape and function using 
real-time three-dimensional echocardiography. Interact. Cardiovasc. Thorac. Surg. 5(6), 683–687 (2006).

	20.	 Jett, S. et al. An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart 
valves. J. Mech. Behav. Biomed. Mater. 87, 155–171. https://​doi.​org/​10.​1016/j.​jmbbm.​2018.​07.​024 (2018).

	21.	 Pokutta-Paskaleva, A., Sulejmani, F., DelRocini, M. & Sun, W. Comparative mechanical, morphological, and microstructural 
characterization of porcine mitral and tricuspid leaflets and chordae tendineae. Acta Biomater. 85, 241–252. https://​doi.​org/​10.​
1016/j.​actbio.​2018.​12.​029 (2019).

	22.	 Lim, K. H., Loo, Z. Y., Goldie, S. J., Adams, J. W. & McMenamin, P. G. Use of 3D printed models in medical education: A rand-
omized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat. Sci. Educ. 9(3), 
213–221 (2015).

	23.	 Garas, M., Vaccarezza, M., Newland, G., McVay-Doornbusch, K. & Hasani, J. 3D-Printed specimens as a valuable tool in anatomy 
education: A pilot study. Ann. Anat. 219, 57–64. https://​doi.​org/​10.​1016/j.​aanat.​2018.​05.​006 (2018).

	24.	 Meyer, E. R. & Cui, D. Anatomy visualizations using stereopsis: Assessment and implication of stereoscopic virtual models in 
anatomical education. Adv. Exp. Med. Biol. 1235, 117–130. https://​doi.​org/​10.​1007/​978-3-​030-​37639-0_7 (2020).

	25.	 Schleich, J., Dillenseger, J., Houyel, L., Almange, C. & Anderson, R. H. A new dynamic 3D virtual methodology for teaching the 
mechanics of atrial septation as seen in the human heart. Anat. Sci. Educ. 2(2), 69–77 (2009).

Acknowledgements
The authors would like to express gratitude to Harshini, William, Yee Zher from NUS High School of Mathemat-
ics and Science, and Shangmin, Yue Yin, Michelle, Sulaiman, Marcus from Temasek Polytechnic, Singapore, for 
their valuable help.

https://doi.org/10.3389/fcvm.2018.00080
https://doi.org/10.1186/s13019-020-01244-6
https://doi.org/10.3389/fcvm.2020.531843
https://doi.org/10.1093/ehjci/jet105
https://doi.org/10.1093/ehjci/jet105
https://doi.org/10.1016/j.jcmg.2018.07.032
https://doi.org/10.1016/j.jacc.2018.12.076
https://doi.org/10.1007/s12055-019-00915-x
https://doi.org/10.1007/s13239-020-00472-0
https://doi.org/10.1007/s10237-019-01148-y
https://doi.org/10.1007/s10237-019-01148-y
https://doi.org/10.1016/j.jcot.2018.05.008
https://doi.org/10.1016/j.matpr.2020.07.427
https://doi.org/10.1016/j.jmbbm.2018.07.024
https://doi.org/10.1016/j.actbio.2018.12.029
https://doi.org/10.1016/j.actbio.2018.12.029
https://doi.org/10.1016/j.aanat.2018.05.006
https://doi.org/10.1007/978-3-030-37639-0_7


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7432  | https://doi.org/10.1038/s41598-022-10515-2

www.nature.com/scientificreports/

Author contributions
Conceptualization, F.S., and T.K.; methodology, F.S., J.H., Z.X.; software, J.H., F.S.; validation, F.S., Z.X.; formal 
analysis, J.H., F.S.; resources, F.S., Z.A.; data curation, F.S., J.H.; writing—original draft preparation, F.S., J.H., 
Z.X.; writing—review and editing, F.S., R.K., S.R., T.K.; visualization, F.S., J.H., supervision, T.K.; project admin-
istration, F.S.; funding acquisition, T.K., Z.A. All authors have read and agreed to the published version of the 
manuscript.

Funding
The author(s) disclosed receipt of the following financial support for the research and publication of this 
article: this work was supported by The National Research Foundation (NRF), Singapore, Central Gap 
Fund [NRF2020NRF-CG001-018]. Partial support to accommodate Jin Hao Goh to work on this project was 
obtained from Swee Liew-Wadsworth Fund Grant (SLW-FY2021). 

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​10515-2.

Correspondence and requests for materials should be addressed to F.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-10515-2
https://doi.org/10.1038/s41598-022-10515-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Three dimensional modeling of atrioventricular valves provides predictive guides for optimal choice of prosthesis
	Materials and methods
	Sample size and distribution. 
	Explanted swine heart models. 
	2D measurements of the AV valve. 
	The casting of impression materials. 
	Creation of 3D models. 
	Computational measurements. 
	Statistical analysis. 
	Institutional review board. 
	Informed consent. 

	Results
	Morphology of AV valve complex: 2D measurements. 
	Mitral valve. 
	Tricuspid valve. 

	3D modeling and cast measurements. 
	Mitral valve. 
	Tricuspid valve. 


	Discussion
	Conclusion
	References
	Acknowledgements


